第七章分子系统发育分析 进化树

合集下载

分子进化与生物系统发育

分子进化与生物系统发育

分子进化与生物系统发育分子进化和生物系统发育是生物学领域的两个重要研究方向,它们通过研究分子遗传材料的演化和生物体之间的关系,揭示了生物界多样性的起源和发展。

本文将介绍分子进化和生物系统发育的基本概念、研究方法以及其在生物学研究和应用中的重要性。

一、分子进化的概念和意义分子进化是指从分子水平上研究生物种群和物种之间的遗传关系和演化过程。

它基于遗传物质的变异和传递规律,通过比较生物体内DNA、RNA和蛋白质序列的差异和相似性,推断生物种群的演化关系和进化历史。

分子进化的重要意义在于,它能够提供关于物种形成、进化速率、群体迁移和自然选择等方面的证据和解释。

通过分析不同物种之间的序列差异,可以推断它们的共同祖先、分化时间和进化关系,从而帮助我们理解种群的形成和演化过程。

二、分子进化的研究方法1. 分子演化树的构建分子演化树是表示不同物种或类群之间进化关系的图形化工具。

构建分子演化树的基本方法包括距离法、最大似然法和贝叶斯法等。

其中,距离法基于不同序列之间的差异程度构建演化树,最大似然法则通过计算出现观察到的数据的概率来估计最合理的演化树,而贝叶斯法则则通过概率模型进行演化树的推断。

2. 分子钟模型分子钟模型是一种用于估计物种分化时间的方法。

该模型假设基因的变化速率是恒定的,从而可以通过测量不同物种中特定基因的差异来推算它们的分化时间。

分子钟模型在分子进化研究中被广泛应用,为了更准确地估计物种的分化时间,研究人员通常使用多个基因进行分析。

三、生物系统发育的概念和意义生物系统发育研究的是生物界中不同物种和分类单元之间的系统关系和谱系发展。

它基于生物形态、生理和分子特征的相似性和差异性,通过构建系统发育树来揭示物种分类和多样性的起源和发展。

生物系统发育具有重要的意义,它为我们了解不同物种的亲缘关系和进化历史提供了重要线索。

通过构建系统发育树,可以揭示不同物种之间的共同祖先、演化路径和物种间的近亲关系。

此外,在进化生物学、生态学和保护生物学等应用领域,生物系统发育也为物种保护、进化机制研究等提供了理论和实证基础。

分子进化树构建方法

分子进化树构建方法

MP法建树流程
Sequence1 Sequence2 Sequence3
Sequence4
Position 1
Position 1 2 3 T G C T A C A G G A A G
If 1 and 2 are grouped a total of four changes are needed.
5
genetic change
系统发生树术语
Rooted tree vs. Unrooted tree
无 A 有 根 根 树 B 树 two major ways to root trees:
A
10 3 2 5
C D
By midpoint or distance
d (A,D) = 10 + 3 + 5 = 18 Midpoint = 18 / 2 = 9
Distance Uses only pairwise distances Minimizes distance between nearest neighbors Very fast Easily trapped in local optima Good for generating tentative tree, or choosing among multiple trees Maximum parsimony Uses only shared derived characters Minimizes total distance Maximum likelihood Uses all data Maximizes tree likelihood given specific parameter values Very slow Highly dependent on assumed evolution model Good for very small data sets and for testing trees built using other methods

分子系统发育树的构建

分子系统发育树的构建
一般认为,当一个给定的内部树枝的自举值为70% (另一说法为95%)或更高时,那么这个树枝的拓扑 结构就可以认为是正确的。
分子系统发育树的构建
基本概念 系统发育树相关术语 构建分子系统发育树的基本步骤 构建分子系统发育树常用的算法和软件 建树示例
建树算法和软件参见教材 Page105~109
外部节点(external nodes)
内部节点(internal nodes)
A
F
G I
B 操作分类学
H
C 单位 OTU
根节点(root)
D
E
无尺度的分枝
有尺度的分枝
G I
A F
B
H
C
D
E
time
能将现存的OTU排成一条 直线,在分岐时间已知或已 估出时还可把代表分岐事件 的节点按时间尺度来排列。
PHYLIP http://evolution.genetics. /phylip.html
PAUP /
免费的多序列比对工具,包括 使用命令行语句的ClustalW和 图形化模式的ClustalX。 免费的通用系统发育分析软件
(Ernst Haeckel, 1879)
animals plants fungi protists monera
mammals vertebrates invertebrates protozoa
系统发育、系统发育学、系统发育树
系统发育研究的最终目的是:(1)建立各生 物间正确的系谱学联系,推导出包含所有生命 形式的正确的进化树;(2)推断或估算不同 生物从它们上一级共同祖先开始分化的具体时 间。
物种之间进化关系的研究结果往往以一种类似 树状分枝的图形来表示,即系统发育树或系统 发生树(phylogenetic tree)。

分子进化与系统进化树的构建

分子进化与系统进化树的构建

分子进化与系统进化树的构建分子进化与系统进化树的构建分子进化与系统进化树的构建主要内容:1、分子进化的研究方法2、系统进化树的构建方法3、系统进化树构建常用软件汇集4、系统进化树构建方法及软件的选择5、Phylip分子进化分析软件包简介及使用6、如何利用MEGA3.1构建进化树声明:1、本篇涉及的资源主要源于网络及相关书籍,由酷友搜集、分析、整理、审改,供大家学习参考用,如有转载、传播请注明源于基因酷及本篇的工作人员;若本篇侵犯了您的版权或有任何不妥,请Email genecool@告知。

2、由于我们的学识、经验有限,本篇难免会存在一些错误及缺陷,敬请不吝赐教:请到基因酷论坛(/bbs)本篇对应的专题跟贴指出或Email genecool@。

致谢:整编者:flashhyh主要参考资料:《生物信息学札记》樊龙江;《分子进化分析与相关软件的应用》作者不详;《进化树构建》ZHAO Yangguo;《如何用MEGA 3.1构建进化树》作者不详;《MEGA3指南》作者不详;分子进化的研究方法分子进化的研究方法分子进化的研究方法分子进化研究的意义自20世纪中叶,随着分子生物学的不断发展,进化研究也进入了分子进化(molecularevolution)研究水平,并建立了一套依赖于核酸、蛋白质序列信息的理论和方法。

随着基因组测序计划的实施,基因组的巨量信息对若干生物领域重大问题的研究提供了有力的帮助,分子进化研究再次成为生命科学中最引人注目的领域之一。

这些重大问题包括:遗传密码的起源、基因组结构的形成与演化、进化的动力、生物进化等等。

分子进化研究目前更多地是集中在分子序列上,但随着越来越多生物基因组的测序完成,从基因组水平上探索进化奥秘,将开创进化研究的新天地。

分子进化研究最根本的目的就是从物种的一些分子特性出发,从而了解物种之间的生物系统发生的关系。

通过核酸、蛋白质序列同源性的比较进而了解基因的进化以及生物系统发生的内在规律。

系统进化树的构建精品PPT课件

系统进化树的构建精品PPT课件

• 构建我们自己的Fasta 文件
Fasta文件是直接可以从数 据库中下载得到的,但是 根据实际要求的不同,有 时候我们需要自己构建 Fasta文件。 如果您已近有了想用来构 建进化树的序列,您可以 如右图所示构建自己的文 件,文件的保存格式是: 文件名.txt
•实例讲解
下面我们以版纳病毒为例,构建系统进化树。 首先我们要下载我们所需的序列。
优点为:简单易用
最新版本下载/地址为:http:/
•实例讲解
下一步我们将介绍如何用MEGA构建我们的进化树,首先请大 家用MEGA软件将我们之前保留的Fasta文件打开这时候会有 两个窗口,选择File标签-->Convert to Mega.
工具条
菜单栏
•实例讲解
选择File标签-->Convert to Mega.
与分析序列相关的生物序列且具 有较远的亲缘关系

分支 长度 狒

一个单位
距离标尺
外群
系统发育进化树示例
系统发育树重建分析步骤
多序列比对(自动比对,手工校正) 选择建树方法 建立进化树 进化树评估
系统发育树重建的基本方法
• 1. 距离法 (distance)
适用序列有较高相似性时
• 2. 最大简约法 (maximum parsimony, MP)
• 按路径输入刚才生成的 *.PHY文件;为了避免输入路径的繁 琐,可以直接将文件COPY至PART2文件夹中。
• 第二步:点击回车,出现参数设置页面。设定适当参 数;输出outfile文件。
• 第二步:设置参数后,输入Y。出现Random number seed 设置提示行。
Random number seed :进化树进行抽样时从第几棵树开始。

分子进化和系统发育

分子进化和系统发育

Tree of Life:
重建所有生物 的进化历史并 以系统树的形 式加以描述。
分子进化研究——系统进化树
16S rDNA
分子进化研究——物种分类
分子进化研究——人类起源(Out of Africa)
线粒体基因组(16,587bp)
当前人类线粒体基因组最 大的差异存在于非洲和非 非洲人之间。
2N - 2
真实树(true tree) ——物种分化事件的顺序在历史上是唯一的,所以 在用给定物种建立的所有可能的树中只有一种能代 表真实的进化历史,这样一种系统树称为真实树。
推测树(inferred tree) ——用某一组数据和某种构树法得到的树称推测树, 推测树可能与真实树等同也可能与真实树不同。
archaea
eukaryote
eukaryote
无根树
eukaryote
通过外类群 通来过确外定类树群根 来确定树根
eukaryote
有有根根树树 根
bacteria outgroup 外外类类群群
archaea archaea archaea
eukaryote eukaryote
eukaryote eukaryote
当前
DNA序列间的差异
• DNA序列间核苷酸的差异越少,分化时间越短; • 同一祖先序列衍生的两条后裔序列间分化的简单
测度就是两条后裔序列不同核苷酸位点的比例。
DNA序列的替换率估计
对于两条长度为N的序列,差异位点数为n, 则两条DNA序列的替换率P(也可以称两条序列之间 的距离或差异):
P=n/N
CACTATGAC… CACTATCAC…
CATTGTCAC… GATTGTCTC… GCTTGTCTT…

分子进化与系统发育分析

分子进化与系统发育分析
分子进化与系统发育分析
汇报人:XX
目录
• 引言 • 分子进化理论与方法 • 系统发育分析方法 • 分子标记与基因组学在系统发育分析中应用 • 系统发育树评估与优化 • 挑战与展望
01
引言
分子进化与系统发育关系
分子进化是生物进化的重要组成部分,涉及基 因和蛋白质序列的变异、选择和遗传漂变等过 程。
似然比检验(Likelihood ratio test):通过 比较不同模型下的似然值,评估分支长度的 统计显著性。
提高系统发育树准确性策略
增加数据量
使用更多的基因或物种数据,以提高系统发 育树的分辨率和准确性。
选择适当的进化模型
对于存在异质性的基因数据,可以采用分区 (partition)或基因树-物种树(gene treespecies tree)等方法进行处理,以提高系统
生物学与数学
数学家可以为生物学家提供强大的统计和计算工具,帮助 解析复杂的生物类群系统发育关系。
生物学与地球科学
地球科学家可以提供关于生物演化的地质历史背景信息, 为生物学家解析生物类群系统发育关系提供重要线索。
感谢您的观看
THANKS
最大似然法
基于统计模型
通过构建一定的统计模型,估计模型参数,使得观测数据出现的概 率最大,从而重建系统发育关系。
代表性方法
ML(最大似然法)等。
适用范围
适用于数据量较大,且进化模型较复杂的情况,如分子序列数据分析 。
贝叶斯推断法
基于概率模型
通过构建概率模型,利用贝叶斯定理计算后验概率, 从而重建系统发育关系。
对原始序列数据进行质量评估和 控制,包括去除低质量序列、污 染序列等。
将不同物种或个体的DNA序列进 行比对,找出同源序列并确定序 列间的差异。

分子进化与系统发育.ppt[兼容模式]_图文(精)

分子进化与系统发育.ppt[兼容模式]_图文(精)

第 6 讲分子进化与系统发育生化与分子生物学教研室郭俣第一节进化的分子基础第二节分子系统发育分析第三节系统发育树的构建及应用第一节进化的分子基础 1.1 物种进化树 Tree of Life重建所有生物的进化历史并以系统树的形式加以描述。

研究生物进化历史的途径Ø最确凿证据:生物化石缺点:零散、不完整大猩猩、直立人与智人头骨的比较图。

Ø比较形态学、比较解剖学和生理学等缺点:细节存很多的争议生物进化理论n 达尔文进化论:物竞天择,适者生存。

–进化:变异的遗传–自然选择:解释为何演变发生的机制生物是通过遗传、变异和自然选择,从低级到高级,从简单到复杂,种类由少到多地进化着、发展着。

n 中性进化论:并非所有种群中保留下来的突变都由自然选择所形成。

大多数突变是中性或接近中性,不妨碍种群的生存与繁衍。

n 分子进化论Ø1964年 , Linus Pauling 提出分子进化理论; Ø从物种的一些分子特性出发,从而了解物种之间的生物系统发生的关系。

Ø发生在分子层面的进化过程 :DNA, RNA和蛋白质分子。

Ø基本假设 :核苷酸和氨基酸序列中含有生物进化历史的全部信息。

1.2 分子进化 Molecular Evolution主要指在生物进化过程中, 构成生物体的大分子物质 , 如蛋白质、核酸的演变过程。

n 机制基因突变n 特点1. 进化速率的相对恒定性。

2. 进化的保守性。

DNA 突变基本类型缺插入 (insertion失 (deletion倒位 (inversion替代 (substitution转换颠换(transvertion 基因突变A G T CA/GC/TDNA 突变的模式替代插入缺失倒位核苷酸替代:转换 & 颠换转换 :嘌呤替代嘌呤 ,或嘧啶替代嘧啶。

颠换 :嘌呤替代嘧啶 ,或嘧啶替代嘌呤。

Ø转换发生的频率一般比颠换高。

1.2.1 中性突变 (neutral mutation 1968, , 提出分子Kimura 进化中性学说。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档