建筑物能耗监测系统

合集下载

建筑能耗监控系统方案

建筑能耗监控系统方案

建筑能耗监控系统方案建筑能耗监控系统是一种用于监测建筑能源消耗情况的系统,通过收集建筑各种能源数据并进行分析,帮助用户掌握建筑的能源使用情况,并提供相应的能源节约建议,从而实现能源的高效利用。

建筑能耗监控系统的方案需要从以下几个方面进行考虑和设计:第一,数据收集与监测。

建筑能耗监控系统需要能够实时地收集和监测建筑的能源消耗情况,包括电力、水、煤气等各种不同类型的能源。

可以通过安装传感器或智能电表等设备来收集数据,并将数据传输到中央服务器进行处理。

第二,数据分析与报告。

建筑能耗监控系统需要对收集到的能耗数据进行分析与计算,确定能源消耗的情况,包括能源消耗的峰值时段、消耗量以及消耗的费用等。

同时,还需要生成相关报告,供用户查看和参考。

第三,异常检测与报警。

建筑能耗监控系统需要能够对异常能耗情况进行检测和报警。

当建筑的能耗超过预设的阈值时,系统可以自动发送报警通知给用户,提示用户注意节约能源,避免能源的浪费。

第四,能耗分析与优化。

建筑能耗监控系统可以通过对能耗数据的分析和比对,找出建筑能耗的潜在问题和瓶颈,并给出相应的优化建议,帮助用户改善建筑能源的使用情况,实现能源的高效利用。

第五,节能指导与管理。

建筑能耗监控系统还可以提供与节能相关的指导和管理功能。

通过对能耗数据的整理和分析,系统可以给出节能建议,包括调整空调温度、合理使用照明设备、控制电器的使用时长等。

同时,系统还可以提供能耗监测的历史数据和趋势分析,帮助用户了解能耗的变化情况,并根据实际情况做出相应的调整和改进。

综上所述,建筑能耗监控系统是一种具有重要意义和实用价值的系统。

通过对建筑能耗情况的监测和分析,系统可以帮助用户掌握建筑能耗的实时状况,及时发现能耗异常并进行处理,同时还可以提供节能建议和管理,促使用户提高能源利用的效率,实现能源的节约与可持续发展。

建筑物能耗监测系统方案PPT

建筑物能耗监测系统方案PPT
Logo/Company
建筑物能耗监测系统方案
Design of Building Energy Consumption Monitoring System Scheme
汇报人: 2023.10.12
1. 系统设计概述 2. 能耗数据采集与传输 3. 数据存储与处理 4. 用户界面设计与实现 5. 系统安全与稳定性保障
PART TWO
Energy consumption data collection and transmission
02 能耗数据采集与传输
能耗监测设备选型
能耗监测设备选型需考虑精度 根据《中国建筑能耗研究报告》显示,2019年中国建筑总能耗达到2.8亿吨标准煤,其中空调能耗占比超过50%。因此, 选择具有高精度的能耗监测设备,能够更准确地反映建筑物的能耗情况,有助于制定更有效的节能策略。 能耗监测设备选型需考虑稳定性 根据《全球建筑能源效率报告》显示,2018年全球因设备故障导致的建筑能耗损失高达30%。因此,选择稳定性高的能 耗监测设备,能够减少设备故障带来的能耗损失,提高能源利用效率。 能耗监测设备选型需考虑易用性 根据《中国城市居民生活满意度调查报告》显示,2019年中国城市居民对生活设施的满意度中,公共设施的满意度仅为 60%,其中最主要的原因是设备操作复杂。因此,选择易用性强的能耗监测设备,能够提高用户的操作体验,提升能源管 理的效率。
PART FIVE
05
System security and stability assurance
系统安全与稳定性保障
数据加密与备份策略
能源消耗数据加密 建筑物能耗监测系统采用先进的加密技术,确保能源消耗数 据的机密性和完整性。 备份策略优化 通过定期备份和容灾计划,确保在突发情况下数据安全,降 低数据丢失风险。 多层级安全防护 采用多层次的安全防护措施,包括硬件、软件和网络防护, 确保数据安全无虞。 实时监控与预警 建立实时监控机制,对异常能耗进行预警,及时发现并处理 潜在问题。

建筑能耗监测与管理系统的设计

建筑能耗监测与管理系统的设计

建筑能耗监测与管理系统的设计随着全球能源危机的日益严峻,建筑能耗的管理和监测变得愈发重要。

建筑能耗监测与管理系统的设计成为了一个热门话题。

本文将探讨该系统的设计原则、功能以及未来的发展趋势。

一、设计原则建筑能耗监测与管理系统的设计应遵循以下原则:1. 数据采集与分析:系统应能够准确地采集建筑物的能耗数据,并进行实时分析。

通过对数据的分析,可以了解建筑物的能耗情况,从而制定相应的节能措施。

2. 多功能性:系统应具备多种功能,包括能耗监测、能源管理、设备控制等。

通过集成多种功能,可以实现全面的能耗管理。

3. 实时监测与反馈:系统应能够实时监测建筑物的能耗情况,并及时反馈给用户。

这样,用户可以及时了解建筑物的能耗情况,做出相应的调整。

4. 用户友好性:系统应具备良好的用户界面,方便用户操作和管理。

用户可以通过系统界面查看能耗数据、制定节能计划等。

二、功能建筑能耗监测与管理系统应具备以下功能:1. 能耗监测:系统应能够实时监测建筑物的能耗情况,包括电力、水、气等能耗指标。

通过数据采集和分析,可以了解能耗的变化趋势,及时发现异常情况。

2. 能源管理:系统应能够对建筑物的能源进行管理,包括能源的采购、分配和使用等。

通过对能源的管理,可以实现能源的高效利用,降低能耗成本。

3. 设备控制:系统应能够对建筑物的设备进行控制,包括照明、空调、暖气等设备。

通过对设备的控制,可以实现能耗的调节和优化。

4. 节能建议:系统应能够根据建筑物的能耗情况,提供相应的节能建议。

通过节能建议,可以帮助用户制定合理的节能计划,降低能耗。

三、未来发展趋势建筑能耗监测与管理系统在未来将会有更多的发展趋势:1. 智能化:随着人工智能技术的发展,建筑能耗监测与管理系统将会更加智能化。

系统可以通过学习和分析数据,自动调整设备的能耗,实现最佳的能耗效果。

2. 云端服务:建筑能耗监测与管理系统将会越来越多地采用云端服务。

通过云端服务,可以实现数据的实时共享和远程管理,方便用户随时随地进行能耗监测和管理。

智能建筑能耗监控系统:未来建筑能效管理的新要求

智能建筑能耗监控系统:未来建筑能效管理的新要求

智能建筑能耗监控系统:未来建筑能效管理的新要求在现代社会,随着科技的飞速发展,我们生活的方方面面都发生了翻天覆地的变化。

特别是在建筑领域,智能建筑的概念逐渐深入人心。

而在这个智能化的时代背景下,智能建筑能耗监控系统应运而生,成为了未来建筑能效管理的新要求。

首先,我们需要了解什么是智能建筑能耗监控系统。

简单来说,它就是一个能够实时监测、分析和控制建筑能耗的系统。

这个系统通过收集各种数据,如电力消耗、水消耗、燃气消耗等,然后进行分析和处理,最后形成一份详细的能耗报告。

这份报告可以帮助我们了解建筑的能耗情况,从而制定出更加合理的能源使用策略。

那么,为什么我们需要这样一个系统呢?答案很简单:节能减排。

随着全球气候变化问题的日益严重,节能减排已经成为了世界各国的共同目标。

而建筑作为能源消耗的重要领域之一,其节能减排的任务尤为艰巨。

因此,通过智能建筑能耗监控系统,我们可以更加精确地掌握建筑的能耗情况,从而采取有效的措施来降低能源消耗,实现节能减排的目标。

然而,要实现这一目标并非易事。

因为建筑的能耗情况受到许多因素的影响,如建筑设计、建筑材料、使用习惯等。

这些因素相互交织,使得能耗问题变得异常复杂。

因此,我们需要借助智能建筑能耗监控系统的力量,对这些复杂的因素进行深入的分析和管理。

首先,我们需要对建筑设计进行优化。

一个好的建筑设计可以在保证舒适性的同时,最大限度地减少能源消耗。

例如,我们可以采用被动式设计的方法,利用自然光和通风来调节室内的温度和湿度,从而减少空调和照明的使用。

此外,我们还可以选择高效能的建筑材料和设备,如节能玻璃、LED灯等,以进一步降低能耗。

其次,我们需要改变人们的使用习惯。

人们的行为模式对建筑的能耗有着直接的影响。

例如,如果我们能够在不需要的时候及时关闭电器和灯光,就可以大大减少能源的浪费。

因此,我们需要通过教育和宣传来提高人们的节能意识,引导他们养成良好的使用习惯。

最后,我们需要建立一个完善的能源管理体系。

建筑能耗监测系统技术方案

建筑能耗监测系统技术方案

建筑能耗监测系统技术方案建筑能耗监测系统是指通过使用各种传感器和监测设备,对建筑物的能源使用情况进行实时、准确的监测和分析,以便采取相应的节能措施。

本文将介绍一种建筑能耗监测系统的技术方案,包括系统结构、数据采集与传输、数据处理与分析以及节能措施等内容。

一、系统结构1.数据采集与传输系统:安装在建筑物内部和外部的传感器和监测设备,用于监测建筑物各个区域的温度、湿度、光照强度、能源消耗等参数,并通过物联网或其他通信技术将数据传输至数据处理与分析系统。

2.数据处理与分析系统:接收传感器和监测设备传来的数据,并进行数据处理和分析。

该系统可以实时监测建筑物能源的使用情况,通过数据分析找出能源的浪费和不合理使用的情况,并为建筑物的能耗优化提供依据。

3.控制与反馈系统:根据数据处理与分析系统得出的结论,采取相应的节能措施,如自动调节空调温度、灯光亮度等,以减少能源的浪费。

该系统也可以向建筑物的管理人员提供能源优化的建议,并向用户提供实时能耗数据。

二、数据采集与传输1.传感器选择:根据建筑物的特点和需要监测的参数,选择适合的传感器,如温度传感器、湿度传感器、光照传感器等。

同时,应选择具有较高灵敏度和可靠性的传感器。

2.数据传输方式:根据建筑物的网络环境和数据量,选择合适的数据传输方式。

可以采用有线或无线通信技术,如以太网、Wi-Fi、LoRa等。

数据传输应保证数据的安全性和稳定性。

三、数据处理与分析1.数据存储:将传感器采集到的数据进行实时存储,可以选择云端存储或本地存储。

同时,为了保证数据的完整性和准确性,可以设置数据备份和故障恢复措施。

2.数据分析:借助数据处理与分析软件,对存储的数据进行分析,找出能源的浪费和优化空间。

可以采用机器学习和数据挖掘等技术,建立能源消耗模型,并通过模型预测建筑物未来的能源使用情况。

四、节能措施根据数据处理与分析结果,采取相应的节能措施。

如调整空调的温度和湿度设定值、优化照明系统、采用节能设备和技术等。

建筑能耗监测系统情况汇报

建筑能耗监测系统情况汇报

建筑能耗监测系统情况汇报
近年来,建筑能耗监测系统在我公司的应用得到了长足的发展。

通过监测建筑能耗,我们能够更加精准地了解建筑的能源使用情况,为节能减排提供了重要的数据支持。

以下是对我公司建筑能耗监测系统情况的汇报。

首先,我们的建筑能耗监测系统覆盖了公司所有的建筑物,包括办公楼、生产车间等各类建筑。

通过安装在建筑物各个关键部位的传感器,我们能够实时监测建筑的用电、用水、空调等能源消耗情况,实现了对建筑能耗的全面监测。

其次,我们的建筑能耗监测系统具备数据分析和报表功能。

系统能够自动生成各种能耗数据的报表,包括日能耗、月能耗、年能耗等多维度的数据分析报表。

这些报表直观地展现了建筑的能源使用情况,为管理人员提供了重要的参考依据。

另外,建筑能耗监测系统还具备报警功能。

当建筑的能耗异常时,系统能够及时发出报警信息,提醒管理人员进行处理。

这一功能大大提高了建筑能耗的监控效率,减少了能源浪费和损失。

此外,我们的建筑能耗监测系统还支持远程监控。

管理人员可以通过手机、电脑等终端设备随时随地对建筑的能耗情况进行监测和管理,方便快捷。

最后,我们对建筑能耗监测系统进行了不断的优化和升级。

通过引入先进的监测技术和算法,我们不断提升了系统的监测精度和稳定性,为建筑能耗监测提供了可靠的保障。

总的来说,我们的建筑能耗监测系统已经取得了一定的成效,为公司的节能减排工作提供了重要的支持。

未来,我们将继续加大对建筑能耗监测系统的投入和研发力度,不断提升系统的功能和性能,为公司的可持续发展贡献力量。

TKD-EMS建筑能耗计量监测管理系统

TKD-EMS建筑能耗计量监测管理系统

TKD-EMS建筑能耗计量监测管理系统Tikind Building Energy Measurement Monitoring and Management System解决方案------------------------------------------------------------------------------------------------------------------------------------------目录第一章前言 (4)第二章系统概述 (6)2.1能源逐级管理思想 (7)2.2提倡行为节能与管理节能 (7)第三章公司简介 (8)第四章系统总体方案描述 (9)4.1系统结构 (9)4.2系统整体设计依据及原则 (10)4.3、系统技术特点 (11)4.3.1模块化设计 (12)4.3.2系统集成 (12)4.3.3网络化存储和跨网络平台访问 (12)4.3.4实时监测 (13)4.3.5应用方式简单 (13)4.3.6安全性高 (13)第五章系统组成及产品介绍 (13)5.1能耗监控中心 (13)5.1.1计算机硬件系统 (14)5.1.2计算机软件系统 (20)5.2能耗采集管理设备 (26)5.2.1能耗分项管理器TKD2000 (26)5.2.2能耗区域管理器TKD3000 (29)第六章项目需求 (30)第七章方案设计 (31)第八章质量保证 (31)8.1项目管理组织机构 (31)8.2 项目管理计划 (33)8.3 工程进度计划表 (34)8.4 施工工艺 (36)------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------8.5 工程技术要点 (37)8.6 质量与交货期保证承诺 (38)第九章 技术服务承诺 (39)9.1 技术培训 (39)9.2 售后服务 (40)第十章 配置清单及造价 (40)第十一章 部分典型案例 (40)------------------------------------------------------------------------------------------------------------------------------------------第一章 前言随着我国经济社会的发展和环境资源压力越来越大,节能减排形势严峻。

公共建筑能耗监测系统技术规程

公共建筑能耗监测系统技术规程

公共建筑能耗监测系统技术规程一、引言公共建筑是市政工程中不可缺少的一项基础设施,包括城市道路、公园、广场、政府大楼、学校、博物馆、图书馆、医院、体育馆、剧院等建筑文化设施。

随着城市化进程的不断加快,公共建筑数量不断增多,其能耗问题已经成为了一个不可忽视的问题。

为了控制公共建筑能耗的问题,提高能源使用效率,减少虚耗,从而实现可持续发展,公共建筑能耗监测系统应运而生。

本文首先介绍了公共建筑能耗监测系统的定义和特点,然后详细讨论了公共建筑能耗监测系统技术规程。

二、公共建筑能耗监测系统的定义和特点公共建筑能耗监测系统是指通过独立的系统或与其他系统相结合,对公共建筑的能耗进行监测和管理的一种技术手段。

其主要包括监测仪表、监测系统、数据通信、数据库和数据处理等组成部分。

公共建筑能耗监测系统的特点主要有以下几点:(1)智能化:公共建筑能耗监测系统通过采用智能化控制技术,可自动控制空调、照明、水暖等设备的使用,从而实现能源的合理使用和管理;(2)实时监测:公共建筑能耗监测系统可以实时监测能源使用情况,对节能降耗措施的实施效果进行精细化评估,有利于节能减排和精细管理;(3)集成性:公共建筑能耗监测系统可以与其他智能化控制系统相结合,形成一个完整的智能化控制系统,对公共建筑实施智能化管理;(4)数据可视化:公共建筑能耗监测系统可以将监测数据通过界面呈现出来,使数据可视化,便于管理人员对于数据的分析和辅助决策。

三、公共建筑能耗监测系统技术规程1、监测仪表技术规程(1)精度:监测仪表的精度应符合国家标准,以确保监测数据的准确性;(2)稳定性:监测仪表的稳定性应符合国家标准,以确保监测数据的稳定性;(3)适用性:监测仪表应选用适用于公共建筑的仪表进行监测,以确保监测数据的准确性和可靠性;(4)可靠性:监测仪表应选用可靠的仪表进行监测,以确保监测数据的可靠性和准确性。

2、监测系统技术规程(1)数据采集方式:监测系统应选择可靠、准确的数据采集方式进行数据采集,以确保监测数据的准确性和可靠性;(2)数据传输方式:监测系统应选择可靠、高效的数据传输方式进行数据传输,以确保监测数据的实时性和可靠性;(3)数据处理方式:监测系统应采用先进的数据处理技术进行数据处理,以确保监测数据的精准性和可视化程度;(4)监测报警功能:监测系统应具备监测报警功能,及时发现能源浪费等问题,并进行有效的警报和处置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10 建筑物能耗监测系统1. 前言为全面掌握我国建筑能耗的实际状况,加强能源领域的宏观管理和科学决策,促进建筑节能的发展,依据《中华人民共和国统计法》、建设部有关规章制度、《民用建筑能耗数据采集标准》(JGJ/T154-2007)及相关技术标准规范的有关规定,建设部、各市建委等部门提出了建立既有建筑节能审计与建设监管系统的要求,逐步实现民用建筑能耗数据的网络报送、自动采集、计算机抽样、计算机计算,从而为我国建筑节能标准制定提供基础数据,并为今后建筑能耗的及时监控打下基础。

随着能源企业的深化改革和能源供求关系的逐步转变,实行以经济手段为基础的商业化管理模式和加强能耗动态监测管理已迫在眉睫。

传统的计量方式已不能满足商业化运营的需要,采用高精度、高可靠的自动化能耗计量系统是商业化运营的必然趋势,是建立节约型社会的技术基础。

建立既有建筑能耗监管系统的目的是基于建立可持续发展的节约型社会的需要,将作为制定制度政策的基准,将成为大型公建能源审计、节能改造和北方既有居住建筑的供热计量、节能改造的技术支撑与政策的指针。

它不同于普通意义的经济指标考核,需提供基于开放式系统平台上的自动能量计量、统计及管理系统,作为建筑能耗的监管手段。

该系统要能根据不同时段划分实现电能量的分段增加、统计和分析,是将来建立细分能耗监管系统技术支持系统的重要基础。

因此,该系统应从公平、公正、公开的原则出发,充分体现能耗数据的可靠性、完整性、准确性、唯一性、安全性和不可修改性。

它应基于完全开放结构的平台,基于开放标准支持分布式系统,具有功能稳定、模块化、面向对象以及良好人机界面等特点。

该系统应提供基于Web技术和广域网技术的信息管理应用服务,达到功能齐全、组合灵活,扩展升级方便。

为达到以上要求,关键在于要以分项计量为基础,将能耗监管系统建立在一个真正开放的系统支持平台上,保证该系统可以满足近期和将来发展的需求,从而节省投资,全面满足建筑能耗监管的要求。

2. 能耗监管系统概述我们建议的建筑能耗监管系统—自动能量计量、抄表和能耗分析系统,是根据国外经验并且结合中国的实际需求,推出的面向市场的新一代能量计量监管系统。

系统的主站,由下列子系统构成:●●●●●●●能量数据采集及处理子系统;数据管理应用服务子系统;人机交互MMI子系统;计算机数据网络通信及Web服务子系统;报表及打印服务子系统;基于智能HUB局域网;时钟、频率/时差监视子系统;它有别于常规的能量计量及计费抄表系统,不仅能够满足系统的规范功能要求,还能够满足用户新技术的应用发展要求,包括:实施网络通信及数据共享的应用;进一步开发新的统计模式应用;提供基于Web技术的能耗信息管理应用服务;提供各种能源单位能量标准;提供各种能耗指标间的自动换算;提供各种综合、细分分析模式;提供根据用户的需求,方便地实现不同费率模型、时段划分实现电能量的分段增加、统计和分析功能适应细分分析管理需要。

2.1 主要系统功能及特点●●●即时能耗计量(Same-time Energy Tele-Metering System);支持广域数据网络(WAN)、拨号电话交换网络(PSTN)、电力专,网等通信网等通信模式的能耗数据远程传输应用;支持直接表计接入网络或电表经电能数据集中器接入网络;●●●多模式电能(耗)数据采集应用;可实现即时(1-15分钟级周期)(耗)数据采集;能耗计量及管理(Energy Accounting& Management System);分类能耗/能量数据库管理;电能●●●●●●●●能耗监管及结算(Settlement and Billing System based on Certificate Authority);能耗指标设定、能耗奖惩结算;能耗信息管理(Energy Information Management System);基于Web服务器、历史能耗数据管理服务器等,提供面向煤炭、电力、石油天然气等能耗信息浏览服务、电子邮件应用服务;能耗负荷预测及计划的数据管理;能耗负荷实时运行数据监视,以及历史数据管理;多模式数据采集方式(Multi Mode Data Collect);满足不同通讯方式、不同采集模式,如自动采集、人工在线录入、数据文件自动录入等。

2.2 系统技术特征系统应基于完全开放体系结构的支持平台,基于开放标准和各种远传通讯方式。

主要的系统性能技术特征如下:●开放体系1)系统对硬件和操作系统开放。

在硬件、操作系统和数据库平台上提供多种选择,并且易于扩展、易于升级和维护。

系统可移植性,在系统开发上具备利用硬件和操作系统的优势。

2)系统易于采用标准的硬件来扩展,它的规模可以从单机服务器/工作站系统到大量服务器和工作站的网络式系统。

应用程序数据库可以一起运行在同一工作站上或灵活地分布在多个服务器和工作站上,以便用有效的方式利用资源,提供对重要应用功能的备份等。

3)系统具有良好的互操作性,系统能耗计量数据库是高性能工业数据库,任何外部应用都可以用一个工业标准方式去访问数据。

可以与用户内部的其它数据库和系统以及与第三方产品交互操作,同时提供了一个支持企业范围内计算的数据中心。

4)系统的MMI/GUI环境友好,提供一个一致的图形用户和网络数据库管理系统接口,对于集成新的应用功能,不需要修改现有的软件。

系统提供标准的应用编程接口(API),包括数据库结构和访问例程,支持在线集成用户开发的应用。

系统能支持多种不同RDBMS系统,使得将来软件升级灵活方便。

●分布式结构1)系统支持TCP/IP规约的客户机/服务器结构、B/S结构。

应用数据库、应用功能和图形用户接口(GUI)客户机软件,可以分布到任何系统中的节点上,对客户机-服务器通信所期望的LAN也能被指定。

能实现在多个服务器和LAN 中优化系统性能和平衡负载。

2)系统的分布式DBMS支持节点到节点间的数据库通信容错。

系统的消息系统用于在所有的服务器和客户机之间,包括异构节点进行发布信息和通信。

系统的信息和进程调度,支持网络上从任何一个客户或服务器到任何其它的客户或服务器的执行和程序触发请求,提供客户透明的应用层管理。

3)系统采用先进的逻辑故障切换和恢复技术, 遵循数据库和应用功能对系统硬件的逻辑分配。

当一个客户机应用不能经主网络地址联接到逻辑服务器上,它能自动试图经由备份地址建立联接,自动恢复来自硬件服务器故障和LAN故障。

备份数据库通过数据复制自动保持最新数据,保证各类能量计量及其他数据的安全性,以及数据完整性及一致性。

4)系统的图形用户接口(GUI)物理上驻留在客户控制台台节点,并使用当地驻留显示定义。

GUI是数据库服务器的一个客户,周期性地从各种系统服务器上接收更新的数据,采用数据变位和越死区时才传输到客户机,减少LAN堵塞并优化系统性能。

5)系统分布式结构支持经串行链路联接到系统上的远程节点,保证运行在Windows 平台上远程客户能通过Modem、无线终端、宽带等联接实现数据的接收和更新。

客户机应用软件能运行在标准的PC机和笔记本电脑,可提供当地和远程的访问。

●数据远传采集数据采集子系统是主站通过通信终端服务器直接采集和经远方数据处理终端采集。

系统支持对每一个通道口的通信监视,统计通信信息及运行状况,并能够实现通道故障、Modem故障和集中器故障的自动恢复。

系统的广域网通信支持网桥、交换机或路由器,并支持多种标准通信模式,包括:分组交换、帧中继、ATM,并适应采用X.25、GPRS/CDMA和TCP/IP通信。

对于电力内部通信,系统并支持ICCP规约、WSCC规约,以及ELCOM-90规约。

系统与其它系统互联通信系统与用户的信息系统互连,采用10/100/1000M自适应快速以太网连接,防止网络阻塞,保证数据传送的实时性,网络通信协议均采用TCP/IP协议。

系统为第三方提供数据库访问接口。

系统对广域网络的用户接入,基于用户所配置的网络,或用户配置的对外数据通信的网络路由器或网络路由器+拨号MODEM池/无线数据网关,采用分组交换技术载IP数据包模式,实现广域网互联,以支持远程用户对Web服务器的数据浏览查询。

系统结构示意图2.3 系统各部分主要技术指标建筑能耗监管系统主要包括终端表计,终端采集器,通讯链路,主站系统四个部分。

系统总体技术指标:(1)系统容量:采集终端数目≥2000,测量点数目≥50000;(2)系统时钟误差:<0.1秒;(3)主站与终端时钟误差:<0.5秒;(4)数据精度:等于表计超读数据精度;(5)数据通讯保证:网络误码率<10 ;(6)系统可用率:≥99.99%(7)系统平均无故障时间(CASTF):≥5000小时;2.3.1 电能表本系统所接入的复费率智能表,要适应采用网络、专线和拨号相结合的方式。

其测量量宜包括分时段计量等。

电子式电能表由用户自行配置。

(1)单相电能表主要功能指标1、计量功能●准确度等级:1级额定频率:50Hz;●●●●●精确测量正负有功功率,以同一个方向积算电能,解决电流反接窃电问题;至少具有峰(第2费率),平(第3费率),谷(第4费率)三费率分时电能计量功能,根据不同的费率时段设置,分别计量峰电量、平电量、谷电量,总电量为3费率之和;任意时段的起始及终止的实际时间和预置时间误差不超过0.5s/d;电能量数据冻结转存日为每月1-31日中任意指定日的任意时,缺省设置为每月1日零时(月末冻结);时段切换由内置硬时钟切换,日历、计时和闰年自动切换功能,具有时钟备用电池断电后,所有存储数据不丢失,能保持10年以上;-4●●●环境要求:温度-20℃--+55℃;湿度:5%-95%,符合相关工业应用标准;内置UPS电源,电压:220V土20%;频率:50Hz土2.5Hz;使用寿命:大于等于10年;2、通讯功能●●●RS485通信接口,具有防静电及瞬间过电压、过电流抑制功能,具有防静电及瞬间过电压、过电流抑制功能;通信规约符合部颁标准:DL/T645-1997具有GSM/GPRS/CDMA或WiFi/无线数传通讯模块(选配);(2)三相电能表主要功能指标1、计量功能●准确度等级:有功0.5S级/0.5级/1级无功2级额定频率:●●50Hz;具有负荷曲线和电量冻结功能,电能量数据冻结转存日为每月1-31日中任意指定日的任意时,缺省设置为每月1日零时(月末冻结);时段切换由内置硬时钟切换,日历、计时和闰年自动切换功能,具有时钟备用电池断电后,所有存储数据不丢失,能保持10年以上;● 环境要求:温度-20℃--+55℃;湿度:5%-95%,符合相关工业应用标准;●●内置UPS电源,电压:220V土20%;频率:50Hz土2.5Hz;使用寿命:大于等于10年2 、通讯功能●●●●RS485通信接口,具有防静电及瞬间过电压、过电流抑制功能,具有防静电及瞬间过电压、过电流抑制功能;通信规约符合部颁标准:DL/T645-1997;具有GSM/GPRS/CDMA或WiFi/无线数传通讯模块(选配);精确测量正负有功功率,以同一个方向积算电能,解决电流反接窃电●问题;至少具有峰(第2费率),平(第3费率),谷(第4费率)三费率分时电能计量功能,根据不同的费率时段设置,分别计量峰电量、平电量、谷电量,总电量为3费率之和。

相关文档
最新文档