高中数学第二章统计2.2.1用样本的频率分布估计总体的分布课堂探究新人教B版必修3【含答案】
人教B版高中数学必修三《第二章 统计 2.2 用样本估计总体 2.2.1 用样本的频率分布估计总体的分布》_1

2.2.1用样本的频率分布估计总体分布
一、频数,频率的概念
绘图
二、画频率分布直方图的步骤
1、
2
3
4
七、课后作业
课本P81习题2.2 A组2
3、初中时我们学习过样本的频率分布,包括频数、频率的概念,频数分布表和频数分布直方图的制作;
五
教
学
过
程
设
计
教
学
环
节
2
学生活动
教师活动
我们要思考的问题是:
(1)如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?
(2)你认为,为了较为合理地确定出这个标准,需要做哪些工作?
假设通过抽样),我们获得了100位居民某年的月平均用水量(单位:t)。
一情境引入
我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费。
幻灯出示样本数据。教师提问:从这组数据中能得到什么信息?
设计意图
由学生身边实例入手,激发学生的学习兴趣,探索热情,特别是问题提出,增加了学生的参与感。也让学生充分体会数学来源于生活,研究统计具有较强的实际意。
②从频率分布直方图看不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了
思考提升
(1)如果当地政府希望85%以上的居民每月的用水量不超出标准,根据频率分布表和频率分布直方图,你能对制定月用水量a提出建议吗?
(2)你认为3吨这个标准一定能够保证85%以上的居民用水量不超过标准吗?如果不一定那么哪些环节可能会导致结论的差别?政府是依据什么确定85%这个数呢?
高中数学 必修三 2.2.1《用样本的频率分布估计总体分布(1)》ppt课件

例如:极差为15,组距为2,应该分为几组?
答案:因为125=7.5,所以组数定为 8 组
4.频数:每个(类)对象出现的次数称为频数.各个 (类)对象的频数之和等于数据总数.
例如:某班有50人,一次数学考试90~100分的同学 有10人,90~100分的频数为___1_0____.
5.频率:每个(类)对象出现的频数与总数的比值 称为频率.各个(类)对象的频率之和等于1.
跟踪 训练
2.某中学同年级40名男生的体重数据如下(单位: kg):
61 60 59 59 59 58 58 57 57 57 57 56 56 56 56 56
56 56 55 55 55 55 54 54 54 54 53 53 52 52 52 52
52 51 51 51 50 50 49 48
第二章 统计
2.2 用样本估计总体 2.2.1 用样本的频率分布估计总体分布(一)
了解分布的意义和作用,会列频率分布表,会画 频率分布直方图、频率折线图、茎叶图,理解它们各自 的特点.
基础梳理
1.极差:最大值与最小值的差. 例如:一组数据8,13,13,16,23,26,28的极差是多少?
答案:20 2.组距:为了避免对数据逐一考察的麻烦,将数据 分成若干组,一般情况要使组数为5~12组. 3.组数:不小于极差/组距的最小整数.中学学习的 问题一般分为5~12组.
(2)频率分布直方图如下:
点评:1.在列频率分布表时,极差、组距、组数 有如下关系:
(1)若为整数,则=组数. (2)若不为整数,则的整数部分+1=组数.
2.组距和组数的确定没有固定的标准,将数据分组 时,组数力求合适,纵使数据的分布规律能较清楚地呈现 出来,组数太多或太少,都会影响我们了解数据的分布情 况,若样本容量不超过100,按照数据的多少常分为5~12 组,一般样本容量越大,所分组数越多.
人教版高中数学必修三第二章第2节 2.2.1用样本的频率分布估计总体分布 课件(共14张PPT)

2.4 2.5 2.4 2.4 1.6
1
1 1.7 1.6 2.4
2.8 2.8 2.8 1.8 1.5
1 1.2 1.8 0.6 2.2
频率分布直方图
左图为以1为组距所作频率直方图,右图为以0.1 为组距所作频率直方图,观察以上两图,你有什 么发现?
思考:如果经过实际评价,3吨这个标准不能 够保证85%以上的居民用水量不超过标准,那 么哪些环节可能导致结论的偏差?
0
0.5 1
1.5 2
2.5 3 3.5 4 4.5 月平均用水量/t
100位居民月平均用水量的频率分布表
频率/组距
0.08
频率分布直方图
频率/组距
0.50 0.40 0.30 0.20 0.10
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量/t
思考1:频率分布直方图中各个小长方形面积有何意义? ? 思考2:频率分布直方图中所有小长方形面积之和有何意义?
2.1.1 用样本的频率分布估计总体的分布
一. 情境引入
问题:市政府为了节约生活用水,计划 在本市试行居民生活用水定额管理,即 确定一个居民月用水量标准a,用水量不 超过a的部分按平价收费,超出a的部分 按议价收费. 思考:你认为,为了较为合理地确定出 这个标准,需要做哪些工作?
二.操作讨论:
①寻找最值 计算极差 ② 决定组距 确定组数 ③分组,列表 思考:如何处理、分析这组数据呢?
频率分布直方图
频率/组距
0.50 0.40 0.30 0.20 0.10
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
思考3:从频率分布直方图中你有何发现? 月平均用水量/t 思考4:根据频率分布直方图,你对该市居民平均用水量有何看法? 思考5:与频率分布表相比,频率分布直方图有何特点?
人教版高中数学必修三第二章第2节 2.2.1用样本的频率分布估计总体分布 课件(共14张PPT)

(假设通过抽样),我们获得了100位居民某年的月平均用水量(单位:t)
问题1:面对这些比较多、比较乱、没有规律的数据,你能想到用什么方法把它 们进行归纳、分类,使它们更简洁呢? 问题2:如果希望88%的居民按平价收费,日常生活不受影响,那么标准a定为多 少比较合理呢 ?
学习环节2:自主阅读课本P65-P67完成以下问题
茎叶图 (一种被用来表示数据的图)
例: 甲乙两人比赛得分记录如下: 甲:13, 51, 23, 8, 26, 38, 16, 33, 14, 28, 39 乙:49, 24, 12, 31, 50, 31, 44, 36, 15, 37, 25, 36, 39 用茎叶图表示两人成绩,说明哪一个成绩好.
2、为了了解高一学生的体能情况,某校抽取部分学生进行一分 钟跳绳次数次测试,将所得数据整理后,画出频率分布直方 图(如图),图中从左到右各小长方形面积之比为2:4:17: 15:9:3,第二小组频数为12.
(1)第二小组的频率是多少?样本容量是多少? 频率/组距
0.036
0.032
(2)若次数在110以上(含110次) 0.028
2.2.1用样本的频率分布估计总体分布
学习环节1:问题来源
现实生活中我们会遇到许多统计数据的问题,如NBA的一 场球赛的数据统计,关于国计民生的经济数据统计等,如 何对数据进行统计才能让我们从数据中知道所其所包含的 信息呢?这节课我们来学习一些简单的统计方法
我国是世界上严重缺水的国家之一,城市缺水问题较为突 出,某市政府为了节约生活用水,计划在本市试行居民生 活用水定额管理,即确定一个居民月用水量标准a,用水 量不超过a的部分按平价收费,超出a的部分按议价收费
(1)计算极差:一组数据中最大值与最小值的差
人教版高中数学必修三第二章第2节 2.2.1用样本的频率分布估计总体分布 课件(共14张PPT)

思考1:频率分布直方图中各个小长方形面积有何意义? ? 思考2:频率分布直方图中所有小长方形面积之和有何意义?
频率分布直方图
频率/组距
0.50 0.40 0.30 0.20 0.10
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
思考:如果经过实际评价,3吨这个标准不能 够保证85%以上的居民用水量不超过标准,那 么哪些环节可能导致结论的偏差?
例题讲解
小结:
谈谈你今天的收获!
1、只要有坚强的意志力,就自然而然地会有能耐、机灵和知识。2、你们应该培养对自己,对自己的力量的信心,百这种信心是靠克服障碍,培养意志和锻炼意志而获得的。 3、坚强的信念能赢得强者的心,并使他们变得更坚强。4、天行健,君子以自强不息。5、有百折不挠的信念的所支持的人的意志,比那些似乎是无敌的物质力量有更强大 的威力。6、永远没有人力可以击退一个坚决强毅的希望。7、意大利有一句谚语:对一个歌手的要求,首先是嗓子、嗓子和嗓子……我现在按照这一公式拙劣地摹仿为:对 一个要成为不负于高尔基所声称的那种“人”的要求,首先是意志、意志和意志。8、执着追求并从中得到最大快乐的人,才是成功者。9、三军可夺帅也,匹夫不可夺志也。 10、发现者,尤其是一个初出茅庐的年轻发现者,需要勇气才能无视他人的冷漠和怀疑,才能坚持自己发现的意志,并把研究继续下去。11、我的本质不是我的意志的结果, 相反,我的意志是我的本质的结果,因为我先有存在,后有意志,存在可以没有意志,但是没有存在就没有意志。12、公共的利益,人类的福利,可以使可憎的工作变为可 贵,只有开明人士才能知道克服困难所需要的热忱。13、立志用功如种树然,方其根芽,犹未有干;及其有干,尚未有枝;枝而后叶,叶而后花。14、意志的出现不是对愿 望的否定,而是把愿望合并和提升到一个更高的意识水平上。15、无论是美女的歌声,还是鬓狗的狂吠,无论是鳄鱼的眼泪,还是恶狼的嚎叫,都不会使我动摇。16、即使 遇到了不幸的灾难,已经开始了的事情决不放弃。17、最可怕的敌人,就是没有坚强的信念。18、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下 去。19、意志若是屈从,不论程度如何,它都帮助了暴力。20、有了坚定的意志,就等于给双脚添了一对翅膀。21、意志坚强,就会战胜恶运。22、只有刚强的人,才有神 圣的意志,凡是战斗的人,才能取得胜利。23、卓越的人的一大优点是:在不利和艰难的遭遇里百折不挠。24、疼痛的强度,同自然赋于人类的意志和刚度成正比。25、能 够岿然不动,坚持正见,度过难关的人是不多的。26、钢是在烈火和急剧冷却里锻炼出来的,所以才能坚硬和什么也不怕。我们的一代也是这样的在斗争中和可怕的考验中 锻炼出来的,学习了不在生活面前屈服。27、只要持续地努力,不懈地奋斗,就没有征服不了的东西。28、立志不坚,终不济事。29、功崇惟志,业广惟勤。30、一个崇高 的目标,只要不渝地追求,就会居为壮举;在它纯洁的目光里,一切美德必将胜利。31、书不记,熟读可记;义不精,细思可精;惟有志不立,直是无着力处。32、您得相 信,有志者事竟成。古人告诫说:“天国是努力进入的”。只有当勉为其难地一步步向它走去的时候,才必须勉为其难地一步步走下去,才必须勉为其难地去达到它。33、 告诉你使我达到目标的奥秘吧,我唯一的力量就是我的坚持精神。34、成大事不在于力量的大小,而在于能坚持多久。35、一个人所能做的就是做出好榜样,要有勇气在风 言风语的社会中坚定地高举伦理的信念。36、即使在把眼睛盯着大地的时候,那超群的目光仍然保持着凝视太阳的能力。37、你既然期望辉煌伟大的一生,那么就应该从今 天起,以毫不动摇的决心和坚定不移的信念,凭自己的智慧和毅力,去创造你和人类的快乐。38、一个有决心的人,将会找到他的道路。39、在希望与失望的决斗中,如果 你用勇气与坚决的双手紧握着,胜利必属于希望。40、富贵不能淫,贫贱不能移,威武不能屈。41、生活的道路一旦选定,就要勇敢地走到底,决不回头。42、生命里最重 要的事情是要有个远大的目标,并借助才能与坚持来完成它。43、事业常成于坚忍,毁于急躁。我在沙漠中曾亲眼看见,匆忙的旅人落在从容的后边;疾驰的骏马落在后头, 缓步的骆驼继续向前。44、有志者事竟成。45、穷且益坚,不坠青云之志。46、意志目标不在自然中存在,而在生命中蕴藏。47、坚持意志伟大的事业需要始终不渝的精神。 48、思想的形成,首先是意志的形成。49、谁有历经千辛万苦的意志,谁就能达到任何目的。50、不作什么决定的意志不是现实的意志;无性格的人从来不做出决定。我终 生的等待,换不来你刹那的凝眸。最美的不是下雨天,是曾与你躲过雨的屋檐。征服畏惧、建立自信的最快最确实的方法,就是去做你害怕的事,直到你获得成功的经验。 真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。生活真象这杯浓酒,不经三番五次的提炼呵,就不会这样可口!人格的完善是本,财富的确立是末能力可以慢 慢锻炼,经验可以慢慢积累,热情不可以没有。不管什么东西,总是觉得,别人的比自己的好!只有经历过地狱般的折磨,才有征服天堂的力量。只有流过血的手指才能弹 出世间的绝唱。对时间的价值没有没有深切认识的人,决不会坚韧勤勉。第一个青春是上帝给的;第二个的青春是靠自己努力的。不要因为寂寞而恋爱,孤独是为了幸福而 等待。每天清晨,当我睁开眼睛,我告诉自己:我今天快乐或是不快乐,并非由我所遭遇的事情造成的,而应该取决于我自己。我可以自己选择事情的发展方向。昨日已逝,
必修三2.2.用样本估计总体(教案)

2.2 用样本估计总体教案 A第1课时教学内容§2.2.1 用样本的频率分布估计总体分布教学目标一、知识及技能1. 通过实例体会分布的意义和作用.2. 在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图.3.通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.二、过程及方法通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识及现实世界的联系.教学重点、难点重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图.难点:能通过样本的频率分布估计总体的分布.教学设想一、创设情境在NBA的2004赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕甲运动员得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50乙运动员得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定?如何根据这些数据作出正确的判断呢?这就是我们这堂课要研究、学习的主要内容——用样本的频率分布估计总体分布.二、探究新知探究1:我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了较为合理地确定出这个标准,需要做哪些工作?(让学生展开讨论)为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.表格则是通过改变数据的构成形式,第 1 页为我们提供解释数据的新方式.下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律.可以让我们更清楚的看到整个样本数据的频率分布情况.(一)频率分布的概念频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.其一般步骤为:1.计算一组数据中最大值及最小值的差,即求极差;2.决定组距及组数;3.将数据分组;4.列频率分布表;5.画频率分布直方图.以教材P65制定居民用水标准问题为例,经过以上几个步骤画出频率分布直方图.(让学生自己动手作图)频率分布直方图的特征:1.从频率分布直方图可以清楚的看出数据分布的总体趋势.2.从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.探究2:同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同.不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断,分别以0.1和1为组距重新作图,然后谈谈你对图的印象?(把学生分成两大组进行,分别作出两种组距的图,然后组织同学们对所作图的不同看法进行交流……)接下来请同学们思考下面这个问题:思考:如果当地政府希望使85%以上的居民每月的用水量不超出标准,根据频率分布表2-2和频率分布直方图2.2-1,(见教材P67)你能对制定月用水量标准提出建议吗?(让学生仔细观察表和图)(二)频率分布折线图、总体密度曲线1.频率分布折线图的定义:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.2.总体密度曲线的定义:在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.思考:1.对于任何一个总体,它的密度曲线是不是一定存在?为什么?2.对于任何一个总体,它的密度曲线是否可以被非常准确地画出来?为什么?实际上,尽管有些总体密度曲线是客观存在的,但一般很难像函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确.(三)茎叶图1.茎叶图的概念:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把第 3 页这样的图叫做茎叶图.(见教材P70例子)2.茎叶图的特征:(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录及表示.(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰.三、例题精析例1 下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm ):(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计身高小于134cm的人数占总人数的百分比.分析:根据样本频率分布表、频率分布直方图的一般步骤解题.解:(1)样本频率分布表如下:(2)其频率分布直方图如下:(3)由样本频率分布表可知身高小于134cm 的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134cm 的人数占总人数的19%.cm )例2 为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高及频数成正比,各组频数之和等于样本容量,频率之和等于1.解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小, 因此第二小组的频率为:40.0824171593=+++++, 又因为频率=.第二小组频数样本容量所以,12150.0.08===第二小组频数样本容量第二小组频率 (2)由图可估计该学校高一学生的达标率约为(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.四、课堂小结1. 总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布.2. 总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图.五、评价设计1.P81习题2.2 A组1、2.第2课时教学内容§2.2.2 用样本的数字特征估计总体的数字特征教学目标一、知识及技能1. 正确理解样本数据标准差的意义和作用,学会计算数据的标准差.2. 能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.3. 会用样本的基本数字特征估计总体的基本数字特征.4. 形成对数据处理过程进行初步评价的意识.二、过程及方法在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辩证地理解数学知识及现实世界的联系.教学重点、难点教学重点:用样本平均数和标准差估计总体的平均数及标准差.教学难点:能应用相关知识解决简单的实际问题.教学设想一、创设情境在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究——用样本的数字特征估计总体的数字特征(板出课题).二、探究新知(一)众数、中位数、平均数探究(1)怎样将各个样本数据汇总为一个数值,并使它成为样本数据的“中心点”?(2)能否用一个数值来描写样本数据的离散程度?(让学生回忆初中所学的一些统计知识,思考后展开讨论)初中我们曾经学过众数,中位数,平均数等各种数字特征,应当说,这些数字都能够为我们提供第 5 页关于样本数据的特征信息.例如前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25t (最高的矩形的中点)(图见教材第72页)它告诉我们,该市的月均用水量为2. 25t 的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少.提问:请大家翻回到教材第66页看看原来抽样的数据,有没有2.25 这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?(请大家思考作答)分析:这是因为样本数据的频率分布直方图把原始的一些数据给遗失的原因,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差.提问:那么如何从频率分布直方图中估计中位数呢?分析:在样本数据中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数.因此,在频率分布直方图中,矩形的面积大小正好表示频率的大小,即中位数左边和右边的直方图的面积应该相等.由此可以估计出中位数的值为2.02.(图略见教材73页图2.2-6)思考:2.02这个中位数的估计值,及样本的中位数值2.0不一样,你能解释其中的原因吗?(原因同上:样本数据的频率分布直方图把原始的一些数据给遗失了)图2.2-6显示,大部分居民的月均用水量在中部(2.02t 左右),但是也有少数居民的月均用水量特别高,显然,对这部分居民的用水量作出限制是非常合理的.思考:中位数不受少数几个极端值的影响,这在某些情况下是一个优点,但是它对极端值的不敏感有时也会成为缺点,你能举例说明吗?(让学生讨论,并举例)(二)标准差、方差1.标准差平均数为我们提供了样本数据的重要信息,可是,有时平均数也会使我们作出对总体的片面判断.某地区的统计显示,该地区的中学生的平均身高为176cm ,给我们的印象是该地区的中学生生长发育好,身高较高.但是,假如这个平均数是从五十万名中学生抽出的五十名身高较高的学生计算出来的话,那么,这个平均数就不能代表该地区所有中学生的身体素质.因此,只有平均数难以概括样本数据的实际状态.例如,在一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?如果你是教练,选哪位选手去参加正式比赛? 我们知道,77x x ==乙甲,.两个人射击的平均成绩是一样的.那么,是否两个人就没有水平差距呢?(观察P74图2.2-7)直观上看,还是有差异的.很明显,甲的成绩比较分散,乙的成绩相对集中,因此我们从另外的角度来考察这两组数据.考察样本数据的分散程度的大小,最常用的统计量是标准差.标准差是样本数据到平均数的一种平均距离,一般用s 表示.样本数据1,2,,n x x x 的标准差的算法:第 7 页(1) 算出样本数据的平均数x .(2) 算出每个样本数据及样本数据平均数的差:(1,2,)i x x i n -= (3) 算出(2)中(1,2,)i x x i n -=的平方.(4) 算出(3)中n 个平方数的平均数,即为样本方差.(5) 算出(4)中平均数的算术平方根,即为样本标准差.其计算公式为:显然,标准差较大,数据的离散程度较大;标准差较小,数据的离散程度较小.提问:标准差的取值范围是什么?标准差为0的样本数据有什么特点?从标准差的定义和计算公式都可以得出:s ≥0.当0s =时,意味着所有的样本数据都等于样本平均数.2.方差从数学的角度考虑,人们有时用标准差的平方2s (即方差)来代替标准差,作为测量样本数据分散程度的工具:在刻画样本数据的分散程度上,方差和标准差是一样的,但在解决实际问题时,一般多采用标准差.三、例题精析例1 画出下列四组样本数据的直方图,说明他们的异同点.(1)5,5,5,5,5,5,5,5,5(2)4,4,4,5,5,5,6,6,6(3)3,3,4,4,5,6,6,7,7(4)2,2,2,2,5,8,8,8,8分析:先画出数据的直方图,根据样本数据算出样本数据的平均数,利用标准差的计算公式即可算出每一组数据的标准差.解:(图见教材P76)四组数据的平均数都是5.0,标准差分别为:0.00,0.82,1.49,2.83.他们有相同的平均数,但他们有不同的标准差,说明数据的分散程度是不一样的.例2 甲乙两人同时生产内径为25.40mm 的一种零件.为了对两人的生产质量进行评比,从他们生产的零件中各抽出20件,量得其内径尺寸如下(单位:mm ):甲 25.46 25.32 25.45 25.39 25.36 25.34 25.42 25.3825.42 25.39 25.43 25.39 25.40 25.44 25.40 25.4225.45 25.35 25.41 25.39乙 25.40 25.43 25.44 25.48 25.48 25.47 25.49 25.3625.34 25.49 25.33 25.43 25.43 25.32 25.47 25.3125.32 25.32 25.32 25.48从生产的零件内径的尺寸看,谁生产的质量较高?分析:比较两个人的生产质量,只要比较他们所生产的零件内径尺寸所组成的两个总体的平均数及标准差的大小即可,根据用样本估计总体的思想,我们可以通过抽样分别获得相应的样本数据,然后比较这两个样本数据的平均数、标准差,以此作为两个总体之间的差异的估计值.解:四、课堂小结1. 用样本的数字特征估计总体的数字特征分两类:(1)用样本平均数估计总体平均数.(2)用样本标准差估计总体标准差.样本容量越大,估计就越精确.2. 平均数对数据有“取齐”的作用,代表一组数据的平均水平.3. 标准差描述一组数据围绕平均数波动的大小,反映了一组数据变化的幅度.五、评价设计P81 习题 2.2 A组 3、4.教案 B第1课时教学内容§2.2.1 用样本的频率分布估计总体分布教学目标一、知识及技能1.通过实例体会分布的意义和作用.2.在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图.3.通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.二、过程及方法通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识及现实世界的联系.教学重点、难点教学重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图.教学难点:能通过样本的频率分布估计总体的分布.教学设想一、创设情境,导入新课我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了较为合理地确定出这个标准,需要做哪些工作?(让学生展开讨论)为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.表格则是通过改变数据的构成形式,为我们提供解释数据的新方式.下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律.可以让我们更清楚的看到整个样本数据的频率分布情况.二、新课探知(一)频率分布的概念频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.其一般步骤为:1. 计算一组数据中最大值及最小值的差,即求极差;2. 决定组距及组数;第 9 页cm ) 3. 将数据分组;4. 列频率分布表;5. 画频率分布直方图.以教材P65制定居民用水标准问题为例,经过以上几个步骤画出频率分布直方图.(让学生自己动手作图)例1 下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm ):(1)列出样本频率分布表;(2)一画出频率分布直方图;(3)估计身高小于134C m的人数占总人数的百分比.分析:根据样本频率分布表、频率分布直方图的一般步骤解题.解:(1)样本频率分布表如下:(2)其频率分布直方图:(3134cm 的男孩出现的,所以我们估计身高小 (1趋势. (2把数据抹掉了.曲线 1.频率分布折线图连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.2.总体密度曲线的定义:在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.(见教材P69)(三)茎叶图1.茎叶图的概念:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.(见教材P70例子)2.茎叶图的特征:(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录及表示.(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰.例2某赛季甲、乙两名篮球运动员每场比赛的得分情况如下:甲运动员得分:13,51,23,8,26,38,16,33,14,28,39;乙运动员得分:49,24,12,31,50,31,44,36,15,37,25,36,39.用茎叶图表示,你能通过该图说明哪个运动员的发挥更稳定吗?解:“茎”指的是中间的一列数,表示得分的十位数;“叶”指的是从茎的旁边生长出来的数,分别表示两人得分的个位数.画这组数据的茎叶图的步骤如下第一步,将每个数据分为“茎”(高位)和“叶”(低位)两部分;第二步,茎是中间的一列数,按从小到大的顺序排列;第三步,将各个数据的叶按大小次序写在茎右(左)侧.甲乙8 04 6 3 1 2 53 6 8 2 5 43 8 9 3 1 6 1 6 7 94 4 91 5 0从图中可以看出,乙运动员的得分基本上是对称的,页的分布是“单峰”的,有的叶集中在茎2,3,4上,中位数为36;甲运动员的得分除一个特殊得分(51分)外,也大致对称,叶的分布也是“单峰”的,有的叶主要集中在茎1,2,3上,中位数是26.由此可以看出,乙运动员的成绩更好. 另外i,从叶在茎上的分布情况看,乙运动员的得分更集中于峰值附近,这说明乙运动员的发挥更稳定.练习:在NBA的2010赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕甲运动员得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50乙运动员得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33学生画出茎叶图(略)三、巩固练习为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(见下页图示),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.第 11 页(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高及频数成正比,各组频数之和等于样本容量,频率之和等于1.解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为:40.08 24171593=+++++,又因为频率=第二小组频数样本容量,所以,121500.08===第二小组频数样本容量第二小组频率.(2)由图可估计该学校高一学生的达标率约为(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.四、小结1. 总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布.2. 总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图.五、布置作业P71练习1、2、3.第2课时教学内容§2.2.2 用样本的数字特征估计总体的数字特征教学目标一、知识及技能1. 正确理解样本数据标准差的意义和作用,学会计算数据的标准差.2. 能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.3. 会用样本的基本数字特征估计总体的基本数字特征.4. 形成对数据处理过程进行初步评价的意识.二、过程及方法在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辩证地理解数学知识及现实世界的联系.教学重点、难点教学重点:用样本平均数和标准差估计总体的平均数及标准差.教学难点:能应用相关知识解决简单的实际问题.教学设想一、创设情境导入新课在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究——用样本的数字特征估计总体的数字特征.二、新课探究(一)众数、中位数、平均数初中我们曾经学过众数,中位数,平均数等各种数字特征,应当说,这些数字都能够为我们提供关于样本数据的特征信息.例如前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25t(最高的矩形的中点)(图略见教材第72页)它告诉我们,该市的月均用水量为2. 25t的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少.提问:请大家翻回到教材第66页看看原来抽样的数据,有没有2.25 这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?(请大家思考作答)分析:这是因为样本数据的频率分布直方图把原始的一些数据给遗失的原因,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差.提问:那么如何从频率分布直方图中估计中位数呢?分析:在样本数据中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数.因此,第 13 页。
高中数学必修三2.2.1用样本的频率分布估计总体分布
(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?
(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由。
分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1。
实际上,尽管有些总体密度曲线是饿、客观存在的,但一般很难想函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确.
〈三〉茎叶图
1.茎叶图的概念:
当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图。(见课本P61例子)
学科
数学
章节
必修三2.2.1
课时
1课时
备课人:刘叶
课题
用样本的频率分布估计总体分布
备注
教学目标
(1)通过实例体会分布的意义和作用。
(2)在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图。
(3)通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计。
2.茎叶图的特征:
(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示。
(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰。
【优化方案】2012高中数学 第2章2.2.1用样本的频率分布估计总体的分布同步课件 新人教B版必修3
思考感悟 将数据的样本进行分组的目的是什么? 将数据的样本进行分组的目的是什么? 提示: 提示 : 从样本中的一个个数字中很难直接看 出样本所包含的信息,通过分组, 出样本所包含的信息 , 通过分组 , 并计算其 频率,目的是通过描述样本数据分布的特征, 频率 , 目的是通过描述样本数据分布的特征 , 从而估计总体的分布情况. 从而估计总体的分布情况.
例2
【解】
如图所示. 如图所示
【名师点评】 茎叶图保留了原始数据,所有的数 名师点评】 茎叶图保留了原始数据, 据信息都可以很容易的从图中获得. 据信息都可以很容易的从图中获得. 变式训练2 在某电脑杂志上的一篇文章中 , 每个 在某电脑杂志上的一篇文章中, 变式训练 句子的字数如下: 句子的字数如下: 10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25 ,15,22,11,24,27,17. 在某报纸的一篇文章中, 在某报纸的一篇文章中,每个句子中所含的字数如 下: 27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13 ,22,23,18,46,32,22. (1)将这两组数据用茎叶图表示; 将这两组数据用茎叶图表示; 将这两组数据用茎叶图表示 (2)将两组数据进行比较分析,能得到什么结论? 将两组数据进行比较分析, 将两组数据进行比较分析 能得到什么结论?
167 163 164 158 168 167 161 162 167 168 161 165 174 156 157 166 162 161 164 166 (1)作出该样本的频率分布表; 作出该样本的频率分布表; 作出该样本的频率分布表 (2)画出频率分布直方图. 画出频率分布直方图. 画出频率分布直方图 在全部数据中找出最大值180和最小 解:(1)在全部数据中找出最大值 在全部数据中找出最大值 和最小 值151,则两者之差为 ,确定全距为 , ,则两者之差为29,确定全距为30, 决定以组距3将区间 将区间[150.5,180.5]分成 个 分成10个 决定以组距 将区间 分成 组. 从第一组[150.5,153.5)开始,分别统计各组 开始, 从第一组 开始 中的频数,再计算各组的频率, 中的频数,再计算各组的频率,样本的频率 分布表如下: 分布表如下:
人教版高中数学必修三第二章第2节 2.2.1用样本的频率分布估计总体分布 课件共18张PP
②为了较合理地确定这个标准,你认为需要做哪些工作?
通过抽样,我们获得了100位居民某年的月平均用水量,如下表: 思考:由上表,大家可以得到什么信息?
画一组数据的频率分布直方图,可以按以下的步骤进行:
一、求极差,即数据中最大值与最小值的差 二、决定组距与组数 :组距=极差/组数 三、分组,通常对组内数值所在区间,
2.2 用样本估计总体
2.2.1 用样本的频率分布估计总体分布
1、用样本去估计总体是研究统计问题的一基本思想;
2、前面我们学过的抽样方法有: 简单随机抽样、系统抽样、 分层抽样;【要注意这几种抽样方法的联系与区别】
3、初中时我们学习过样本的频率分布,包括频数、频率的 概念,频数分布表和频数分布直方图的制作;
74.5
根据上图可得这100名学生中体重在[56.5,64.5]的学生人数是(C )
A. 20
B. 30
C. 40
D. 50
7.一个容量为100的样本,数据的分组和各组的相关信息如下表, 试完成表中每一行的两个空格;
8.有一个容量为50的样本数据的分组的频数如下:
[12.5, 15.5) 3
[15.5, 18.5) 8 [18.5, 21.5) 9 [21.5, 24.5) 11
[01.057.05, 18.5) 8 [0.10860.5, 21.5) 9 [0.20150.5, 24.5) 11 [0.20440.5, 27.5) 10
[0.20730.5, 30.5) 5
[0.30020.5, 33.5) 4
0.06 0.16 0.18 0.22 0.20 0.10 0.08
高中数学 第二章 统计 2.2.1 用样本的频率分布估计总体的分布学业分层测评 新人教B版必修3
2.2.1 用样本的频率分布估计总体的分布(建议用时:45分钟)[学业达标]一、选择题1.下列命题正确的是( )A.频率分布直方图中每个小矩形的面积等于相应组的频数B.频率分布直方图的面积为对应数据的频率C.频率分布直方图中各小矩形的高(平行于纵轴的边长)表示频率与组距的比D.用茎叶图统计某运动员得分:13,51,23,8,26,38,16,33,14,28,39时,茎是指中位数26【解析】 在频率分布直方图中,横轴表示样本数据;纵轴表示频率组距,由于小矩形的面积=组距×频率组距=频率,所以各小矩形的面积等于相应各组的频率,因此各小矩形面积之和等于1.【答案】 C2.将容量为100的样本数据,按由小到大排列分成8个小组,如下表所示:组号 1 2 3 4 5 6 7 8 频数101314141513129第3A.0.14和0.37 B.114和127 C.0.03和0.06D.314和637【解析】 由表可知,第三小组的频率为14100=0.14,累积频率为10+13+14100=0.37.【答案】 A3.如图228所示是一容量为100的样本的频率分布直方图,则由图形中的数据可知样本落在[15,20)内的频数为( )图228A.20B.30C.40D.50【解析】样本数据落在[15,20)内的频数为100×[1-5×(0.04+0.1)]=30.【答案】 B4.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图229所示),则该样本的中位数、众数、极差分别是( )图229A.46,45,56B.46,45,53C.47,45,56D.45,47,53【解析】由题意知各数为12,15,20,22,23,23,31,32,34, 34,38,39,45,45,45,47,47,48,48,49,50,50,51,51,54,57,59,61,67,68,中位数是46,众数是45,最大数为68,最小数为12,极差为68-12=56.【答案】 A5.某学校组织学生参加英语测试,成绩的频率分布直方图如图2210,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15人,则该班的学生人数是( )【导学号:00732055】图2210A.45B.50C.55D.60【解析】根据频率分布直方图的特点可知,低于60分的频率是(0.005+0.01)×20=0.3,所以该班的学生人数是150.3=50.【答案】 B二、填空题6.200辆汽车通过某一段公路时时速的频率分布直方图如图2211所示,时速在[50,60)的汽车大约有______辆.【导学号:00732056】图2211【解析】在[50,60)的频率为0.03×10=0.3,∴汽车大约有200×0.3=60(辆).【答案】607.从甲、乙两个班中各随机选出15名同学进行随堂测验,成绩的茎叶图如图2212所示,则甲、乙两组的最高成绩分别是________,________,从图中看,________班的平均成绩较高.图2212【解析】由茎叶图可知,甲班的最高分是96,乙班的最高分是92.甲班的成绩集中在60~80之间,乙班成绩集中在70~90之间,故乙班的平均成绩较高.【答案】96 92 乙8.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50度至350度之间,频率分布直方图如图2213所示:图2213(1)直方图中x的值为________;(2)在这些用户中,用电量落在区间[100,250)内的户数为________.【解析】由于(0.002 4+0.003 6+0.006 0+x+0.002 4+0.001 2)×50=1,解得x=0.004 4;数据落在[100,250)内的频率是(0.003 6+0.006 0+0.004 4)×50=0.7,所以月用电量在[100,250)内的用户数为100×0.7=70.【答案】(1)0.004 4 (2)70三、解答题9.为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h),实验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.41.6 0.5 1.8 0.62.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两种药的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?【导学号:00732057】图2214【解】(1)设A药观测数据的平均数为x,B药观测数据的平均数为y.由观测结果可得x=120(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,y=120(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.由以上计算结果可得x>y,因此可看出A药的疗效更好.(2)由观测结果可绘制茎叶图如图:从以上茎叶图可以看出,A 药疗效的试验结果有710的叶集中在茎“2.”,“3.”上,而B 药疗效的试验结果有710的叶集中在茎“0.”,“1.”上,由此可看出A 药的疗效更好.10.为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图2215),图中从左到右各小长方形的面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12.图2215(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,则该校全体高一年级学生的达标率是多少? 【解】 (1)频率分布直方图是以面积的形式反映了数据落在各小组内的频率大小的,因此第二小组的频率为42+4+17+15+9+3=0.08.又因为第二小组的频率=第二小组的频数样本容量,所以样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由频率分布直方图可估计,该校高一年级学生的达标率为: 17+15+9+32+4+17+15+9+3×100%=88%.[能力提升]1.如图2216是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知( )图2216A.甲运动员的成绩好于乙运动员B.乙运动员的成绩好于甲运动员C.甲、乙两名运动员的成绩没有明显的差异D.甲运动员的最低得分为0分【解析】 由茎叶图可以看出甲运动员的成绩主要集中在30至40之间,比较稳定,而乙运动员均匀地分布在10至40之间,所以甲运动员成绩较好.故选A.【答案】 A2.某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图2217所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )图2217【解析】 借助已知茎叶图得出各小组的频数,再由频率=频数样本容量求出各小组的频率,进一步求出频率组距并得出答案.法一 由题意知样本容量为20,组距为5. 列表如下:分组 频数 频率 频率组距 [0,5) 1 120 0.01 [5,10) 1 120 0.01 [10,15) 4 15 0.04 [15,20)21100.02[20,25) 4 15 0.04 [25,30) 3 320 0.03 [30,35) 3 320 0.03 [35,40] 2 110 0.02 合计201法二 由茎叶图知落在区间[0,5)与[5,10)上的频数相等,故频率、频率组距也分别相等,比较四个选项知A 正确,故选A.【答案】 A3.某校开展“爱我家乡”摄影比赛,9位评委为参赛作品A 给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是________.图2218【解析】 当x ≤4时,89+89+92+93+90+x +92+917=91,解之得x =1.当x >4时,易证不合题意. 【答案】 14.某车站在春运期间为了了解旅客购票情况,随机抽样调查了100名旅客从开始在售票窗口排队到购到车票所用的时间t (以下简称为购票用时,单位为m i n),下面是这次调查统计分析得到的频率分布表和频率分布直方图:(如图2219所示)分组 频数 频率 一组 0≤t <5 0 0 二组 5≤t <10 10 0.10 三组 10≤t <15 10 ② 四组 15≤t <20 ① 0.50 五组20≤t ≤25300.30合计100 1.00图2219解答下列问题:(1)这次抽样的样本容量是多少?(2)在表中填写出缺失的数据并补全频率分布直方图;(3)旅客购票用时的平均数可能落在哪一组?【解】(1)样本容量是100.(2)①50②0.10所补频率分布直方图如图中的阴影部分:(3)设旅客平均购票用时为t m i n,则有0×0+5×10+10×10+15×50+20×30100≤t<5×0+10×10+15×10+20×50+25×30100,即15≤t<20.所以旅客购票用时的平均数可能落在第四组.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
高中数学 第二章 统计 2.2.1 用样本的频率分布估计总体的分布课
堂探究 新人教B版必修3
1.对频率分布直方图的理解
剖析:(1)频率分布直方图的纵坐标为频率组距,而不是频数组距.
(2)因为小长方形的面积=组距×频率组距=频率,所以各小长方形的面积表示相应各组的
频率.这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小.
(3)在频率分布直方图中,各小长方形的面积之和等于1.
(4)同样一组数据,如果组距不同,得到的频率分布直方图的形状也会不同.
(5)同一个总体,由于抽样的随机性,如果随机抽取另外一个容量为100的样本,所形
成的样本频率分布一般会与前一个样本频率分布有所不同.但是,它们都可以近似地看做总
体的分布.
(6)从频率分布直方图中可以清楚地看出数据分布的总体趋势.
(7)频率分布表和频率分布直方图由样本决定,因此它们会随样本的改变而改变.
2.频率分布表、频率分布直方图与频率分布折线图的关系
剖析:频率分布直方图中各小矩形的面积等于相应各组的频率,以面积的形式反映了数
据落在各个小组的频率的大小.在反映样本的频率分布方面,频率分布表比较准确,频率分
布直方图比较直观,它们起着相互补充的作用.频率分布折线图的优点是反映了数据的变化
趋势.
题型一 样本的频率分布
【例1】 一个容量为100的样本,其数据的分组与各组的频数如下:
组别 [0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70]
频数 12 13 24 15 16 13 7
则样本数据落在[10,40)上的频率为( )
A.0.13 B.0.39 C.0.52 D.0.64
解析:样本数据落在[10,40)上的频数为13+24+15=52,故其频率为52100=0.52.
答案:C
此范围上的频率为频数除以样本容量,注意频数之和应为样本容量,频率之和为1.
题型二 频率分布直方图的识读与应用
【例2】 图1是某市有关部门根据对当地干部的月收入情况调查后画出的样本频率分
布直方图,已知图中从左向右第一组的频数为4 000.在样本中记月收入(单位:元)在[1
2
000,1 500),[1 500,2 000),[2 000,2 500),[2 500,3 000),[3 000,3 500),[3 500,4
000)的人数依次为A1,A2,…,A6.图2是统计月工资收入在一定范围内的人数的算法流程
图,则样本的容量n=__________,输出的S=__________.(用数字作答)
图1
图2
解析:∵月收入在[1 000,1 500)的频率为0.000 8×500=0.4,且有4 000人,
∴样本的容量n=4 0000.4=10 000.
由图2知输出的S=A2+A3+…+A6=10 000-4 000=6 000.
答案:10 000 6 000
反思 本题是把统计图表和程序框图结合起来的一类综合问题,对于频率分布直方图的
识读,最主要的是把握好频率=频数样本容量这一核心关系,再者每个矩形的面积等于相应组的
频率,各组的频率和等于1,也就是各小矩形的面积的和等于1.
题型三 茎叶图的制作与识读
【例3】 某良种培育基地正在培育一种小麦新品种A.将其与原有的一个优良品种B
进行对照试验.两种小麦各种植了25公顷,所得每公顷产量数据(单位:千克)如下:
3
品种A:
357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430
,434,443,445,445,451,454
品种B:
363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,406,407
,410,412,415,416,422,430
(1)试用茎叶图表示两个品种每公顷的产量.
(2)用茎叶图处理现有的数据,有什么优点?
解:(1)
(2)由于每个品种的数据都只有25个,样本不大,画茎叶图很方便;此时茎叶图不仅清
晰明了地展示了数据的分布情况,便于比较,没有任何信息损失,而且还可以随时记录新的
数据.
反思 茎叶图在样本数据较少、较为集中且位数不多时比较适用.由于它较好地保留了
原始数据,所以可以帮助分析样本数据的大致频率分布,还可以用来分析样本数据的一些数
字特征,用以判断数据的稳定程度.
题型四 频率分布直方图的实际应用
【例4】 某校为庆祝“五一劳动节”,进行模具制作评比,作品上交时间为5月1日
至31日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如
图所示),已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解
答下列问题:
(1)本次活动共有多少件作品参加评比?
(2)哪组上交的作品数最多?有多少件?
4
(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率较高?
解:(1)依题意知第三组的频率为42+3+4+6+4+1=15.又因为第三组的频数为12,
所以本次活动的参评作品有1215=60(件).
(2)根据题中频率分布直方图,可以看出第四组上交的作品数量最多,共有
60×62+3+4+6+4+1=18(件).
(3)第四组的获奖率是1018=59,
第六组上交的作品数量为60×12+3+4+6+4+1=3(件),
所以第六组的获奖率为23=69,显然第六组的获奖率较高.
反思 (1)在频率分布直方图中,组距是一个固定值,所以各长方形高的比就是各组上
交作品的频率比.(2)每组上交的作品数量等于总容量乘各组作品占总容量的比例.(3)通过
频率分布直方图传递信息、掌握信息是关键.
题型五 易错辨析
【例5】 观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在[2 700,3
000) g内的频率为( )
A.0.001 B.0.1 C.0.2 D.0.3
错解:结合图示得0.001为所求频率,故选A.
错因分析:误将0.001看成频率,实际上,0.001为频率与组距的比值.
正解:∵频率等于对应小长方形的面积,
∴S=(3 000-2 700)×0.001=0.3,故选D.