数学七年级上北师大版3.4第1课时合并同类项同步练习
北师大七年级上《3.4整式的加减》课时练习含答案解析

北师大版数学七年级上册第三章第四节整式的加减课时练习一、单选题(共15题)1.化简m-n-(m+n)的结果是()A.0 B.2m C.-2n D.2m-2n答案:C解析:解答:原式=m-n-m-n=-2n.故选C分析: 根据整式的加减运算法则,先去括号,再合并同类项.注意去括号时,括号前是负号,去括号时,括号里各项都要变号;合并同类项时,只把系数相加减,字母和字母的指数不变2.计算:a-2(1-3a)的结果为()A.7a-2 B.-2-5a C.4a-2 D.2a-2答案:A解析:解答:a-2(1-3a)=a-2+6a=7a-2.选A.分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项3.如果m是三次多项式,n是三次多项式,那么m+n一定是()A.六次多项式 B.次数不高于三的整式C.三次多项式 D.次数不低于三的整式答案:B解析:解答:若两个三次多项式中,三次项的系数不相等,这两个三次多项式相减后就仍为三次多项式;若两个三次多项式中,三次项的系数相等,这两个三次多项式相减后三次多项式就会变为低于三次的整式.故选B.分析:根据合并同类项的法则,两个多项式相减后,多项式的次数一定不会升高.但当最高次数项的系数如果相等,相减后最高次数项就会消失,次数就低于34.计算x2-(x-5)+(x+1)的结果,正确的是()A.x2+6 B.x2-4x+5 C.-4x-5 D.x2-4x+5答案:A解析:解答: 原式=x2-x+5+x+1=x2+6.选A.分析:此题只需按照整式加减的运算法则,先去括号,再计算.5.化简x-y-(x+y)的最后结果是()A.0 B.2x C.-2y D.2x-2y答案:C解析:解答:原式=x-y-x-y=-2y.选C.分析:原式去括号合并即可得到结果6.(2a+3b)2=(2a-3b)2+(),括号内的式子是()A.6ab B.24ab C.12ab D.18ab答案:B解析:解答: 由题意得,设括号内的式子为A,则A=(2a+3b)2-(2a-3b)2=24ab.选B.分析:本题考查了整式的加减,比较简单,容易掌握7.如图,漠漠和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x,漠漠猜中的结果为y,则y 等于()A.2 B.3 C.6 D.x+2答案:A解析:解答: 根据题意得:(3x+6)÷3-x=y,解得:y=2.选A.分析:根据题意列出关系式,求出y8.如图,把四张形状大小完全相同的小长方形卡片不重叠地放在一个底面为长方形(长为a,宽为b)的盒子底部,盒子底面未被卡片覆盖的部分用阴影表示,则这两块阴影部分小长方形周长的和为()A.a+2b B.4a C.4b D.2a+b答案:C解析:解答: 设小长方形卡片的长为m,宽为n,∴L1周长=2(b-2n)+m,L2周长=2×2n+(b-m),∴两块阴影部分小长方形周长的和=2(b-2n)+m+2×2n+(b-m)=4b,选:C.分析:先设小长方形卡片的长为m,宽为n,再结合图形得出两部分的阴影周长加起来9.计算6a2-5a+3与5a2+2a-1的差,结果正确的是()A.a2-3a+4 B.a2-3a+2 C.a2-7a+2 D.a2-7a+4答案:D解析:解答:(6a2-5a+3 )-(5a2+2a-1)=6a2-5a+3-5a2-2a+1=a2-7a+4.选D.分析: 每个多项式应作为一个整体,用括号括起来,再去掉括号,合并同类项,化简10.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2.此空格的地方被钢笔水弄污了,那么空格中的一项是()A.-7xy B.7xy C.-xy D.xy答案:C解析:解答: 原式=x2+3xy-2x2-4xy=-x2-xy∴空格中是-xy选C.分析: 本题涉及整式的加减运算,解答时用先去括号,再合并同类项就可得出结果11.长方形的一边长等于3x+2y,另一边长比它长x-y,这个长方形的周长是()A.4x+y B.12x+2y C.8x+2y D.14x+6y答案:D解析:解答: 依题意得:周长=2(3x+2y+3x+2y+x-y)=14x+6y.选D分析: 根据题意表示另一边的长,进一步表示周长,化简12.一个多项式与x2-2x+1的和是3x-2,则这个多项式为()A.x2-5x+3 B.-x2+x-1 C.-x2+5x-3 D.x2-5x-13答案:C解析:解答: 由题意得:这个多项式=3x-2-(x2-2x+1),=3x-2-x2+2x-1,=-x2+5x-3.选C.分析: 由题意可得被减式为3x-2,减式为x2-2x+1,根据差=被减式-减式可得出这个多项式13.如果y=3x,z=2(y-1),那么x-y+z等于()A.4x-1 B.4x-2 C.5x-1 D.5x-2答案:B解析:解答: 原式=x-3x+2(3x-1)=4x-2.选B.分析:首先求得z的值(用x表示),再代入x-y+z求解.注意应用去括号得法则:括号前是正号,括号里各项都不变号;括号前是负号,括号里各项都变号14.a-(b+c-d)=(a-c)+()A.d-b B.-b-d C.b-d D.b+d答案:A解析:解答:a-(b+c-d)=(a-c)+(d-b),选A分析:根据去括号与添括号的法则求解即可.注意去添括号时,括号前是负号,括号里的各项都要变号15.下列计算中结果正确的是()A.4+5ab=9ab B.6xy-x=6yC.3a2b-3ba2=0 D.12x3+5x4=17x7答案:C解析:解答:4和5ab不是同类项,不能合并,所以A错误.6xy和x不是同类项,不能合并,所以B错误.3a2b和3ba2是同类项,可以合并,系数相减,字母和各字母的指数不变得:3a2b-3ba2=0,所以C正确.12x3和5x4不是同类项,不能合并,所以D错误.故选C分析:根据合并同类项的法则进行解题,同类项合并时,系数相加减,字母和各字母的指数都不改变.二、填空题(共5题)16.计算 2a-(-1+2a)=___答案:1解析:解答:原式=2a+1-2a=1.答案为:1.分析:本题考查了整式的加减、去括号法则两个考点.先按照去括号法则去掉整式中的小括号,再合并整式中的同类项17.多项式______与m2+m-2的和是m2-2m答案: -3m+2解析:解答: 根据题意得:(m2-2m)-(m2+m-2)=m2-2m- m2-m+2=-3m+2.答案为:-3m+2分析:根据题意列出关系式,去括号合并即可得到结果18.化简:5(x-2y)-4(x-2y)=_________答案:x-2y解析:原式=5x-10y-4x+8y=x-2y,答案为:x-2y.分析:原式去括号合并即可得到结果19.计算:2(a-b)+3b= _________答案:2a+b解析:解答:原式=2a-2b+3b=2a+b.答案为:2a+b.分析: 原式去括号合并即可得到结果20.已知一个多项式与3x2+9x+2的和等于3x2+4x-3,则此多项式是________答案:-5x-5解析:解答: 根据题意得:(3x2+4x-3)-(3x2+9x+2)=3x2+4x-3-3x2-9x-2=-5x-5.答案为:-5x-5分析: 根据和减去一个加数等于另一个加数列出关系式,去括号合并即可得到结果.三、解答题(共5题)21.化简:2(3x2-2xy)-4(2x2-xy-1)答案:-2x2+4解答: 原式=6x2-4xy-8x2+4xy+4=-2x2+4解析:分析: 原式去括号合并即可得到结果22.已知A=3x2-ax+6x-2,B=-3x2+4ax-7,若A+B的值不含x项,求a的值.答案:-2解答: ∵A=3x2-ax+6x-2,B=-3x2+4ax-7,∴A+B=(3x2-ax+6x-2)+(-3x2+4ax-7)=3x2-ax+6x-2-3x2+4ax-7=(3a+6)x-9,由结果不含x项,得到3a+6=0,解得a=-2.解析:分析: 将A与B代入A+B中,去括号合并得到最简结果,由结果不含x项,求出a 的值23.一个多项式加上5x2+3x-2的2倍得1-3x2+x,求这个多项式答案:-13x2-5x+5解答:根据题意得:(1-3x2+x)-2(5x2+3x-2)=1-3x2+x -10x2-6x+4=-13x2-5x+5所以这个多项式为-13x2-5x+5解析:分析: 先列式表示这个多项式,再化简.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.24.把多项式2x2-y2+x-3y写成两个二项式的和答案:(2x2-y2)+(x-3y)解答:由题意得2x2-y2+x-3y =(2x2-y2)+(x-3y)解析:分析:将四项任意分组即可得出答案25.试说明把一个两位数的十位上的数字与个位上的数字互换位置后,所得的新两位数与原两位数的和能被11整除答案:解答:设十位上数字为a,个位上数字为b,则原两位数为10a+b,调换后的两位数为10b+a,则(10a+b)+(10b+a)=10a+b+10b+a=11(a+b),则新两位数与原两位数的和能被11整除解析:分析: 设十位上数字为a,个位上数字为b,表示出原两位数,以及调换后的两位数,列出关系式,去括号合并得到结果,即可做出判断。
七年级数学合并同类项同步练习(附答案)

七年级数学合并同类项同步练习(附答案)一、选择题1 .计算223a a +的结果是( ) A.23a B.24a C.43a D.44a2 .下面运算正确的是( ).A.ab b a 523=+B.03322=-ba b aC.532523x x x =+ D.12322=-y y 3 .下列计算中;正确的是( )A 、2a +3b =5ab ;B 、a 3-a 2=a ;C 、a 2+2a 2=3a 2;D 、(a -1)0=1.4 .已知一个多项式与239x x +的和等于2341x x +-;则这个多项式是( )A.51x --B.51x +C.131x --D.131x + 5 .下列合并同类项正确的是A.2842x x x =+B.xy y x 523=+C.43722=-x xD.09922=-ba b a 6 .下列计算正确的是( )(A)3a+2b=5ab (B)5y 2-2y 2=3 (C)-p 2-p 2=-2p 2(D)7m-m=77 .加上-2a-7等于3a 2+a 的多项式是 ( )A 、3a 2+3a-7B 、3a 2+3a+7C 、3a 2-a-7D 、-4a 2-3a-7 8 .当1=a 时;a a a a a a 10099432-++-+- 的值为( )A. 5050B. 100C. 50D. -50 二、填空题9 .化简:52a a -=_________. 10.计算:=-x x 53_________。11.一个多项式与2x 2-3xy 的差是x 2+xy ;则这个多项式是_______________. 三、解答题12.求多项式:10X 3-6X 2+5X-4与多项式-9X 3+2X 2+4X-2的差。13.化简:2(2a 2+9b)+3(-5a 2-4b)14.化简:2222343423x y xy y xy x -+--+.15.先化简;后求值.(1)化简:()()22222212a b ab ab a b +--+-(2)当()221320b a -++=时;求上式的值.16.先化简;再求值:x 2 + (-x 2 +3xy +2y 2)-(x 2-xy +2y 2);其中x=1;y=3.17.计算:(1)()()32223232y xy y x xy y ---+-;(2)5(m-n)+2(m-n)-4(m-n)。18.先化简;再求值:)52338()5333(3122222y xy x y xy x x +++-+-;其中21-=x ;2=y .19.化简求值: )3()3(52222b a ab ab b a +--;其中31,21==b a .20.先化简;后求值:]2)(5[)3(2222mn m mn m m mn +-----;其中2,1-==n m21.化简求值:]4)32(23[522a a a a ----;其中21-=a22.给出三个多项式:212x x + ;2113x +;2132x y +; 请你选择其中两个进行加法或减法运算;并化简后求值:其中1,2x y =-=.23.先化简;再求值:()()2258124xy x xxy ---+;其中1,22x y =-=.24.先化简;再求值。(5a 2-3b 2)+(a 2+b 2)-(5a 2+3b 2)其中a=-1 b=125.化简求值(-3x 2-4y )-(2x 2-5y +6)+(x 2-5y -1) 其中 x =-3 ;y =-126.先化简再求值:(ab-3a 2)-2b 2-5ab-(a 2-2ab);其中a=1;b=-2。27.有这样一道题:“计算322323323(232)(2)(3)x x y xy x xy y x x y y ----++-+-的值;其中12x =;1y =-。”甲同学把“12x =”错抄成了“12x =-”但他计算的结果也是正确的;请你通过计算说明为什么?28.已知:21(2)||02x y ++-= ;求22222()[23(1)]2xy x y xy x y +----的值。3.4合并同类项参考答案一、选择题1 .B2 .B;3 .C ;4 .A5 .D6 .C7 .B8 .D 二、填空题9 .3a ; 10.-2x 11.3x 2-2xy 三、解答题12.粘贴有误;原因可能为题目为公式编辑器内容;而没有其它字符13.解:原式=4a 2+18b-15a 2-12b =-11a 2+6b14.解:原式=)44()32()33(2222y y xy xy x x -+-+- =-xy15.原式=21a b -=1.16.x 2 + (-x 2 +3xy +2y 2)-(x 2-xy +2y 2)= x 2-x 2 +3xy +2y 2-x 2+xy-2y 2 = 4xy-x 2当x=1;y=3时 4xy-x 2=4×1×3-1=11。 17.(1)()()yx xy y xy y x xy y y xy y x xy y 2232223322232232232-=+--+-=---+-(2)5(m-n)-2(m-n)-4(m-n) =(5-2-4)(m-n) =-2(m-n) =-2m+2n 。18.解:原式=2222252338533331y xy x y xy x x ++++--=)5253()33()38331(22222y y xy xy x x x ++-++- =2y 当21-=x ;y =2时;原式=4 .19.解:原式=3220.原式mn =;当2,1-==n m 时;原式2)2(1-=-⨯=;21.原式=692-+a a ;-2; 22.(1) (212x x +)+(2132x y +)=23x x y ++ (去括号2分) 当1,2x y =-=;原式=2(1)(1)326-+-+⨯=(2)(212x x +)-(2132x y +) =3x y - (去括号2分)当1,2x y =-=;原式=(1)327--⨯=- (212x x +)+(2113x +)=255166x x ++= (212x x +)-(2113x +)=2111166x x +-=- (2132x y +)+(2113x +)=25473166x y ++=(2132x y +)-(2113x +)=21313166x y +-= 23.解:原式2258124xy x x xy =-+- ()()2254128xy xy x x =-+- 24xy x =+当1,22x y =-=时;原式=2112422⎛⎫-⨯+⨯- ⎪⎝⎭=024.解:原式=5a 2-3b 2+a 2+b 2-5a 2-3b 2=-5b 2+a 2当a=-1 b=1原式=-5×12+(-1)2=-5+1=-4 25.33. 26. -827.解:∵原式=32232332323223x x y xy x xy y x x y y ---+--+-3223(211)(33)(22)(11)x x y xy y =--+-++-++-- 32y =-∴此题的结果与x 的取值无关。28.解:原式=222222[23]2xy x y xy x y +--+-=222222232xy x y xy x y +-+--=22(22)(21)(32)xy x y -+-+-=21x y + ∵2(2)0x +≥;1||02y -≥又∵21(2)||02x y ++-= ∴2x =-;12y = ∴原式=21(2)12-⨯+=3。
2024年北师大版七年级上册数学同步课件第三章第2节第1课时合并同类项

解:(1)23xy与3yx是同类项,因为所含字母相同,都有x、y,而且x、 y的指数都是1,即相同字母的指数分别相同。 (2)-2a3b2与5b3a2不是同类项,因为虽然字母相同,但是相同字母的 指数不相同。 (3) m2n 与2m2n是同类项,因为所含字母相同,都有m,n,而且指数
3 都分别为2,1。 (4)4ab4c与3acb4是同类项,因为除系数外,它们只有字母的排列顺序 不同,所含字母及相同字母的指数都分别相同。
(5)2×103t与1.5×102t是同类项,因为两项都只含有字母t,并且t的 指数都是1。
【题型二】利用合并同类项法则合并同类项 例2:下列计算结果正确的是( C ) A.2c+4c=6c2 B.5a2b-3ab2=2ab C.5y2-2y2=3y2 D.3b-2b=1
2 整式的加减
第1课时 合并同类项
学习目标
1.通过了解合并同Байду номын сангаас项的法则,能进行同类项的合并,发展运算 能力。
2.通过具体情境导入同类项以及合并同类项的概念,经历合并同 类项的过程,发展学生的观察、归纳等能力。
3.通过大量练习巩固,培养学生计算能力,帮助学生形成解题经 验。
旧知回顾 1.单项式的概念,次数与系数是什么?
生活中的分类
悬念式导入
妈妈的生日快到了,丽丽想用存钱罐里的钱给妈妈买份礼物,可是丽 丽不知道存钱罐里有多少钱,大家一起来帮她数数吧! 怎样才能快速地数出来呢?
视频导入 在日常生活中还有哪些事物需要分类? 你能举出例子吗?
3.4课时1合并同类项教案-2021-2022学年北师大版七年级数学上册

-解释:常数项没有字母,但它们也是同类项,只要它们是纯数字,就可以直接相加或相减。例如:4 + 3 - 2 = 5。
-教学方法:为了帮助学生突破难点,教师可以通过以下方法:
-使用具体例题进行步骤分解,逐步引导学生理解合并同类项的规则。
-设计互动环节,让学生自主尝试识别和合并同类项,然后进行小组讨论和班级分享。
三、教学难点与重点
1.教学重点
-核心知识:同类项的概念及其合并方法。
-重点细节:
-理解同类项的定义,即字母相同且相同字母的指数也相同的项。
-掌握合并同类项的法则,即同类项之间进行加减运算时,只需将系数相加(或相减),字母及其指数保持不变。
-能够正确识别整式中的同类项,并准确进行合并运算。
-举例:在整式3x^2 + 5x - 2x^2 + 4中,重点讲解3x^2与-2x^2的合并,以及如何保持5x和常数项4不变。
今天的学习,我们了解了合并同类项的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对合并同类项的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我引导学生们学习了合并同类项这一章节。整个教学过程下来,我发现了一些亮点,也遇到了一些挑战。
2.强化符号意识:使学生掌握同类项的识别方法,增强对数学符号的理解和运用,培养他们在整式运算中运用符号进行表达和交流的能力。
3.提升数学建模素养:引导学生将现实问题转化为数学模型,通过合并同类项解决简化模型,从而增强学生对数学模型在实际问题中的应用意识。
4.培养学生的数学抽象思维:通过合并同类项的运算,让学生体会数学抽象的过程,提高他们在数学学习中进行抽象思考和总结规律的能力。
北师大版七年级数学上册第三章 3.4.1合并同类项 同步测试题

北师大版七年级数学上册第三章 3.4.1合并同类项 同步测试题一、选择题1.下列各式中,与3x 2y 3是同类项的是( )A .2x 5B .3x 3y2C .-12x 2y 3D .-13y 52.下列各组中的两项,不是同类项的是( ) A .a 2b 与-3ab 2B .-x 2y 与2yx 2C .2πr 与π2rD .35与533.如果3ab 2m -1与9ab m +1是同类项,那么m 等于( )A .2B .1C .-1D .04.合并同类项-4a 2b +3a 2b =(-4+3)a 2b =-a 2b 时,依据的运算律是( ) A .加法交换律B .乘法交换律C .乘法对加法的分配律D .乘法结合律5.计算3x 2-x 2的结果是( ) A .2B .2x 2C .2xD .4x 26.下列各组中的两个单项式能合并的是( ) A .4和4xB .3x 2y 3和-y 2x 3C .2ab 2和100ab 2cD .m 和m27.把多项式2x 2-5x +x +4-2x 2合并同类项后,所得多项式是( ) A .二次二项式B .二次三项式C .一次二项式D .三次二项式8.下列运算正确的是( ) A .3a +2a =5a2B .3a +3b =3abC .2a 2bc -a 2bc =a 2bcD .a 5-a 2=a 39.若单项式am -1b 2与12a 2b n 的和仍是单项式,则n m的值是( )A .3B .6C .8D .910.如果多项式x 2-7ab +b 2+kab -1中不含ab 项,那么k 的值为( ) A .0 B .7 C .1 D .不能确定二、填空题11.计算:(1)a -3a =______;(2)(南通中考)3a 2b -a 2b =______. 12.已知3x 5y 2和-2x 3m y n是同类项,则6m -3n 的值为______. 13.如图,阴影部分的面积为______.14.三个连续的整数中,n 是最大的一个,这三个数的和为______. 三、解答题 15.合并同类项: (1)2x -3y +5x -8y -2;(2)23m -1-56m +1+12m ;(3)6x -10x 2+12x 2-5x.(4)x 2y -3xy 2+2yx 2-y 2x.16.先合并同类项,再求值.(1)3a 2-5a +2-6a 2+6a -3,其中a =-1;(2)3a +abc -13c 2-3a +13c 2,其中a =-16,b =2,c =-3;(3)-xyz -4yz -6xz +3xyz +5xz +4yz ,其中x =-2,y =-10,z =-5.17.为了绿化校园,学校决定修建一块长方形草坪,长30 m ,宽20 m ,并在草坪上修建如图所示的等宽的十字路,小路宽为x m. (1)用含x 的代数式表示小路的面积; (2)当x =3时,求小路的面积.18.如果单项式5mx a y与-5nx2a-3y是关于x,y的单项式,且它们是同类项.(1)求(7a-22)2 020的值;(2)若5mx a y-5nx2a-3y=0,且xy≠0,求(5m-5n)2 019的值.19.有这样一道题:“当a=0.35,b=-0.28时,求多项式7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3的值.”小明说:本题中a=0.35,b=-0.28是多余的条件;小强马上反对说:这不可能,多项式中每一项都含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.参考答案 一、选择题1.下列各式中,与3x 2y 3是同类项的是(C)A .2x 5B .3x 3y2C .-12x 2y 3D .-13y 52.下列各组中的两项,不是同类项的是(A) A .a 2b 与-3ab 2B .-x 2y 与2yx 2C .2πr 与π2rD .35与533.如果3ab 2m -1与9ab m +1是同类项,那么m 等于(A)A .2B .1C .-1D .04.合并同类项-4a 2b +3a 2b =(-4+3)a 2b =-a 2b 时,依据的运算律是(C) A .加法交换律B .乘法交换律C .乘法对加法的分配律D .乘法结合律5.计算3x 2-x 2的结果是(B) A .2B .2x 2C .2xD .4x 26.下列各组中的两个单项式能合并的是(D)A .4和4xB .3x 2y 3和-y 2x 3C .2ab 2和100ab 2cD .m 和m27.把多项式2x 2-5x +x +4-2x 2合并同类项后,所得多项式是(C) A .二次二项式B .二次三项式C .一次二项式D .三次二项式8.下列运算正确的是(C) A .3a +2a =5a2B .3a +3b =3abC .2a 2bc -a 2bc =a 2bcD .a 5-a 2=a 39.若单项式am -1b 2与12a 2b n 的和仍是单项式,则n m的值是(C)A .3B .6C .8D .910.如果多项式x 2-7ab +b 2+kab -1中不含ab 项,那么k 的值为(B) A .0 B .7 C .1 D .不能确定二、填空题11.计算:(1)a -3a =-2a ;(2)(南通中考)3a 2b -a 2b =2a 2b . 12.已知3x 5y 2和-2x 3m y n是同类项,则6m -3n 的值为4. 13.如图,阴影部分的面积为112x .14.三个连续的整数中,n 是最大的一个,这三个数的和为3n -3. 三、解答题15.合并同类项: (1)2x -3y +5x -8y -2; 解:原式=7x -11y -2.(2)23m -1-56m +1+12m ; 解:原式=13m.(3)6x -10x 2+12x 2-5x. 解:原式=2x 2+x.(4)x 2y -3xy 2+2yx 2-y 2x. 解:原式=3x 2y -4xy 2.16.先合并同类项,再求值.(1)3a 2-5a +2-6a 2+6a -3,其中a =-1; 解:原式=-3a 2+a -1.当a =-1时,原式=-3-1-1=-5.(2)3a +abc -13c 2-3a +13c 2,其中a =-16,b =2,c =-3;解:原式=abc.当a =-16,b =2,c =-3时,原式=-16×2×(-3)=1.(3)-xyz -4yz -6xz +3xyz +5xz +4yz ,其中x =-2,y =-10,z =-5. 解:原式=(-1+3)xyz +(4-4)yz +(5-6)xz =2xyz -xz.当x =-2,y =-10,z =-5时,原式=2×(-2)×(-10)×(-5)-(-2)×(-5) =-200-10 =-210.17.为了绿化校园,学校决定修建一块长方形草坪,长30 m ,宽20 m ,并在草坪上修建如图所示的等宽的十字路,小路宽为x m. (1)用含x 的代数式表示小路的面积; (2)当x =3时,求小路的面积.解:(1)小路的面积为30x +20x -x 2=(50x -x 2)m 2. (2)当x =3时,50x -x 2=50×3-32=141. 答:当x =3时,小路的面积为141 m 2.18.如果单项式5mx a y与-5nx2a-3y是关于x,y的单项式,且它们是同类项.(1)求(7a-22)2 020的值;(2)若5mx a y-5nx2a-3y=0,且xy≠0,求(5m-5n)2 019的值.解:(1)由题意,得a=2a-3,解得a=3.所以(7a-22)2020=(7×3-22)2 020=(-1)2020=1.(2)由题意,得5m-5n=0,所以(5m-5n)2 019=02 019=0.19.有这样一道题:“当a=0.35,b=-0.28时,求多项式7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3的值.”小明说:本题中a=0.35,b=-0.28是多余的条件;小强马上反对说:这不可能,多项式中每一项都含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.解:我同意小明的观点.理由如下:因为7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3=(7+3-10)a3+(-6+6)a3b+(3-3)a2b=0,所以a=0.35,b=-0.28是多余的条件,故小明的观点正确.。
合并同类项(5种题型)-2023年新七年级数学核心知识点与常见题型(北师大版)(解析版)

合并同类项(5种题型)【知识梳理】一、同类项定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项. 要点诠释:(1)判断是否同类项的两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.(2)同类项与系数无关,与字母的排列顺序无关. (3)一个项的同类项有无数个,其本身也是它的同类项. 二、合并同类项1. 概念:把多项式中的同类项合并成一项,叫做合并同类项.2.法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变. 要点诠释:合并同类项的根据是乘法分配律的逆运用,运用时应注意: (1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中都含有. (2) 合并同类项,只把系数相加减,字母、指数不作运算.【考点剖析】题型一、同类项的概念例1.下列各组单项式中属于同类项的是: ①22m n 和22a b ;②312x y −和3yx ;③6xyz 和6xy ;④20.2x y 和20.2xy ; ⑤xy 和yx −;⑥12−和2.【答案】②⑤⑥【解析】①③两个单项式所含字母不相同;④相同字母的次数不相同.【总结】本题主要考查同类项的概念:所含字母相同,并且相同字母的指数也分别相同的单项式,注意同类项与字母的顺序无关.【变式1】指出下列各题中的两项是不是同类项,不是同类项的说明理由.(1)233x y 与32y x −; (2)22x yz 与22xyz ; (3)5x 与xy ; (4)5−与8【答案与解析】本题应用同类项的概念与识别进行判断:解:(1)(4)是同类项;(2)不是同类项,因为22x yz 与22xyz 所含字母,x z 的指数不相等; (3)不是同类项,因为5x 与xy 所含字母不相同.【总结升华】辨别同类项要把准“两相同,两无关”,“两相同”是指:①所含字母相同;②相同字母的指数相同. “两无关”是指:①与系数及系数的指数无关;②与字母的排列顺序无关. 【变式2】下列每组数中,是同类项的是( ) . ①2x 2y 3与x 3y 2 ②-x 2yz 与-x 2y ③10mn 与23mn ④(-a )5与(-3)5 ⑤-3x 2y 与0.5yx 2 ⑥-125与12A .①②③B .①③④⑥C .③⑤⑥D .只有⑥ 【答案】C【变式3】判别下列各题中的两个项是不是同类项: (1)-4a 2b 3与5b 3a 2;(2)2213x y z −与2213xy z −;(3)-8和0;(4)-6a 2b 3c 与8ca 2. 【答案与解析】 (1)-4a2b3与5b3a2是同类项;(2)不是同类项;(3)-8和0都是常数,是同类项;(4)-6a2c 与8ca2是同类项.【总结升华】辨别同类项要把准“两相同,两无关”,“两相同”是指:①所含字母相同;②相同字母的指数相同;“两无关”是指:①与系数及系数的指数无关;②与字母的排列顺序无关.此外注意常数项都是同类项.例2.单项式449m x y −与223n x y 是同类项,求23m n +的值. 【答案】7【解析】由题意,可得:4242m n =⎧⎨=⎩,解得:122m n ⎧=⎪⎨⎪=⎩,所以12323272m n +=⨯+⨯=. 【总结】本题主要考查同类项的概念. 【变式1】315212135m n m n x y x y −−+−若与是同类项,求出m, n 的值. 【答案与解析】因为 315212135m n m n x y x y −−+−与是同类项,所以 315,21 1.m n −=⎧⎨−=⎩ , 解得:2,1.m n =⎧⎨=⎩所以2,1m n ==【总结升华】概念的灵活运用.【变式2】如果单项式﹣x a+1y 3与x 2y b 是同类项,那么a 、b 的值分别为( ) A. a=2,b=3 B. a=1,b=2 C. a=1,b=3 D. a=2,b=2 【答案】C解:根据题意得:a+1=2,b=3, 则a=1.【变式3】单项式313a b a b x y +−−与23x y 是同类项,求a b −的值.【答案】32【解析】由题意,可得:231a b a b +=⎧⎨−=⎩,解得:7414a b ⎧=⎪⎪⎨⎪=⎪⎩,所以713442a b −=−=. 【总结】本题主要考查同类项的概念.题型二、合并同类项例3.合并下列各式中的同类项:(1)-2x 2-8y 2+4y 2-5x 2-5x+5x -6xy (2)3x 2y -4xy 2-3+5x 2y+2xy 2+5 【答案与解析】解: (1)-2x2-8y2+4y2-5x2-5x+5x-6xy=(-2-5)x2+(-8+4)y2+(-5+5)x-6xy =-7x2-4y2-6xy (2)3x2y-4xy2-3+5x2y+2xy2+5=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+2【总结升华】(1)所有的常数项都是同类项,合并时把它们结合在一起,运用有理数的运算法则进行合并;(2)在进行合并同类项时,可按照如下步骤进行:第一步:准确地找出多项式中的同类项(开始阶段可以用不同的符号标注),没有同类项的项每一步保留该项;第二步:利用乘法分配律的逆运用,把同类项的系数相加,结果用括号括起来,字母和字母的指数保持不变;第三步:写出合并后的结果. 【变式1】合并同类项: (1)22213224ab b a ab −+ (2)22222344x xy y xy y x −++−−; 解:2222213133(1).2(2)24244ab b a ab ab ab −+=−+=−;2222222222(2).2344(2)(4)(34)3x xy y xy y x x x xy xy y y x xy y −++−−=−+−++−=+−说明:多项式的同类项可以运用交换律、结合律、分配律进行合并. 注意: 在合并同类项时,应注意:(1)如果多项式中项数较多、较复杂时,可在同类项上标注记号,便于认清同类项,做到不遗漏、不重复. (2)所有常数项都是同类项,都可进行合并. 【变式2】合并下列同类项: (1)2215232x x x x −+−+−; (2)333332m n m n −−+;(3)2141732733m m a a a a −−+−+−.【答案】(1)211232x x −−+;(2)332m n −+;(3)25037a a m −−.【解析】(1)原式222111(3)(2)(5)2322x x x x x x =−+−−++=−−+; (2)原式333333(3)22m m n n m n =−+−+=+()-;(3)原式22411503(2)(7)33377a a a a m m a a m =+−+−+−−=−−.【总结】本题主要考查合并同类项的概念,合并时只需要将同类项的系数相加减即可. 【变式3】合并下列同类项 (1)2222210.120.150.12x y x y y yx +−+; (2)122121342n n n n n x y x y y x y x +++−−−;(3)2220.86 3.25a b ab a b ab a b −−++.【答案】(1)22220.620.150.1x y x y y x +−; (2)4n n x y −; (3)21.4a b ab −−. 【解析】(1)原式2222222221(0.12)0.150.10.620.150.12x y yx x y y x x y x y xy =++−=+−;(2)原式121212(32)44n n n n n n nx y x y x y x y x y +++=−−−=−;(3)原式222(0.8 3.2)(65) 1.4a b a b ab ab a b ab =−++−+=−−. 【变式4】合并同类项:()221324325x x x x −++−−;()2222265256a b ab b a −++−; ()2223542625yx xy xy x y xy −+−+++;()()()()()2323431215141x x x x −−−−−+− (注:将“1x −”或“1x −”看作整体)【思路点拨】同类项中,所含“字母”,可以表示字母,也可以表示多项式,如(4).【答案与解析】 (1)()()()22232234511x x x x x x =−+−++−=+−=+−原式(2)()()2222665522a a b b ab ab−+−++=原式=(3)原式=()()222562245x y x y xy xy xy −++−+++2245x y xy =++(4)()()()()()()223323315121412161x x x x x x ⎡⎤⎡⎤=−−−+−−−−=−−−−⎣⎦⎣⎦原式【总结升华】无同类项的项不能遗漏,在每步运算中照抄. 【变式5】化简:(1)32313125433xy x y xy x −−−+ (2) (a-2b)2+(2b-a)-2(2b-a)2+4(a-2b) 【答案】原式3323211231123()()53345334xy xy x x y xy x y =−+−−=−+−−3221.1512xy x y =−−−(2) (a-2b)2+(2b-a)-2(2b-a)2+4(a-2b) =(a-2b)2-2(a-2b)2+4(a-2b)-(a-2b) =(1-2)(a-2b)2+(4-1)(a-2b) =-(a-2b)2+3(a-2b). 【变式6】已知35414527m n ab pa b a b ++−=−,求m+n -p 的值.【思路点拨】两个单项式的和一般情形下为多项式.而条件给出的结果中仍是单项式,这就意味着352m a b+与41n pa b+是同类项.因此,可以利用同类项的定义解题.【答案与解析】解:依题意,得3+m =4,n+1=5,2-p =-7 解这三个方程得:m =1,n =4,p =9, ∴ m+n-p =1+4-9=-4.【总结升华】要善于利用题目中的隐含条件.题型三、化简求值例4.求代数式的值:2222345263x xy y xy y x −−+++−−,其中1,22x y ==.22222222(4)(32)6(53)236211113,22()3226222222x xy xy y y x x xy y x x y =+−++−+−+−=+−−+===⨯+⨯⨯−−⨯+=−解:原式当时,上式【变式1】当2,1p q ==时,分别求出下列各式的值. (1)221()2()()3()3p q p q q p p q −+−−−−−; (2)2283569p q q p −+−−【答案与解析】(1)把()p q −当作一个整体,先化简再求值: 解:22221()2()()3()31(1)()(23)()32()()3p q p q q p p q p q p q p q p q −+−−−−−=−−+−−=−−−−又 211p q −=−=所以,原式=22222()()111333p q p q −−−−=−⨯−=− (2解:2283569p q q p −+−− 2(86)(35)9p q =−+−+− 2229p q =+−当p =2,q =1时,原式=22229222191p q +−=⨯+⨯−=. 【总结升华】此类先化简后求值的题通常的步骤为:先合并同类项,再代入数值求出整式的值.【变式2】先化简,再求值:(1)2323381231x x x x x −+−−+,其中2x =;(2)222242923x xy y x xy y ++−−+,其中2x =,1y =.【答案】解: (1)原式322981x x x =−−−+,当2x =时,原式=32229282167−⨯−⨯−⨯+=−.(2)原式22210x xy y =−+,当2x =,1y =时,原式=22222110116⨯−⨯+⨯=.【变式3】化简求值:(1)当1,2a b ==−时,求多项式3232399111552424ab a b ab a b ab a b −−+−−−的值. (2)若243(32)0a b b +++=,求多项式222(23)3(23)8(23)7(23)a b a b a b a b +−+++−+的值. 【答案与解析】(1)先合并同类项,再代入求值:原式=32391911()(5)52244a b ab a b −++−−−−=32345a b a b −−− 将1,2a b ==−代入,得:3233234541(2)1(2)519a b a b −−−=−⨯⨯−−⨯−−=− (2)把(23)a b +当作一个整体,先化简再求值:原式=22(28)(23)(37)(23)10(23)10(23)a b a b a b a b +++−−+=+−+ 由243(32)0a b b +++=可得:430,320a b b +=+=两式相加可得:462a b +=−,所以有231a b +=− 代入可得:原式=210(1)10(1)20⨯−−⨯−=【总结升华】此类先化简后求值的题通常的步骤为:先合并同类项,再代入数值求出整式的值. 【变式4】3422323323622已知与是同类项,求代数式的值a b x y xy b a b b a b +−−−−+.【答案】()()()3422323223323323231,2 4.2, 6.362232624,2,66426228.a b x y xy a b a b b a b b a b b b a b a b b a b a b +−−∴+=−=∴=−=−−+=−+−+=−∴=−==−⨯−⨯=解:与是同类项,当时,原式题型四、“无关”与“不含”型问题例5.李华老师给学生出了一道题:当x =0.16,y =-0.2时,求6x 3-2x 3y -4x 3+2x 3y -2x 3+15的值.题目出完后,小明说:“老师给的条件x =0.16,y =-0.2是多余的”.王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?【思路点拨】要判断谁说的有道理,可以先合并同类项,如果最后的结果是个常数,则小明说得有道理,否则,王光说得有道理. 【答案与解析】解:333336242215x x y x x y x −−+−+=(6-4-2)x3+(-2+2)x3y+15=15 通过合并可知,合并后的结果为常数,与x 、y 的值无关,所以小明说得有道理.【总结升华】本题在化简时主要用的是合并同类项的方法,在合并同类项时,要明白:同类项的概念是所含字母相同,相同字母的指数也相同的项不是同类项的一定不能合并.【变式1】如果关于x 的多项式222542x x kx x −++−中没有2x 项,则k = .答案:2k=−解析:先合并含2x 的项:2222225422542(2)542x x kx x x kx x x k x x x −++−=+−+−=+−+−,如没有2x 项,即2x 项的系数为0,即20k +=,所以2k =−.【变式2】若关于x 的多项式-2x 2+mx+nx 2+5x-1的值与x 的值无关,求(x-m)2+n 的最小值. 【答案】 -2x2+mx+nx2+5x-1=nx2-2x2+mx+5x-1=(n-2)x2+(m+5)x-1 ∵ 此多项式的值与x ∴ 20,50.n m −=⎧⎨+=⎩ 解得: 25n m =⎧⎨=−⎩当n=2且m=-5时, (x-m)2+n=[x-(-5)]2+2≥0+2=2. ∵(x-m)2≥0,∴当且仅当x=m=-5时,(x-m)2=0,使(x-m)2+n 有最小值为2. 题型五、综合应用例6.若多项式-2+8x+(b-1)x 2+ax 3与多项式2x 3-7x 2-2(c+1)x+3d+7恒等,求ab-cd.【答案与解析】 法一:由已知ax3+(b-1)x2+8x-2≡2x3-7x2-2(c+1)x+(3d+7)∴ 2,17,82(1),237.a b c d =⎧⎪−=−⎪⎨=−+⎪⎪−=+⎩ 解得:2,6,5,3.a b c d =⎧⎪=−⎪⎨=−⎪⎪=−⎩∴ab-cd=2×(-6)-(-5)×(-3)=-12-15=-27. 法二:说明:此题的另一个解法为:由已知(a-2)x3+(b+6)x2+[2(c+1)+8]x-(3d+9)≡0. 因为无论x 取何值时,此多项式的值恒为零.所以它的各项系数皆为零,即从而解得解得:【总结升华】若等式两边恒等,则说明等号两边对应项系数相等;若某式恒为0,则说明各项系数均为0;若某式不含某项,则说明该项的系数为0.【变式】若关于,x y 的多项式:2223332m m m m x y mx y nx y x y m n −−−−++−++,化简后是四次三项式,求m+n的值.【答案】分别计算出各项的次数,找出该多项式的最高此项:因为22m x y −的次数是m ,2m mx y −的次数为1m −,33m nx y −的次数为m ,32m x y −−的次数为2m −, 又因为是三项式 ,所以前四项必有两项为同类项,显然2233m m x y nx y −−与是同类项,且合并后为0, 所以有5,10m n =+= ,5(1)4m n +=+−=.【过关检测】一.选择题(共8小题)1.(2022秋•长安区期末)已知单项式3x 2m ﹣1y 与﹣x 3y n﹣2是同类项,则m ﹣2n 的值为( )A .2B .﹣4C .﹣2D .﹣1【分析】直接利用同类项的定义得出关于m ,n 的值,再代入计算即可.20,60,2(1)80,(39)0.a b c d −=⎧⎪+=⎪⎨++=⎪⎪−+=⎩2,6,5,3.a b c d =⎧⎪=−⎪⎨=−⎪⎪=−⎩【解答】解:∵单项式3x2m﹣1y与﹣x3yn﹣2是同类项,∴2m﹣1=3,n﹣2=1,解得m=2,n=3,∴m﹣2n=2﹣2×3=﹣4.故选:B.【点评】本题考查了同类项,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.2.(2022秋•昆都仑区校级期末)下列说法中正确的是()A.单项式2πx的次数和系数都是2B.单项式m2n和n2m是同类项C.多项式2x2y+3xy﹣4是三次三项式D.多项式﹣x2+2x﹣1的项是x2,2x和1【分析】分别根据同类项、单项式与多项式的概念判断即可.【解答】解:A.单项式2πx的次数1,系数是2π,故本选项不合题意;B.单项式m2n和n2m所含字母相同,但同字母的指数不相同,不是同类项,故本选项不合题意;C.多项式2x2y+3xy﹣4是三次三项式,说法正确,故本选项符合题意;D.多项式﹣x2+2x﹣1的项是﹣x2,2x和﹣1,故本选项不合题意.故选:C.【点评】此题考查的是同类项、单项式与多项式,掌握相关定义是解答本题的关键.3.(2023春•南安市期中)若3a x12与4a3b y+2是同类项,则x,y的值分别是()A.x=4,y=0B.x=4,y=2C.x=3,y=1D.x=1,y=3【分析】根据同类项的定义即可求出答案.【解答】解:∵3ax﹣1b2与4a3by+2是同类项,∴x﹣1=3,y+2=2,解得x=4,y=0.故选:A.【点评】本题考查同类项.解题的关键是熟练运用同类项的定义.同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.4.(2022秋•河池期末)若2x2y+3x m y=5x2y,则m的值是()A.3B.2C.1D.0【分析】根据同类项的定义及合并同类项法则,即可求出m的值.【解答】解:∵2x2y+3xmy=5x2y,∴2x2y与3xmy是同类项,∴m=2,故选:B.【点评】本题考查了合并同类项,掌握同类项的定义是解决问题的关键.5.(2022秋•宣城期末)已知2a m b2和﹣a5b n是同类项,则m+n的值为()A.2B.3C.5D.7【分析】根据同类项的意义先求出m,n的值,然后再代入式子进行计算即可.【解答】解:∵2amb2和﹣a5bn是同类项,∴m=5,n=2,∴m+n=5+2=7,故选:D.【点评】本题考查了同类项,熟练掌握同类项的意义是解题的关键.6.(2022秋•曹县期末)已知单项式﹣a2m b2与单项式3a4b3+n的和仍然是一个单项式,则n m的值是()A.﹣1B.1C.2D.3【分析】利用同类项的定义可得:2m=4,3+n=2,从而可得m=2,n=﹣1,然后代入式子中进行计算即可解答.【解答】解:∵单项式﹣a2mb2与单项式3a4b3+n的和仍然是一个单项式,∴2m=4,3+n=2,∴m=2,n=﹣1,∴nm=(﹣1)2=1,故选:B.【点评】本题考查了合并同类项,单项式,熟练掌握同类项的定义是解题的关键.7.(2022秋•曹县期末)下列计算正确的是()A.3a+4b=7ab B.﹣3xy2﹣2y2x=﹣5xy2C.5ab﹣ab=4D.2a2+a2=3a4【分析】利用合并同类项的法则,进行计算逐一判断即可解答.【解答】解:A、3a与4b不能合并,故A不符合题意;B、﹣3xy2﹣2y2x=﹣5xy2,故B符合题意;C、5ab﹣ab=4ab,故C不符合题意;D、2a2+a2=3a2,故D不符合题意;故选:B.【点评】本题考查了合并同类项,熟练掌握合并同类项的法则是解题的关键.8.(2023春•曲阜市期中)若﹣3x m﹣n y2与x4y5m+n的和仍是单项式,则有()A.B.C.D.【分析】根据两式的和仍是单项式,得到两式为同类项,利用同类项定义列出方程组,求出方程组的解即可得到m与n的值.【解答】解:﹣3xm﹣ny2与x4y5m+n的和仍是单项式,∴,解得.故选:A.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.二.填空题(共10小题)9.(2023春•鲤城区校级期中)如果3x2n﹣1y m与﹣5x m y3是同类项,则m+n的值是.【分析】根据同类项的概念求解.【解答】解:∵3x2n﹣1ym与﹣是同类项,∴2n﹣1=m,m=3,∴m=3,n=2,则m+n=3+2=5.故答案为:5.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.10.(2022秋•马尾区期末)﹣3ab2与是同类项.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.【解答】解:﹣3ab2与ab2是同类项.故答案为:ab2(答案不唯一).【点评】此题主要考查了同类项定义,关键是注意同类项定义中的三个“相同”:(1)所含字母相同;(2)相同字母的指数相同.11.(2022秋•鼓楼区校级期末)若单项式与2x3y n的和仍是单项式,则m+n=.【分析】根据和是单项式,可得它们是同类项,在根据同类项,可得m、n的值,根据有理数的加法法则,可得答案.【解答】解:∵单项式与2x3yn的和仍是单项式,∴单项式与2x3yn是同类项,∴m=3,n=2,m+n=3+2=5,故答案为:5.【点评】本题考查了合并同类项,掌握同类项的定义是解答本题的关键.12.(2023春•顺义区期末)若单项式﹣5a2b m﹣1与2a2b是同类项,则m=.【分析】直接利用同类项的定义分析得出答案.所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:因为单项式﹣5a2bm﹣1与2a2b是同类项,所以m﹣1=1,解得m=2.故答案为:2.13.(2023•株洲)计算:3a2﹣2a2=.【分析】利用合并同类项的法则运算即可.【解答】解:3a2﹣2a2=a2.故答案为:a2.【点评】本题主要考查了合并同类项,正确应用合并同类项的法则是解题的关键.14.(2022秋•金牛区期末)若关于x、y的多项式(m﹣1)x2﹣3xy+nxy+2x2+2y+x中不含二次项,则m+n =.【分析】直接利用多项式不含二次项,得出关于m,n的等式,求出答案.【解答】解:∵(m﹣1)x2﹣3xy+nxy+2x2+2y+x=(m﹣1+2)x2+(n﹣3)xy+2y+x,关于关于x、y的多项式(m﹣1)x2﹣3xy+nxy+2x2+2y+x不含二次项,∴m﹣1+2=0,n﹣3=0,解得m=﹣1,n=3,故答案为:2.【点评】此题主要考查了合并同类项、多项式,正确得出m,n的值是解题关键.15.(2022秋•杭州期末)合并同类项2x﹣7y﹣5x+11y﹣1=.【分析】根据合并同类项法则计算即可.【解答】解:2x﹣7y﹣5x+11y﹣1=(2x﹣5x)+(11y﹣7y)﹣1=﹣3x+4y﹣1.故答案为:﹣3x+4y﹣1.【点评】本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.16.(2022秋•东港区校级期末)当k=时,多项式x2+(k﹣1)xy﹣3y3﹣4xy﹣6中不含xy项.【分析】先合并同类项,然后使xy的项的系数为0,即可得出答案.【解答】解:x2+(k﹣1)xy﹣3y2﹣4xy﹣6=x2+(k﹣5)xy﹣3y2﹣6,∵多项式不含xy项,∴k﹣5=0,解得:k=5,故答案为:5.【点评】本题考查了合并同类项,属于基础题,解答本题的关键是掌握合并同类项的法则.17.(2022秋•邗江区期末)若﹣4x5y+4x2n+1y=0,则常数n的值为.【分析】根据同类项“相同字母的指数相同”列式求解即可.【解答】解:根据题意可知,﹣与4x2n+1y是同类项,∴2n+1=5,解得n=2.故答案为:2.【点评】本题主要考查了合并同类项的知识,熟练掌握同类项的定义是解题关键.18.(2022秋•射洪市期末)已知关于x、y的多项式(3a+2)x2+(9a+10b)xy﹣x+2y+7中不含二次项,则6a﹣15b=.【分析】根据多项式不含二次项,确定出a与b的值,代入原式计算即可求出值.【解答】解:∵关于x、y的多项式(3a+2)x2+(9a+10b)xy﹣x+2y+7中不含二次项,∴3a+2=0,9a+10b=0,解得:a=﹣,b=,则6a﹣15b=6×(﹣)﹣15×=﹣4﹣9=﹣13.【点评】此题考查了合并同类项,多项式,熟练掌握各自的性质是解本题的关键.三.解答题(共10小题)19.(2022秋•洛川县校级期末)已知单项式2x2m y7与单项式5x6y n+8是同类项,求m2+2n的值.【分析】利用同类项的定义求出m与n的值即可,再代入所求式子计算即可.定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:∵单项式2x2my7与单项式5x6yn+8是同类项,∴2m=6,n+8=7,解得m=3,n=﹣1,∴m2+2n=9﹣2=7.【点评】此题考查了同类项,以及代数式求值,熟练掌握同类项的定义求出m与n的值是解本题的关键.20.(2021秋•大荔县期末)找出下列式子中的同类项,并求这些同类项的和:ab,3xy2,,ab+1,6x2y,﹣5x2y.【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,结合选项即可作出判断,然后进行合并即可.【解答】解:ab和是同类项,6x2y和﹣5x2y是同类项;,6x2y+(﹣5x2y)=x2y.【点评】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.21.(2022秋•榆阳区校级期末)已知a,b是有理数,关于x、y的多项式x3y a﹣bx3+6x2y2+x的次数为5,且这个多项式中不含x3项,请你写出这个多项式.【分析】根据多项式的定义解答即可.【解答】解:∵关于x、y的多项式x3ya﹣bx3+6x2y2+x的次数为5,且这个多项式中不含x3项,∴,解得,∴这个多项式为:x3y2+6x2y2+x.【点评】本题考查了多项式以及合并同类项,解题的关键是掌握与整式相关的概念.22.(2022秋•北京期末)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是;(2)已知x2﹣2y=4,求2﹣3x2+6y的值.【分析】(1)把(a﹣b)2看成一个整体,运用合并同类项法则进行计算即可;(2)把3x2﹣6y﹣21变形,得到3(x2﹣2y)﹣21,再根据整体代入法进行计算即可.【解答】解:(1)把(a﹣b)2看成一个整体,则3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;故答案为:﹣(a﹣b)2;(2)∵x2﹣2y=4,∴原式=﹣3(x2﹣2y)+2=﹣12+2=﹣10.【点评】本题主要考查了整式的加减,解决问题的关键是运用整体思想;给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.23.(2022秋•吉林期中)已知多项式mx4+(m﹣2)x3+(n+1)x2﹣3x+n不含x2和x3的项,试写出这个多项式,再求当x=﹣1时该多项式的值.【分析】根据mx4+(m﹣2)x3+(n+1)x2﹣3x+n不含x2和x3的项可得出二次项和三次项的系数为0,从而求出m和n的值,再把x=﹣1【解答】解:∵多项式mx4+(m﹣2)x3+(n+1)x2﹣3x+n不含x2和x3的项,∴m﹣2=0,n+1=0,∴m=2,n=﹣1,∴多项式为2x4﹣3x﹣,当x=﹣1时,多项式为2×(﹣1)4﹣3×(﹣1)﹣1=2+3﹣1=4.【点评】本题主要考查多项式求值问题,关键是要能确定m和n的值.24.(2022秋•深圳校级期中)阅读材料:在合并同类项中,5a﹣3a+a=(5﹣3+1)a=3a,类似地,我们把(x+y)看成一个整体,则5(x+y)﹣3(x+y)+(x+y)=(5﹣3+1)(x+y)=3(x+y).“整体思想”是中学教学解题中的一种重要的思想,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(x﹣y)2看成一个整体,合并3(x﹣y)2﹣6(x﹣y)2+2(x﹣y)2的结果是.(2)已知a2﹣2b=1,求3﹣2a2+4b的值;拓展探索:(3)已知a﹣2b=1,2b﹣c=﹣1,c﹣d=2,求a﹣6b+5c﹣3d的值.【分析】(1)把(x﹣y2)看作一个整体,合并即可得到结果;(2)原式后两项提取2变形后,将已知等式代入计算即可求出值;(3)原式整理后,将已知等式代入计算即可求出值.【解答】解:(1)把(x﹣y)2看成一个整体,合并3(x﹣y)2﹣6(x﹣y)2+2(x﹣y)2的结果是﹣(x﹣y)2,故答案为:﹣(x﹣y)2;(2)∵a2﹣2b=1,∴原式=3﹣2(a2﹣2b)=3﹣2=1;(3)∵a﹣2b=1,2b﹣c=﹣1,c﹣d=2,∴原式=a﹣2b﹣4b+2c+3c﹣3d=(a﹣2b)﹣2(2b﹣c)+3(c﹣d)=1+2+6=9.【点评】此题考查了合并同类项,代数式求值,熟练掌握运算法则是解本题的关键.25.(2022秋•顺义区期末)已知3x m y3与﹣2y n x2是同类项,求代数式m﹣2n﹣mn的值.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同即可求解.【解答】解:因为3xmy3与﹣2ynx2是同类项,所以m=2,n=3,所以m﹣2n﹣mn=2﹣6﹣6=﹣【点评】本题主要考查了同类项,掌握同类项的定义是解题的关键.26.(2021秋•韩城市期中)已知单项式﹣2x2m y7与单项式﹣5x6y n+8是同类项,求﹣m2﹣n2021的值.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,代入计算即可得出答案.【解答】解:因为单项式﹣2x2my7与单项式﹣5x6yn+8是同类项,所以2m=6,n+8=7,所以m=3,n=﹣1,所以﹣m2﹣n2021=﹣32﹣(﹣1)2021=﹣8.【点评】本题考查了同类项的知识,属于基础题,掌握同类项中的两个相同是解答本题的关键.27.(2021秋•米脂县期末)已知单项式﹣2a2b与是同类项,多项式是五次三项式,求m﹣n的值.【分析】根据同类项的概念及多项式的有关概念求解.【解答】解:∵多项式是五次三项式,∴2+n=5,∴n=3,∵单项式﹣2a2b与是同类项,∴m=2.∴m﹣n=2﹣3=﹣1.【点评】本题考查了同类项的知识及多项式的有关概念,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.28.(2022秋•大荔县期末)已知关于a,b的单项式na x﹣1b4与6a2b y+3和为0,请求出n+x+y的值.【分析】根据同类项的定义解答即可.【解答】解:∵单项式nax﹣1b4与6a2by+3和为0,∴n=﹣6,x﹣1=2,y+3=4,解得,n=﹣6,x=3,y=1,∴n+x+y=﹣6+3+1=﹣2.【点评】本题考查的是同类项的定义,掌握同类项的定义是解题的关键.。
七年级数学上册 3.4合并同类项同步练习 北师大版
、合并同类项理解同类项的定义,掌握合并同类项法则一、导入新课:下面我们大家来个竞赛,看谁算得又准又快!计算下列代数式的值:5a +2b +3a +5b -2a -3b(1)当a =5,b =4时(2)当a =31,b =21时(3)当a =61,b =41时你能总结出规律吗?像上面,5a ,3a ,-2a 这样所含字母相同并且相同字母的指数也完全相同的项叫同类项.将同类项合并成一项叫合并同类项.计算时,先合并同类项再求值.既节省时间,又容易算对.二、基础训练:一、选择题1.下列计算正确的是()A.2a +b =2abx 2-x 2=2 mn -7nm =0 D.a +a =a 22.当a =-5时,多项式a 2+2a -2a 2-a +a 2-1的值为()A.29B.-6 C3.下列单项式中,与-3a 2b 为同类项的是()A.-3ab 3B.-41ba 2C.2ab 2D.3a 2b 24.下面各组式子中,是同类项的是()A.2a 和a 2 b 和4a 和21x 2y 和6y 2x二、填空题1.合并同类项:-mn +mn =_______-m -m -m =_______.2.在多项式5m 2n 3-32m 2n 3中,5m 2n 3与-32m 2n 3都含有字母_______,并且_______都是二次,_______都是三次.因此5m 2n 3与-32m 2n 3是_______.3.合并同类项的法则是_______,所得结果作为_______、_______和_______不变.4.两个单项式-2a m与3a n的和是一个单项式,那么m与n的关系是_______.三、根据题意列出代数式1.三个连续偶数中,中间一个是2n,其余两个为_______,这三个数的和是_______.2.一个长方形宽为x cm,长比宽的2倍少1 cm,这个长方形的长是_______,周长是_______.3.一个圆柱形蓄水池,底面半径为r,高为h,如果这个蓄水池蓄满水,可蓄水_______.四、解答题如果单项式2mx a y与-5nx2a-3y是关于x、y的单项式,且它们是同类项.1.求(4a-13)2003的值.2.若2mx a y+5nx2a-3y=0,且xy≠0,求(2m+5n)2003的值.三、能力提升:1、合并同类项:⑴3x2-1-2x-5+3x-x2⑵2b-6ab2b+5ab+a2b⑶222baba43ab21a32-++-⑷6x2y+2xy-3x2y2-7x-5yx-4y2x2-6x2y (5)4x2y-8x y2+7-4x2y+12xy2-4;(6)a2-2ab+b2+2a2+2ab - b2.(7)2b-6ab a2b+5ab+a2b;(8)5yx-3x2y-7x y2+6xy-12xy+7x y2+8x2y.2、求下列多项式的值:(1)23a2-8a-12+6a-23a2+14,其中a=12;(2)3x2y2+2xy-7x2y2-32xy+2+4x2y2,其中x=2,y=14.。
数学北师大版(2024)七年级上册 3.2.1 合并同类项课件(31张PPT)
一找,找出多项式中的同类项,不同类的
同类项用不同的标记标出;
二移,利用加法的交换律,将不同类的同
类项集中到不同的括号内;
三合,将同一括号内的同类项相加即可.
2
a bc
2bc
a
=
利用乘法分配律可得
2 x + 3x = (2+3) x = 5x
3a2bc -2 a2bc = (3-2)a2bc = a2bc
把同类项合并成一项叫做合并同类项.例如,
8n+5n=13n, 2xy+3xy=5xy, -7a2b+2a2b=-5a2b
例题讲解
例2 根据乘法分配律合并同类项:
字母的指数不变.
跟踪训练
下列合并同类项的结果正确吗?不正确的,说明理由.
(1)a+a=2a
√
× 不是同类项
(4)4x2y-5xy2=-x2y
(2)3a+2b=5ab × 不是同类项
(5)3x2+2x3=5x5
× 不是同类项
(3)5y2-3y2=2
2y2×
(6)a-5a=-4a
4a
×
例3 合并同类项:
情境引入
储
老师家里有一
个储蓄罐,里面是
老师平时存下来的
硬币,现在想知道
里面有多少钱?你
能帮老师个忙吗?
蓄
罐
情境引入
如果有一罐硬币(分别为一角、五角、一元的),你会如何去数呢?
为了快速的算出多少钱,你的第一步工作是怎么做的?
获取新知
探究点1:同类项的概念
图3-6中的长方形由两个小长方形组成。
(1)利用图3-6 化简8n+5n,并用运算
合并同类项同步练习卷
3.4合并同类项同步练习21:1. 判断下列各题中的两个项是不是同类项,是打√,错打⨯ ⑴y x 231与-3y 2x ( ) ⑵2ab 与b a 2 ( )⑶bc a 22与-2c ab 2 ( )(4)4xy 与25yx ( )(5)24 与-24 ( )(6) 2x 与22 ( )2. 2. 判断下列各题中的合并同类项是否正确,对打√,错打⨯(1)2x+5y=7y ( ) ( 2.)6ab-ab=6 ( )(3)8x y x xy y 3339=-( ) (4)2122533=-m m ( )(5)5ab+4c=9abc ( ) (6)523523x x x =+ ( )(7) 22254x x x =+ ( ) (8) ab ab b a 47322-=- ( )3. 与y x 221不仅所含字母相同,而且相同字母的指数也相同的是( ) A.z x 221 B. xy 21C.2yx -D. x 2y 4.下列各组式子中,两个单项式是同类项的是( )A.2a 与2aB.5b a 2 与b a 2C. xy 与y x 2D. 0.3m 2n 与0.3x 2y5.下列计算正确的是( )A.2a+b=2abB.3222=-x xC. 7mn-7nm=0D.a+a=2a6.代数式-4a 2b 与32ab 都含字母 ,并且 都是一次, 都是二次,因此-4a 2b 与32ab 是7.所含 相同,并且 也相同的项叫同类项。
8.在代数式222276513844x x x y xy x -+-+--+中,24x 的同类项是 ,6的同类项是 。
9.在9)62(22++-+b ab k a 中,不含ab 项,则k=10.若22+k k y x 与n y x 23的和未5n y x 2,则k= ,n=11. 若-3x m-1y 4与2n 2y x 31+是同类项,求m,n.12.合并同类项:⑴3x 2-1-2x-5+3x-x 2 ⑵-0.8a 2b-6ab-1.2a 2b+5ab+a 2b⑶222b ab a 43ab 21a 32-++- ⑷6x 2y+2xy-3x 2y 2-7x-5yx-4y 2x 2-6x 2y(5)4x 2y-8x y 2+7-4x 2y+12xy 2-4; (6)a 2-2ab +b 2+2a 2+2ab - b 2.18.求代数式的值:(每小题4分,共12分)(1)225434m m m m --+-,其中2m =-;(2)232312522x y y x y y -++,其中12x =,2y =-.(3)23235()3()3()5()x y x y x y x y +-+++-+,其中1x =-,12y =.。
北师大版2024新版七年级数学上册习题练课件:3.2 课时1 合并同类项
8.教材P89T1变式[2024东莞期中]合并同类项:
(1)2 − + 3 + 8 − 5 − 6;
解: − + + − −
= − + + − + −
解: − + + − −
= − + − + + −
= + − 。
当 = −时,原式= −
+ × − − = −。
(2)[2022宝鸡陈仓区期中]22 − 3 + 2 − 2 + − 2 2 ,其中
= − − 。
(2)152 − 12 2 + 12 − 42 − 18 + 8 2 。
− + − − +
= − + − + + −
= − − 。
2 整式的加减
课时1 合并同类项
习题练
知识点1 同类项
1.[2022湘潭中考]下列整式与 2 为同类项的是( B
A.2
B.−2 2
C.
)
D. 2
2.[2024东营期末]下列各组数中不是同类项的是( B
A.32 和23
【解析】
1
B. 和
2
1 2
2
C.−3 和
合并同类项的一般步骤
(1)先用不同的标记(如“____”“ ”等)分别画出同类项,画标记时要
连同该项前面的符号一起画;(2)根据加法的交换律与结合律,将同类项
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4整式的加减
第1课时合并同类项
关键问答
①怎样识别同类项?
1.①下列各组式子中,两个单项式是同类项的是()
A.2a与a2B.5a2b与-ba2C.xy2与x2y D.5a2b与5a2c
2.合并同类项-4a2b+3a2b=(-4+3)a2b=-a2b时,依据的运算律是()
A.加法交换律B.乘法交换律
C.乘法对加法的分配律D.乘法结合律
3.下列合并同类项正确的是()
A.a3+a2=a5B.3x-2x=2
C.3x2+2x2=6x2D.x2y+yx2=2x2y
命题点1同类项的概念[热度:92%]
4.下列各组中的两项,不是同类项的是()
A.a2b与-3ab2B.-x2y与2yx2
C.2πr与π2r D.35与53
5.若-4x m+2y4与2x3y n-1为同类项,则m-n的值为()
A.-4 B.-3 C.-2 D.-2
命题点2合并同类项[热度:96%]
6.②下列各式中的计算,正确的是()
A.-12x+7x=-5x B.5y2-3y2=2
C.3a+2b=5ab D.4m2n-2mn2=2mn
方法点拨
②合并同类项时,注意将同类项的系数相加,并把所得结果作为结果的系数,要确保同类项的字母和字母对应的指数不变
7.③若a m+1b3与(n-1)a2b3是同类项,且它们合并后结果是0,则()
A.m=2,n=2 B.m=1,n=2
C.m=2,n=0 D.m=1,n=0
解题突破
③若合并同类项后结果是0,则结果的系数为0,则原来两个单项式的系数互为相反数.
8.④若x为有理数,|x|-x表示的数是()
A.正数B.非正数C.负数D.非负数
解题突破
④先根据绝对值的性质(一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0)化简|x|,再合并同类项.
9.把(a-b)当成一个整体合并同类项:4(a-b)2-2(a-b)+5(a-b)+3(a-b)2=________.
10.合并同类项:
(1)5x2y+xy2-3x2y-7xy2; (2)4a2+3b2+2ab-4a2-2b2.
11.单项式2x 3y m 与单项式-23x n -1y 2m -
3的和仍是单项式,求这两个单项式的和.
命题点 3 利用合并同类项化简求值 [热度:97%]
12.⑤
先化简,再求值:2x 3+4x -13
x 2-x +3x 2-2x 3,其中x =-3.
易错警示
⑤带分数与字母作乘法时,通常把带分数写成假分数.代入数值计算时,通常把省略的乘号补充出来,还要把负数加上括号.
13.先化简,再求值:2a 3+3a 2b -ab 2-3a 2b +ab 2+b 3,其中a =3,b =2.
14.⑥
已知x +y =15,xy =-12
,求代数式x +3y -3xy -2xy +4x +2y 的值.
方法点拨
⑥整体代入是化简求值题中常用的一种方法,解题时要多观察化简后的式子,看能否运用此种方法解决,使问题简单化.
15.⑦如图3-4-1,试用含字母a,b的代数式表示图①,图②中阴影部分的面积,并求出当a=12 cm,b =4 cm,π≈3.14时,各阴影部分的面积.
图3-4-1
解题突破
⑦图①中,阴影部分的面积=长方形的面积-半圆的面积;图②中,阴影部分的面积=两个正方形的面积和-一个直角三角形的面积.
16.⑧如果关于x的代数式-2x2+mx+nx2-5x-1的值与x的取值无关,求m,n的值.
解题突破
⑧若代数式的值与x的取值无关,则无论x取任何值,代数式的值都不变,那么与x有关的项的系数应该满足什么条件?
17.⑨“囧”像一个人脸郁闷的神情.如图3-4-2,边长为a的正方形纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”形图案(阴影部分).设剪去的两个小直角三角形的两直角边长分别为x,y,剪去的小长方形的长和宽也分别为x,y.
(1)用含a,x,y的式子表示“囧”的面积S;
(2)当a=20,x=5,y=4时,求S的值.
图3-4-2
方法点拨
⑨根据图形特征,把不规则图形的面积转化为规则图形面积的和(差)求解.
详解详析
4 整式的加减 第1课时 合并同类项
1.B 2.C 3.D
4.A [解析] 选项B ,同类项与字母顺序无关.选项C ,π表示一个常数.选项D ,35与53都是常数. 5.A [解析] 由题意,得m +2=3,4=n -1,所以m =1,n =5,所以m -n =-4. 6.A
7.D [解析] 由题意,得m +1=2,1+(n -1)=0,所以m =1,n =0.
8.D [解析] (1)若x ≥0,则|x |-x =x -x =0;(2)若x <0,则|x |-x =-x -x =-2x >0.由(1)(2)可得|x |-x 表示的数是非负数.故选D.
9.7(a -b )2+3(a -b ) [解析] 原式=4(a -b )2+3(a -b )2-2(a -b )+5(a -b )=(4+3)(a -b )2+(-2+5)(a -b )=7(a -b )2+3(a -b ).
10.解:(1)原式=(5x 2y -3x 2y )+(xy 2-7xy 2) =(5-3)x 2y +(1-7)xy 2 =2x 2y -6xy 2.
(2)原式=(4-4)a 2+2ab +(3-2)b 2 =2ab +b 2.
11.解:依题意,得n -1=3,m =2m -3, 解得n =4,m =3.
把m =3,n =4代入2x 3y m +(-23x n -1y 2m -
3)=2x 3y 3+(-23x 3y 3)=43x 3y 3.
12.解:2x 3+4x -13x 2-x +3x 2-2x 3=2x 3-2x 3-13x 2+3x 2+4x -x =8
3x 2+3x .
当x =-3时,原式=8
3
×(-3)2+3×(-3)=24-9=15.
13.解:原式=2a 3+(3a 2b -3a 2b )+(-ab 2+ab 2)+b 3=2a 3+b 3.当a =3,b =2时,原式=2×33+23=2×27+8=62.
14.解:x +3y -3xy -2xy +4x +2y =x +4x +3y +2y -3xy -2xy =5x +5y -5xy =5(x +y )-5xy .
当x +y =15,xy =-12时,原式=5(x +y )-5xy =5×15-5×(-12)=7
2.
15.解:图①:S 阴影=ab -12·(b 2)2π=ab -π
8
b 2.
将a =12 cm ,b =4 cm ,π≈3.14代入ab -π
8b 2,得S 阴影≈41.72 cm 2;
图②:S 阴影=a 2+b 2-12a (a +b )=12a 2+b 2-1
2
ab .
将a =12 cm ,b =4 cm 代入12a 2+b 2-1
2ab ,得S 阴影=64 cm 2.
16.解:-2x 2+mx +nx 2-5x -1
=(-2x 2+nx 2)+(mx -5x)-1 =(-2+n)x 2+(m -5)x -1.
因为代数式的值与x 的取值无关,
所以-2+n =0,m -5=0,所以n =2,m =5.
17.解:(1)S =a 2-1
2
xy ×2-xy =a 2-2xy.
(2)当a =20,x =5,y =4时, S =a 2-2xy =202-2×5×4 =400-40 =360.
【关键问答】
①(1)所含字母相同,并且相同字母的指数也相同的项是同类项. (2)同类项与系数无关,与字母顺序无关.。