九年级中考模拟试卷[下学期] 北师大版
北师大版九年级数学中考模拟试题

ABCDE FMC'D'B'俯视图主(正)视图左视图初中毕业生中考数学模拟考试一.选择题:1、2--的倒数是( )A 、2B 、12 C 、12- D 、-2 2、2007年中国月球探测工程的“嫦娥一号”卫星将发射升空飞向月球。
已知地球距离月球表面约为384000千米,那么这个距离用科学记数法(保留三个有效数字)表示应为( )A3.84×410千米 B3.84×510千米 C 、3.84×610千米 D 、38.4×410千米3、右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是( )A 、5个B 、6个C 、7个 D.8个4、下列运算正确的是( )A 、2224(2)2a a a -=B 、336()a a a -⋅= C.236(2)8x x -=- D 、2()x x x -÷=- 5、下列事件中,不可能事件是( )A 、掷一枚六个面分别刻有1~6数码的均匀正方体骰子。
向上一面的点数是“5”B 、任意选择某个电视频道,正在播放动画片C 、肥皂泡会破碎D 、在平面内,度量一个三角形的内角度数,其和为360°6 、已知代数式1312a x y -与23b a b x y -+-是同类项,那么a 、b 的值分别是( )A 、21a b =⎧⎨=-⎩B 、21a b =⎧⎨=⎩C 、21a b =-⎧⎨=-⎩D 、21a b =-⎧⎨=⎩7、把一张长方形的纸片按如图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在'B M 或'B M 的延长线上,那么∠EMF 的度数是( )A 、85°B 、90°C 、95°D 、100°8、如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D 。
已知车速45A 、3B 、23C 、5D 、29、为了了解汽车司机遵守交通法规的意识,小明的学习小组成员协助交通警察在某路口统计的某个时段来往汽车的车速(单位:千米/小时)情况如图所示。
北师大版九年级中考数学模拟考试试题(含答案)

九年级中考数学模拟试卷(满分150分 时间120分钟)一.单选题。
(共40分) 1.√25等于( )A.5B.﹣5C.±5D.25 2.下列正面摆放的几何体中,左视图是三角形的是( )3.据推算,全国每年减少10%的过度包装纸用量,那么可排放二氧化碳3 120 000吨,数3 120 000用科学记数法表示为( )A.3.12×106B.31.2×105C.312×104D.3.12×1074.下列平面直角坐标系内的曲线中,既是中心对称图形,又是轴对称图形的是( )5.如图,下列结论正确的是( )A.b -a >0B.a+b <0C.|a |>|b |D.ac >0(第5题图) (第9题图)6.计算x+1x-1x 的结果是( )A.1B.xC.1x D.x+1x 27.不透明袋子中装有10个球,其中有6个红球和4个白球,它们除了颜色其余都相同,从袋中随机摸出1个球,是红球的概率是( ) A.15 B.25 C.35 D.3108.在平面直角坐标系中,一次函数y=kx-1的图象向上平移2个单位长度后经过点(2,3),则k的值是()A.1B.﹣1C.﹣2D.29.如图,在△ABC中,AB=AC=2BC=4,以点B为圆心,BC长为半径画弧,与AC交于点D,则线段CD的长为()A.12B.1 C.43D.210.二次函数y=﹣x2+2x+8的图像与x轴交于B,C两点,点D平分BC,若在x轴上侧的A点为抛物线的动点,且∠BAC为锐角,则AD的取值范围是()A.3<AD≤9B.3≤AD≤9C.4<AD≤10D.3≤AD≤8二.填空题。
(共24分)11.因式分解:m2-4= .12.如图,是由7个全等的正六边形组成的图案,假设可以随机在图中取点,那么这个点取在阴影部分的概率是.(第12题图)(第13题图)13.如图,一个正方形剪去四个角后形成一个边长为√2的正八边形,则这个正方形的边长为.14.已知m是关于x的方程x2-2x-3=0的一个根,则m2-2m+2020= .15.学校食堂按如图方式摆放餐桌和椅子,若用x表示餐桌的张数,y表示椅子的把数,请你写出椅子数y(把)与餐桌数x(张)之间的函数关系式.(第15题图)(第16题图)16.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE与AB交于点E,且tan∠α=34,有以下结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或214;④0<BE≤5,其中正确结论是(填序号)三.解答题。
北师大版中考数学经典模拟试卷(小刘老师)

九年级模拟数学试题说明:命题人:刘聪1.考试时间120分钟。
满分120分。
2.考生作答时,将答案答在答题卡上,在本试卷上答题无效。
3.考试结束时,监考教师只收答题卡,试卷由学生自行保管。
一.选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)1.化简(﹣x )3(﹣x )2,结果正确的是 ( ) A .﹣x 6 B .x 6 C .x 5 D .﹣x 52.我区某市统计局2017年初发布了2016年该市经济形势:2016年全市地区生产总值(GDP )实现1143亿元.数据1143亿元用科学记数法表示 ( ) A .1.14×103元B .1.14×1010元C .1.14×1011元D .1.14×1012元3.下列计算正确的是 ( ) A .﹣=B .3×2=6C .(2)2=16 D .=14.某校参加校园青春健身操比赛的16名运动员的身高如表:则该校16名运动员身高的平均数和中位数分别是(单位:cm )( )A .173cm ,173cmB .174cm ,174cmC .173cm ,174cmD .174cm ,175cm5.形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是 ( )A .B .C .D .6.如图,从位于O 处的某海防哨所发现在它的北偏东60°的方向,相距600米的A 处有一艘快艇正在向正南方向航行,经过若干时间快艇要到达哨所东南方向的B 处,则A 、B 间的距离是( )米.A .300+300B .300+300C .150+150D .150+1507.某单位向一所希望小学赠送1080本课外书,现用A 、B 两种不同的包装箱进行包装,单独使用B 型包装箱比单独使用A 型包装箱可少用6个;已知每个B 型包装箱比每个A 型包装箱可多装15本课外书.若设每个A 型包装箱可以装书x 本,则根据题意列得方程为( ) A . B . C .D .8.在同一平面直角坐标系中,函数y=ax+b 与y=ax 2﹣bx 的图象可能是( )A .B .C .D .二.填空题(每小题3分,共24分)9.分解因式:x﹣2xy+xy2= .10.黄石市某天的最高气温为+5℃,最低气温比最高气温低8℃,则这天此地气温t (℃)的取值范围是.11.如图,a、b、c在数轴上的位置如图所示,则|a+b|﹣|a+c|﹣|c﹣b|= .12.已知x,y 满足,则x﹣y的值是.13.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率.14.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕A逆时针旋转后,能够与△ACP′重合,如果AP=3,那么PP′= .第14题图第16题图15.已知一面积为6πcm2的扇形的弧长为πcm,则该扇形的半径= .16.如图,矩形ABCD中,对角线AC=2,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB= .三.解答题(每题6分,共36分)17.解不等式组:.18.先化简,再求值:÷(1+),其中x=﹣1.19.如图,在平面直角坐标系中,Rt△ABC的三个顶点坐标为A(﹣3,0),B(﹣3,﹣3),C(﹣1,﹣3)(1)求Rt△ABC的面积;(2)在图中作出△ABC关于x轴对称的图形△DEF,并写出D,E,F的坐标.第19题图第20题图20.如图,△ABC中,AD平分∠CAB,BD⊥AD,DE∥AC.求证:AE=BE.21.为了解本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A(90分以上)、B (89~80分)、C (79~60分)、D (59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人? (2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?22.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2016年底全市汽车拥有量为14.4万辆.己知2014年底全市汽车拥有量为10万辆.(1)求2014年底至2016年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2018年底汽车拥有量不超过15.464万辆,据估计从2016年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同) 四、解答题(23题、24题每题8分,25题、26题每题10分,共36分) 23.如图,四边形ABCD 内接于⊙O ,AC 平分∠BAD ,延长DC 交AB 的延长线于点E .(1)若∠ADC=86°,求∠CBE 的度数; (2)若AC=EC ,求证:AD=BE .24.如图,O 为坐标原点,点A (1,5)和点B (m ,1)均在反比例函数y=图象上. (1)求m ,k 的值;(2)设直线AB 与x 轴交于点C ,求△AOC 的面积.25.近期,海峡两岸关系的气氛大为改善.大陆相关部门对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售.某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:设当单价从40元/千克下调了x元时,销售量为y千克;(1)写出y与x间的函数关系式;(2)如果凤梨的进价是20元/千克,若不考虑其他情况,那么单价从40元/千克下调多少元时,当天的销售利润W最大?利润最大是多少?(3)若你是该销售部负责人,那么你该怎样进货、销售,才能使销售部利润最大?26.如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C 运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒.(1)求线段AC的长度;(2)当点Q从B点向A点运动时(未到达A点),求△APQ的面积S关于t的函数关系式,并写出t的取值范围;(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为l,当l经过点B时,求t 的值。
北师大版中考数学模拟题

1正面ABCD数学模拟试卷一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求。
1.3-的绝对值是( ) A .3 B .3- C .13 D .13-2.计算232(3)x x ⋅-的结果是( )A .56x - B .56x C .62x - D .62x3.已知点P (a ,a -1)在直角坐标系的第一象限内,则a 的取值范围在数轴上可表示为( )A B C D 4.成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为( ) A . 59.310⨯ 万元 B . 69.310⨯万元 C .49310⨯万元 D . 60.9310⨯万元 5.如右图所示几何体的主视图是( )6.点B (-3,4)关于y 轴的对称点为A ,则点A 的坐标是( ) A .(3,4) B .(-4,-3) C .(4,-3) D .(-3,-4) 7.把不等式组⎩⎨⎧≤+->321x x 的解集表示在数轴上,下列选项正确的是( )A .B .C .D .8.用半径为12cm ,圆心角为90°的扇形纸片,围成一个圆锥的侧面,这个圆锥的底面半径为( )A .1.5cmB .3cmC .6cmD .12cm9.直线l :y =x +2与y 轴交于点A ,将直线l 绕点A 旋转90°后,所得直线的解析式为( )A .y =x -2B .y =-x +2C .y =-x -2D .y =-2x -110.如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD =40°,则∠DCF 等于( ) A .80° B .50° C .40° D .20° 二、填空题(每小题3分,共15分)11.分解因式:22x y xy y -+=_________.12. 甲、乙、丙三位选手各10次射击成绩的平均数和方差统计如表:则射击成绩最稳定的选手是____________.(填“甲”、“乙”、“丙”中的一个)1 0 1-1 0 1- 1 0 1- 10 1-2. 13.方程组31x y x y +=⎧⎨-=-⎩的解是____________.14.如图,是反比例函数1=k y x和y = 2=k y x (k 1<k 2)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,若S △AOB =2,则k 2-k 1的值是_________.第14题图 第15题图15. 如图,直线y =43-x +4与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 按顺时针方向旋转90°后得到△AO 1B 1,则点B 1的坐标是 。
北师大版九年级中考数学模拟考试试题(含答案)(山东地区)

九年级中考数学模拟考试试题满分150分时间:120分钟一、单选题。
(每小题4分,共40分)1.2023的相反数是()A.2023B.﹣2023C.﹣12023 D.120232.如图是由8个完全相同的小正方体组成的几何体,从正面看到的形状图是()3.我国自主研发的北斗系统技术世界领先,在西昌卫星发射中心成功发射最后一颗北斗三号卫星,该卫星发射升空的速度约7100米/秒,其中“7100”用科学记数法表示为()A.7100B.0.71×104C.7.1×103D.71×1024.将一副三角板按如图所示的方式放置,则∠AOB=()A.75°B.45°C.30°D.80°(第4题图)(第6题图)(第9题图)5.古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,下列既是轴对称图形又是中心对称图形的是()A. B. C. D.6.如图数轴上A,B两点表示的数分别为a,b,下列结论中,错误的是()A.a+b <0B.a -b <0C.ab <0D.ab <07.二十四节气是中华上古农耕文明的智意结晶,小明购买了二十四节气主题邮票,他要将立春,立夏,秋分,大寒四张邮票中的两张送给小鹏,小明将它们背面朝上放在桌面上,让小鹏从中随机抽取一张,(不放回),再从中随机抽取一张,则小鹏抽到的两张恰好是立夏和秋分的概率是( )A.12 B.16 C.13 D.34 8.函数y=ax 与y=ax -a 在同一坐标系中的大致图象是( )9.如图,在△ABC 中,∠C=90°,以A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E ,已知CE=3,BE=5,则AC 的长为( )A.8B.7C.6D.510.已知函数y=x 2-2ax+5,当x ≤2时,函数值随x 增大而减小,且对任意的1≤x 1≤a+1和1≤x 2≤a+1,x 1,x 2相对应的函数值为y 1,y 2,总满足|y 1-y 2|≤4,则实数a 的取值范围是( ) A.﹣1≤a ≤3 B.﹣1≤a ≤2 C.2≤a ≤3 D.2≤a ≤4 二.填空题。
北师大版贵阳市九年级数学中考复习模拟试卷

数学模拟试卷姓名: 班级: 成绩:一、选择题(30分)22.据宁波市统计局公布的第六次人口普查数据,本市常住人口760.57万人,其中760.57万人用科学记数3.某商品的商标可以抽象为如图所示的三条线段,其中AB ∥CD ,∠EAB=45°,则∠FDC 的度数是( ) A . 30° B . 45°C . 60°D . 75°4.小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图).若小亮上坡、平路、下坡的速度分别为123v v v 、、,且123v v v <<,则小亮同学骑车上学时,离家的路程s 与所用时间t 的函数关系图像可能是( )5.下列图形是中心D6.如图所示的几何体的左视图是( )ABC D8、无论a取什么实数,点P(a-1,2a-3)都在直线L上,Q(m,n)是直线L上的点,则(2m-n+3)2的值等于:A. 9B. 12C. 16D. 49.今年5月,某校举行“唱红歌”歌咏比赛,有17位同学参加选拔赛,所得分数互不相同,按成绩取前810.如图,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为()A.(2,3)B.(3,2)C.(3,3)D.(4,3)二、填空题(20分)11.因式分解:x2﹣9y2=_________.12.如图,四边形ABCD是平行四边形,E是CD延长线上的任意一点,连接BE交AD于点O,如果△ABO≌△DEO,则需要添加的条件是_________(只需一个即可,图中不能添加任何点或线)13.某生数学科课堂表现为90分、平时作业为92分、期末考试为85分,若这三项成绩分别按30%、30%、40%的比例计入总评成绩,则该生数学科总评成绩是_________分.14.已知反比例函数y=的图象经过点A(m,1),则m的值为.15.如图,点O(0,0)、B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,…,依次下去,则点B6的坐标是_________.三、解答题16.(8分)请从a2﹣1,a2﹣a,a2﹣2a+1中任选两个(一个作为分子,一个作为分母)构造一个分式,并化简,然后自选一个合理的数代入求值.17、据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.(10分)18(1)该月小王手机话费共有多少元?(3分)(2)扇形统计图中,表示短信费的扇形的圆心角为多少度?(3分) (3)请将表格补充完整;(2分) (4)请将条形统计图补充完整.(2分)19.如图,在小山的西侧A 处有一热气球,以30米/分钟的速度沿着与垂直方向所成夹角为30°的方向升空,40分钟后到达C 处,这时热气球上的人发现,在A 处的正东方向有一处着火点B ,十分钟后,在D 处测得着火点B 的俯角为15°,求热气球升空点A 与着火点B 的距离.(结果保留根号,参考数据:sin15°=,cos15°=,tan15°=2﹣,cot15°=2+)(10分)20.如图所示,在平行四边形ABCD 中,∠ABC 的角平分线分别交AC ,AD 于E ,F 点,EG ⊥BC ,若BA=6,AC=8,AD=10. (1)求FD 的长;(5分) (2)求△BEC 的面积.(5分)21.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到 _________ 元购物券,至多可得到 _________ 元购物券;(4分) (2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.(6分)22.如图,抛物线y =21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (-1,0).⑴求抛物线的解析式及顶点D 的坐标;(3分) ⑵判断△ABC 的形状,证明你的结论;(3分)⑶点M (m ,0)是x 轴上的一个动点,当CM +DM 的值最小时,求m 的值.(4分)23.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=5cm.(1)求⊙O的半径长;(5分)(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)(5分)24.如图①,有一张矩形纸片,将它沿对角线AC剪开,得到△ACD和△A′BC′.(1)如图②,将△ACD沿A′C′边向上平移,使点A与点C′重合,连接A′D和BC,四边形A′BCD 是形;(3分)(2)如图③,将△ACD的顶点A与A′点重合,然后绕点A沿逆时针方向旋转,使点D、A、B在同一直线上,则旋转角为度;连接CC′,四边形CDBC′是形;(3分)(3)如图④,将AC边与A′C′边重合,并使顶点B和D在AC边的同一侧,设AB、CD相交于E,连接BD,四边形ADBC是什么特殊四边形?请说明你的理由。
北师大版九年级(下) 中考题同步试卷:1.5 测量物体的高度(03)

北师大版九年级(下)中考题同步试卷:1.5 测量物体的高度(03)一、选择题(共2小题)1.如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A 的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为()A.50B.51C.50+1D.1012.如图,某飞机在空中A处探测到它的正下方地平面上目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角α=30°,则飞机A与指挥台B的距离为()A.1200m B.1200m C.1200m D.2400m二、填空题(共6小题)3.如图,从一个建筑物的A处测得对面楼BC的顶部B的仰角为32°,底部C的俯角为45°,观测点与楼的水平距离AD为31m,则楼BC的高度约为m(结果取整数).(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)4.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,那么山高AD为米(结果保留整数,测角仪忽略不计,≈1.414,,1.732)5.4月26日,2015黄河口(东营)国际马拉松比赛拉开帷幕,中央电视台体育频道用直升机航拍技术全程直播.如图,在直升机的镜头下,观测马拉松景观大道A处的俯角为30°,B处的俯角为45°.如果此时直升机镜头C处的高度CD为200米,点A、D、B在同一直线上,则AB两点的距离是米.6.如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度.站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.若旗杆与教学楼的距离为9m,则旗杆AB的高度是m(结果保留根号)7.如图,在A处看建筑物CD的顶端D的仰角为α,且tanα=0.7,向前行进3米到达B处,从B处看D的仰角为45°(图中各点均在同一平面内,A、B、C三点在同一条直线上,CD⊥AC),则建筑物CD的高度为米.8.如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为m(结果保留根号).三、解答题(共22小题)9.如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若坡角∠F AE=30°,求大树的高度(结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)10.如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB)是1.7米,看旗杆顶部E的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD)是0.7米,看旗杆顶部E的仰角为45°.两人相距5米且位于旗杆同侧(点B、D、F在同一直线上).(1)求小敏到旗杆的距离DF.(结果保留根号)(2)求旗杆EF的高度.(结果保留整数,参考数据:≈1.4,≈1.7)11.热气球的探测器显示,从热气球底部A处看一栋高楼顶部的俯角为30°,看这栋楼底部的俯角为60°,热气球A处于地面距离为420米,求这栋楼的高度.12.为了弘扬“社会主义核心价值观”,市政府在广场树立公益广告牌,如图所示,为固定广告牌,在两侧加固钢缆,已知钢缆底端D距广告牌立柱距离CD为3米,从D点测得广告牌顶端A点和底端B点的仰角分别是60°和45°.(1)求公益广告牌的高度AB;(2)求加固钢缆AD和BD的长.(注意:本题中的计算过程和结果均保留根号)13.如图,某中学九年级数学兴趣小组测量校内旗杆AB的高度,在C点测得旗杆顶端A 的仰角∠BCA=30°,向前走了20米到达D点,在D点测得旗杆顶端A的仰角∠BDA =60°,求旗杆AB的高度.(结果保留根号)14.如图,两幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15m,CD=20m,AB和CD 之间有一景观池,小南在A点测得池中喷泉处E点的俯角为42°,在C点测得E点的俯角为45°(点B、E、D在同一直线上),求两幢建筑物之间的距离BD(结果精确到0.1m).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)15.小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知小敏的眼睛与地面距离为1.5m,求这栋建筑物CD的高度(参考数据:≈1.732,≈1.414.结果保留整数)16.如图是放在水平地面上的一把椅子的侧面图,椅子高为AC,椅面宽为BE,椅脚高为ED,且AC⊥BE,AC⊥CD,AC∥ED.从点A测得点D、E的俯角分别为64°和53°.已知ED=35cm,求椅子高AC约为多少?(参考数据:tan53°≈,sin53°≈,tan64°≈2,sin64°≈)17.如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE 为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.18.一数学兴趣小组为了测量河对岸树AB的高,在河岸边选择一点C,从C处测得树梢A 的仰角为45°,沿BC方向后退10米到点D,再次测得A的仰角为30°,求树高.(结果精确到0.1米,参考数据:≈1.414,≈1.732)19.如图,线段AB,CD表示甲、乙两幢居民楼的高,两楼间的距离BD是60米.某人站在A处测得C点的俯角为37°,D点的俯角为48°(人的身高忽略不计),求乙楼的高度CD.(参考数据:sin37°≈,tan37°≈,sin48°≈,tan48°≈)20.某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥CD,大坝顶上有一瞭望台PC,PC正前方有两艘渔船M,N.观察员在瞭望台顶端P处观测到渔船M的俯角α为31°,渔船N的俯角β为45°.已知MN所在直线与PC所在直线垂直,垂足为E,且PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:0.25,为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑土石方进行加固,坝底BA加宽后变为BH,加固后背水坡DH的坡度i=1:1.75,施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)21.如图,观测点A、旗杆DE的底端D、某楼房CB的底端C三点在一条直线上,从点A 处测得楼顶端B的仰角为22°,此时点E恰好在AB上,从点D处测得楼顶端B的仰角为38.5°.已知旗杆DE的高度为12米,试求楼房CB的高度.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)22.在学习解直角三角形的相关知识后,九年级1班的全体同学带着自制的测倾仪随老师来到了操场上,准备分组测量该校旗杆的高度,其中一个小组的同学在活动过程中获得了一些数据,并以此画出了如图所示的示意图,已知该组同学的测倾仪支杆长1m,第一次在D处测得旗杆顶端A的仰角为60°,第二次向后退12m到达E处,又测得旗杆顶端A 的仰角为30°,求旗杆AB的高度.(结果保留根号)23.如图,大楼AN上悬挂一条幅AB,小颖在坡面D处测得条幅顶部A的仰角为30°,沿坡面向下走到坡脚E处,然后向大楼方向继续行走10米来到C处,测得条幅的底部B 的仰角为45°,此时小颖距大楼底端N处20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DEM=1:),且D、M、E、C、N、B、A在同一平面内,E、C、N 在同一条直线上,求条幅的长度(结果精确到1米)(参考数据:≈1.73,≈1.41)24.如图,为测量某建筑物BC上旗杆AB的高度,小明在距离建筑物BC底部11.4米的点F处,测得视线与水平线夹角∠AED=60°,∠BED=45°.小明的观测点与地面的距离EF为1.6米.(1)求建筑物BC的高度;(2)求旗杆AB的高度(结果精确到0.1米).参考数据:≈1.41,≈1.73.25.小华为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.(以下计算结果精确到0.1m)(1)求小华此时与地面的垂直距离CD的值;(2)小华的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.26.如图所示,小明家小区空地上有两棵笔直的树CD、EF.一天,他在A处测得树顶D 的仰角∠DAC=30°,在B处测得树顶F的仰角∠FBE=45°,线段BF恰好经过树顶D.已知A、B两处的距离为2米,两棵树之间的距离CE=3米,A、B、C、E四点在一条直线上,求树EF的高度.(≈1.7,≈1.4,结果保留一位小数)27.某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥CD.瞭望台PC正前方水面上有两艘渔船M,N,观察员在瞭望台顶端P处观测渔船M的俯角α=31°,观测渔船N的俯角β=45°.已知MN所在直线与PC所在直线垂直,垂足为点E,PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:0.25.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石加固,加固后坝顶加宽3米,背水坡FH的坡度为i=1:1.5.施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的1.5倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)28.如图,在一个18米高的楼顶上有一信号塔DC,李明同学为了测量信号塔的高度,在地面的A处测的信号塔下端D的仰角为30°,然后他正对塔的方向前进了18米到达地面的B处,又测得信号塔顶端C的仰角为60°,CD⊥AB与点E,E、B、A在一条直线上.请你帮李明同学计算出信号塔CD的高度(结果保留整数,≈1.7,≈1.4 )29.如图,某景区有一出索道游览山谷的旅游点,已知索道两端距离AB为1300米,在山脚C点测得BC的距离为500米,∠ACB=90°,在C点观测山峰顶点A的仰角∠ACD =23.5°,求山峰顶点A到C点的水平面高度AD.(参考数据:sin23.5°≈0.40,cos23.5°=0.92,tan23.5°=0.43)30.如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.北师大版九年级(下)中考题同步试卷:1.5 测量物体的高度(03)参考答案一、选择题(共2小题)1.C;2.D;二、填空题(共6小题)3.50;4.137;5.200+200;6.3+9;7.7;8.10;三、解答题(共22小题)9.;10.;11.;12.;13.;14.;15.;16.;17.;18.;19.;20.;21.;22.;23.;24.;25.;26.;27.;28.;29.;30.;第11页(共11页)。
北师大版九年级下学期数学中考模拟试卷(含答案)

九年级数学中考模拟试卷(满分150分时间:120分钟)一.单选题。
(共40分)1.﹣2023的相反数是()A.﹣12023B.12023C.﹣2023D.20232.如图所示,该几何体的左视图是()A. B. C. D.3.一个数是1290,这个数用科学记数法表示为()A.1.29×104B.12.9×102C.1.29×103D.0.129×1044.如图所示,AE∥CD,EF⊥ED,垂足为E,∠1=28°,则∠2的度数为()A.30°B.40°C.62°D.50°(第4题图)(第7题图)(第9题图)5.下列图形中,是中心对称但不是轴对称图形的是()A.B. C. D.6.下列运算正确的是()A.2a2+3a3=5a5B.(-2a)3=-6a3C.(m+n)2=m2+n2D.(3m+2)(2-3m)=4-9m27.△ABC的顶点分别位于正方形网格的格点上,建立如图所示的平面直角坐标系,已知点C(﹣1,1),将△ABC先沿x轴方向向右平移3个单位长度,再沿y轴方向向下平移2个单位长度,得到△A’B’C’,则点A 的对应点的坐标是()A.(﹣6,6)B.(0,2)C.(0,6)D.(﹣6,2)8.若k>1,则一次函数y=(k-1)x+1-k的图象是()A. B. C. D.9.如图,在菱形ABCD中,分别以C,D为圆心,大于12CD长为半径作弧两弧,分别交于点E、F,连接EF,若直线EF恰好经过点A,与边CD交于点M,连接BM.则下列结论中错误的是()A.∠ABC=60°B.如果AB=2,那么BM=4C.BC=2CMD.S ADM=1S△ABM10.二次函数y=ax2+2ax+3(a≠0),当a-1≤x≤2时二次函数的函数值y恒小于4,则a的取值范围为()A.a<18B.a>-1 C.0<a<18或a<0 D.0<a<18或-1<a<0二.填空题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006年九年级数学模拟考试试卷(考试时间:120分钟,满分:150分)注意:1、本试卷分第一部分选择题和第二部分非选择题.2、所有答案写在答题卷的相应位置上,可以使用计算器.参考公式:二次函数y =ax 2+bx +c 的顶点坐标是)44,2(2ab ac ab --.试 卷 Ⅰ一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1. -21的相反数是( )A 、2B 、-2C 、21 D 、-212. 为了迎接2008年奥运会在中国北京举行,北京市现在执行严格的机动车尾汽排放标准,同时正在设法减少工业及民用燃料所造成的污染,随着每年10亿立方米的天然气输送到北京,这样,到2006年底,北京的空气质量将会基本达到发达国家城市水平,10亿用科学记数法可以表示为( ) A 、 1.0×107 B 、 1.0×108 C 、 1.0×109 D 、1.0×10103.一张桌子上摆放着若干个碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有碟子为( )A 、6个B 、8个C 、12个D 、17个4. 如图,A 、B 、C 为⊙O 上三点,如果∠OAB=46°,则∠ACB 度数为( ) A 、44° B 、92° C 、80° D 、46°5.如图是护士统计一位病人的体温变化图,这位病人中午12时的体温 约为 ( ) A 、39.0℃ B 、38.5℃ C 、38.2℃ D 、37.8℃俯视图主视图 左视图6.某校九年级毕业时,每一个同学都将自己的像片向全班其他同学各送一张表示留念全班共送了1960张像片,如果全班有x名学生,根据题意列出方程为()A、x (x-1)= 1960B、x (x-1)= 1960×2C、2x (x+1)= 1960D、x (x+1)= 19607.某地区为估计该地区麋鹿的只数,先捕捉20只麋鹿给它们分别作上标志,然后放回,待有标志的麋鹿完全混合于麋鹿群后,第二次捕捉40只麋鹿,发现其中两只有标志.从而估计该地区有麋鹿()A、200只B、400只C、800只D、1000只8.下面是一天中四个不同时刻两个建筑物的影子,将它们按时间先后顺序进行排列,正确的是()A、③④①②B、②④③①C、③④②①D、③①②④9.如图,若将△ABC绕点A顺时针旋转90°后得到△A B C''',则B点的对应点B′的坐标是()A、(-3,-2)B、(2,2)C、(0,3)D、(2,1)10.如图:向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度h与注水时间t之间的函数关系大致是下列图象中的()A B C DA BO C第4题图第10题图xyO11A-1BC试 卷 Ⅱ二、填空题(本题有6小题,每小题5分,共30分) 11. 如图,直线a,b 被直线c 所截,a ∥b ,如果∠1=50°,那么∠2=____度.12. 右图是小明制作的一个圆锥形圣诞帽的示意图围成这个纸帽的纸的面积为_______cm 2.13. 写出一个顶点坐标为(2,1)的抛物线的关系式 .14. 如图,半径是13cm 圆柱形油管内装入油,油深CD 为8cm 那么油面宽度AB= cm . 15. 指令(S,Q)的意义:以原地原方向为基准,沿逆时针方向旋转Q 角,再沿旋转后的方向行进S 米,现有一位于 A 点处的机器人,面朝正东方向,按指令(5,60o )运动至B 点,再按指令(5,120o )运动至C 点,则AC= 米.16. 如图,△P 1OA 1、△P 2A 1A 2都是等腰直角三角形,且点P 1、P 2在函数y =1x (x >0)的图像上,斜边OA 1、A 1A 2都在x 轴上,则点A 2的坐标是 .三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17. (1) 计算:12-0)25(30cos2--︒ (2) 解方程:2x 2-4x-1=018. 已知:如图,四边形ABCD 是菱形,F 是AB 上一点,DF 交AC 于E.求证:∠AFD =∠CBEAC第14题图 第12题图 第16题图 a bc 2第11题图119. 如图,某公园入口处原有三阶台阶,每级台阶高为20cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起始点为C ,现将斜坡的坡角∠BCA 设计为12°,求AC 的长度.(精确到1 cm )20. 如下图,由小正方形组成的L 形图中,请你用三种方法分别在下图中添画一个小正方形使它成为轴对称图形:方法一 方法二 方法三21. 一辆汽车要将一批10㎝厚的木板运往某建筑工地,进入工地到目的地前,遇有一段软地.聪明的司机协助搬运工将部分木板卸下铺在软地上,汽车顺利通过了.⑴ 请你写出其中的道理: .如果卸下部分木板后汽车对地面的压力为3000N ,若设铺在软地上木板的面积为S ㎡,汽车对地面产生的压强为P (N/㎡),那么P 与S 的函数关系式是 .请在直角坐标系中,作出相应的函数图象.⑵ 若铺在软地上的木板面积是30㎡,则汽车对地面 的压强是 N/㎡.⑶ 如果只要汽车对地面产生的压强不超过600N/㎡,汽车就能顺利通过,则铺在软地上的木板面积最少要 ㎡.22. “温州五马美食”食品有限公司推出一种新款美食,定价50元/份.总经理准备开展“新款美食促销活动”广泛征求职工的意见.甲职工认为可以打折销售,每份美食打8折;乙职工认为可用有奖销售,具体办法是:顾客每消费一份美食,获得一次抽奖的机会,让顾客从一个内装大小、形状、质量完全相同的3个黑球和2个红球的袋中摸出2个球,奖励办法是①摸出2个全是红球为一等奖,顾客免费享用美食,②摸出2个全是黑球为二等奖,顾客获得优惠10元,③摸出1红1黑为三等奖,顾客获得优惠2元 .经调查发现两种促销办法的销量将会相同,你认为哪种促销方案对公司有利?为什么?请用所学的数学知识加以说明.(要有必要的计算过程)P SO23. 我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-+-=222222241c b a b a s ……①(其中a 、b 、c 为三角形的三边长,s 为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:))()((c p b p a p p s ---=……②(其中2cb a p ++=).(1) 若已知三角形的三边长分别为5、7、8,试分别运用公式①和公式②,计算该三角形的面积s ;(2)你能否由公式①推导出公式②?请试试.24. 图1是边长分别为4 3 和3的两个等边三角形纸片ABC 和C ′D ′E ′叠放在一起(C 与C ′重合). (1)操作:固定△ABC ,将△C ′D ′E ′绕点C 顺时针旋转30°得到△CDE ,连结AD 、BE ,CE 的延长线交AB 于F (图2);探究:在图2中,线段BE 与AD 之间有怎样的大小关系?试证明你的结论. (2)操作:将图2中的△CDE ,在线段CF 上沿着CF 方向以每秒1个单位的速度平移,平移后的△CDE 设为△PQR (图3);探究:设△PQR 移动的时间为x 秒,△PQR 与△ABC 重叠部分的面积为y ,求y 与x 之间的函数解析式,并写出函数自变量x 的取值范围. (3)操作:图1中△C ′D ′E ′固定,将△ABC 移动,使顶点C 落在C ′E ′的中点,边BC 交D ′E ′于点M ,边AC 交D ′C ′于点N ,设∠AC C ′=α(30°<α<90°)(图4);探究:在图4中,线段C ′N ·E ′M 的值是否随α的变化而变化?如果没有变化,请你求出C ′N ·E ′M 的值,如果有变化,请你说明理由.E ′图1C BAD ′C BBCB(C /)2006年九年级数学模拟考试(参考答案)参考答案和评分标准一、选择题(本题有10小题,每小题4分,共40分)二、填空题(本题有6小题,每小题5分,共30分) 11 50 12 π300 13 答案不惟一 145 15 5 16 ()0,22三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17 解:(1) 12-0)25(30cos 2--︒=1332--……(每项算对,各给1分)……3分=13-.…………………………………………………………………… 1分(注:用计算器求解正确或只写答案13-均给3分)(2) a =2,b=-4,c=-1,△=b 2-4ac=16+8=24……………………………………………1分∴ x=2624624±=±…………………………………………………………3分18 证: ∵ 菱形ABCD ,∴ AB ∥CD , CB =CD ,∠BCE =∠DCE ………………………………………1分 ∴ ∠AFD =∠CDE .…………………………………………1分 ∵ CE =CE ,∴ △BCE ≌△DCE .……………………………………………2分 ∴ ∠CBE =∠CDE .……………………………………………………2分 ∴ ∠AFD =∠CBE .…………………………………………………………2分19 解:过点Bz 作B D ⊥CB 于点D ,则…………………………………………………1分 BD=60,AD=60,∠BDC=90°……………………………………………………2分∴ CD=3.28212tan 60tan ≈︒=∠BCDBD ………………………………………2分∴ CA =C D -AD=2823-60=2223≈222(㎝)…………………………………2分 答:AC 的长为222㎝.…………………………………………………………1分20 拼对第一个2分,后两个各3分,共8分,不同的拼法例举如下:21 解:(1)压强原理(减小压力和增大受力面积来减小压强)…………………………2分P=s3000 ………………………………………………………………………2分图像………………………………………………………………… ………2分 (2)100………………………………………………………………………………2分 (3)5………………………………………………………………………………2分22 解:由于两种促销方法的销量相同,不妨设都销售了x 份在甲职工的建议下,公司让利为x x 102.050=∙…………………………………2分 在乙职工的建议下,P(获一等奖)= 1014152=⨯…………………………………2分P (获二等奖)=1034253=⨯…………………………………………………………2分 P (获三等奖)= 2332545⨯⨯=………………………………………………………2分 这样公司让利为133501029.210105x x x x ⨯+⨯⨯+⨯⨯=…………………………2分由于9.210x x <,即相同的销量但乙职工的建议使得公司让利少于甲职工,从经济方面考虑乙职工的促销方案对公司有利……………………………………………………2分23、⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-+-⨯=22222228757541s ……………………………1分()22217521-=3104825==; ………………………2分又 ()1087521=++=p , ……………………………………1分∴31023510)810)(710)(510(10=⨯⨯⨯=---=s . …2分⑵⎪⎪⎭⎫⎝⎛-+-⎪⎪⎭⎫ ⎝⎛-++=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-+-2241241222222222222c b a ab cb a abc b a b a …2分()[]()[]2222161cb a b a c-+⋅--=()()()()c b a c b a b a c b a c-++++--+=161 ………………2分()()()c p p b p a p 2222222161-⋅⋅--=()()()c p b p a p p ---= ……………………………………1分∴))()((241222222c p b p a p p c b a b a ---=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-+- …1分(说明:若在整个推导过程中,始终带根号运算当然也正确。