大学统计学第七章练习题及答案
统计学贾俊平第四版第七章课后答案目前最全

7.1从一个标准差为5的总体中抽出一个容量为40的样本,样本均值为25。
(1) 样本均值的抽样标准差x σ等于多少?(2) 在95%的置信水平下,允许误差是多少?解:已知总体标准差σ=5,样本容量n =40,为大样本,样本均值x =25, (1)样本均值的抽样标准差x σ=n σ=405=0.7906 (2)已知置信水平1-α=95%,得 α/2Z =1.96, 于是,允许误差是E =nα/2σZ =1.96×0.7906=1.5496。
7.2 某快餐店想要估计每位顾客午餐的平均花费金额。
在为期3周的时间里选取49名顾客组成了一个简单随机样本。
(1)假定总体标准差为15元,求样本均值的抽样标准误差。
x nσ=49==2.143 (2)在95%的置信水平下,求边际误差。
x x t σ∆=⋅,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=2z α 因此,x x t σ∆=⋅2x z ασ=⋅0.025x z σ=⋅=1.96×2.143=4.2 (3)如果样本均值为120元,求总体均值 的95%的置信区间。
置信区间为:(),x x x x -∆+∆=()120 4.2,120 4.2-+=(115.8,124.2) 7.37.4 从总体中抽取一个n=100的简单随机样本,得到x =81,s=12。
要求:大样本,样本均值服从正态分布:2,xN n σμ⎛⎫ ⎪⎝⎭或2,s xN n μ⎛⎫⎪⎝⎭置信区间为:2x z x z n n αα⎛-+ ⎝n 100=1.2 (1)构建μ的90%的置信区间。
2z α=0.05z =1.645,置信区间为:()81 1.645 1.2,81 1.645 1.2-⨯+⨯=(79.03,82.97)(2)构建μ的95%的置信区间。
2z α=0.025z =1.96,置信区间为:()81 1.96 1.2,81 1.96 1.2-⨯+⨯=(78.65,83.35)(3)构建μ的99%的置信区间。
统计学第七章、第八章课后题答案之欧阳歌谷创编

统计学复习笔记第七章欧阳歌谷(2021.02.01)第八章一、思考题1.解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。
估计量也是随机变量。
如样本均值,样本比例、样本方差等。
根据一个具体的样本计算出来的估计量的数值称为估计值。
2.简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。
(2)有效性:是指估计量的方差尽可能小。
对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。
(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。
3.怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。
置信区间的论述是由区间和置信度两部分组成。
有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。
因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。
在公布调查结果时给出被调查人数是负责任的表现。
这样则可以由此推算出置信度(由后面给出的公式),反之亦然。
4. 解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。
也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。
不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以0.95的概率覆盖总体参数。
5. 简述样本量与置信水平、总体方差、估计误差的关系。
1. 估计总体均值时样本量n 为2. 样本量n 与置信水平1-α、总体方差、估计误差E 之间的关系为▪ 与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需要的样本量越大;▪ 与总体方差成正比,总体的差异越大,所要求的样本量也越大;▪ 与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的样本量越小。
二、 练习题其中: 2222α2222)(E z n σα=n z E σα2=1. 从一个标准差为5的总体中采用重复抽样方法抽出一个样本量为40的样本,样本均值为25。
概率论与数理统计第七章习题答案

解:(1)已知ξ ~N (µ, σ 2 ),取统计量U = ξ − µ ,则有U ~ N (0,1),于给定的置信概率1−α ,
n
σ/ n
可求出uα
+ (4 − 0.8)2 ×1] = 0.831.
14.设ξ1,ξ2,……,ξn是取自总体ξ的一个样本,n ≥ 2,ξ ~ B(1, p),其中p为未知,0 < p < 1, 求证:
(1)ξ12是p的无偏估计; (2)ξ12不是p2的无偏估计;
(3) ξ1ξ2是p2的无偏估计。
证明:(1)Eξ
2 1
tα /2 (4) = 2.78, S = 11.937, n = 5代入(*),求得µ的置信区间为(1244.185,1273.815).
20.假定到某地旅游的一个游客的消费额ξ~N (µ,σ 2 ),且σ = 500元,今要对 该地每一个游客的平均消费额µ进行估计,为了能以不小于95%的置信概率 确信这估计的绝对误差小于50元,问至少需要随机调查多少个游客?
乐山师范学院化学学院
1.设总体ξ 有分布律
第七章 参数估计部分习题答案
ξ
−1
0
2
p
2θ
θ
1-3θ
其中 0 < θ < 1 为待估参数,求θ 的矩估计。 3
解:总体一阶矩为Eξ = (−1) × 2θ + 0×θ + 2× (1− 3θ ) = −8θ + 2.
用样本一阶矩代替总体一阶矩得ξ = -8θˆ + 2,则θˆ = 1 (2 − ξ ). 8
统计学(贾5)课后练答案(7-8章)

第七章 参数估计7.1 (1)x σ===0.7906 (2)2x z α∆==1.96=1.54957.2 某快餐店想要估计每位顾客午餐的平均花费金额。
在为期3周的时间里选取49名顾客组成了一个简单随机样本。
(1)假定总体标准差为15元,求样本均值的抽样标准误差。
x σ===2.143 (2)在95%的置信水平下,求估计误差。
x x t σ∆=⋅,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=2z α 因此,x x t σ∆=⋅x z ασ=⋅0.025x z σ=⋅=1.96×2.143=4.2 (3)如果样本均值为120元,求总体均值 的95%的置信区间。
置信区间为:2x z x z αα⎛-+ ⎝=()120 4.2,120 4.2-+=(115.8,124.2)7.32x z x z αα⎛-+ ⎝=104560±(87818.856,121301.144) 7.4 从总体中抽取一个n=100的简单随机样本,得到x =81,s=12。
要求:大样本,样本均值服从正态分布:2,x N n σμ⎛⎫ ⎪⎝⎭或2,s x N n μ⎛⎫⎪⎝⎭置信区间为:22x z x z αα⎛-+ ⎝, (1)构建μ的90%的置信区间。
2z α=0.05z =1.645,置信区间为:()81 1.645 1.2,81 1.645 1.2-⨯+⨯=(79.03,82.97) (2)构建μ的95%的置信区间。
2z α=0.025z =1.96,置信区间为:()81 1.96 1.2,81 1.96 1.2-⨯+⨯=(78.65,83.35) (3)构建μ的99%的置信区间。
2z α=0.005z =2.576,置信区间为:()81 2.576 1.2,81 2.576 1.2-⨯+⨯=(77.91,84.09)7.5 (1)x z α±=25 1.96±=(24.114,25.886)(2)2x z α±=119.6 2.326±=(113.184,126.016)(3)2x z α±=3.419 1.645±(3.136,3.702)7.6 (1)x z α±=8900 1.96±=(8646.965,9153.035)(2)2x z α±=8900 1.96±=(8734.35,9065.65)(3)2x z α±=8900 1.645±=(8761.395,9038.605)(4)2x z α±=8900 2.58±=(8681.95,9118.05) 7.7 某大学为了解学生每天上网的时间,在全校7 500名学生中采取重复抽样方法随机抽取36人,调查他们每天上网的时间,得到下面的数据(单位:小时):解:(1)样本均值x =3.32,样本标准差s=1.611α-=0.9,t=2z α=0.05z =1.645,2x z α±=3.32 1.645±(2.88,3.76) 1α-=0.95,t=2z α=0.025z =1.96,2x z α±=3.32 1.96±(2.79,3.85)1α-=0.99,t=2z α=0.005z =2.576,2x z α±=3.322.76±(2.63,4.01)7.8 x t α±=10 2.365±=(7.104,12.896)7.9 某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离(单位:km)分别是:10 3 14 8 6 9 12 11 7 5 10 15 9 16 13 2假定总体服从正态分布,求职工上班从家里到单位平均距离的95%的置信区间。
概率论与数理统计第七章练习题与答案详解

概率论与数理统计 第七章 参数估计练习题与答案(答案在最后)1.设总体X 的二阶矩存在,n X X X ,,,21 是来自总体X 的一个样本,则2EX 的矩估计是( ).(A) X (B) ()∑=-n i i X X n 121 (C) ∑=n i i X n 121 (D) 2S2.矩估计必然是( ).(A) 总体矩的函数 (B) 样本矩的函数 (C) 无偏估计 (D) 最大似然估计3.某钢珠直径X 服从()1,μN ,从刚生产出的一批钢珠中随机抽取9个,求得样本均值06.31=X ,样本标准差98.0=S ,则μ的最大似然估计是 .4.设θˆ是未知参数θ的一个估计量,若θθ≠ˆE ,则θˆ是θ的( ) (A) 最大似然估计 (B) 矩估计 (C) 有效估计 (D) 有偏估计5.设21,X X 是()1,μN 的一个样本,下面四个关于μ估计量中,只有( )才是μ的无偏估计.(A) 213432X X + (B) 214241X X + (C)215352X X + (D) 214143X X - 6.设总体X 服从参数为λ的Poisson 分布,n X X X ,,,21 是来自总体X 的一个样本,则下列说法中错误的是( ).(A) X 是EX 的无偏估计量 (B) X 是DX 的无偏估计量 (C) X 是EX 的矩估计量 (D) 2X 是2λ的无偏估计量 7.设321,,X X X 是()1,μN 的一个样本,下面四个关于μ无偏估计量中,根据有效性这个标准来衡量,最好的是( ).(A) 321313131X X X ++ (B) 213132X X + (C)321412141X X X ++ (D) 216561X X + 8.设n X X X ,,,21 是来自总体()2,σμN 的一个样本,其中μ未知,而σ已知,则⎪⎪⎭⎫⎝⎛+-n U X n U X σσ025.0025.0,作为μ的置信区间,其置信水平是( ).(A) 0.9 (B) 0.95 (C) 0.975 (D) 0.05 9.设n X X X ,,,21 是来自总体()2,σμN 的一个样本,其中μ未知,而σ已知,μ的置信水平为α-1的置信区间⎪⎪⎭⎫ ⎝⎛+-n U X n U X σσαα22 ,的长度是α的减函数,对吗?10.总体X 的密度函数为()⎪⎩⎪⎨⎧<<=-其它101x x x f θθ,其中θ是未知参数,n X X X ,,,21 是来自总体X 的一个样本,求参数θ的矩估计量和最大似然估计量.11.总体X 的密度函数为()⎪⎩⎪⎨⎧>=-其它002222x ex x f x θθ, 其中θ是未知参数,n X X X ,,,21 是来自总体X 的一个样本,求参数θ的矩估计量和最大似然估计量.12.设总体X 服从几何分布:()()11--==x p p x X P ,() ,2,1=x ,n X X X ,,,21 是来自总体X 的一个样本,求参数p 的最大似然估计. 13.设n X X X ,,,21 是来自总体()2,0σN 的一个样本,求参数2σ的最大似然估计.14.设n X X X ,,,21 是来自总体()2,7t a n σμ+N 的一个样本,其中22πμπ<<-,求参数2,σμ的最大似然估计.15.设n X X X ,,,21 是来自总体()2,~σμN X 的一个样本,对给定t ,求()t X P ≤的最大似然估计.16.一个罐子里装有黑球和白球,有放回地抽取一个容量为n 的样本,发现其中有k 个白球,求罐中黑球数和白球数之比R 的最大似然估计. 17.总体X 的分布律是:()()()θθθ312,0,21-=====-=X P X P X P ,n X X X ,,,21 是来自总体X 的一个样本,求参数θ的矩估计和最大似然估计. 18.设总体X 服从二项分布()p N B ,,N 为正整数,10<<p ,n X X X ,,,21 是来自总体X 的大样本,求参数p N ,的矩估计量.19.设μ=EX ,n X X X ,,,21 是来自总体X 的一个样本,证明:()∑=-=n i i X n T 121μ是总体方差的无偏估计.20.总体X 服从()θθ2,上均匀分布,n X X X ,,,21 是来自总体X 的一个样本,证明X 32ˆ=θ是参数θ的无偏估计.21.设总体X 服从二项分布()p m B ,,n X X X ,,,21 是来自总体X 的一个样本,证明∑==ni i X n m p 11ˆ是参数θ的无偏估计. 22.设n X X X ,,,21 是来自总体X 的一个样本,且X 服从参数为λ的Poisson 分布,对任意()1,0∈α,证明()21S X αα-+是λ的无偏估计,其中2,S X 分别是样本均值和样本方差.23.设02>=σDX ,n X X X ,,,21 是来自总体X 的一个样本,问2X 是否是()2EX 的无偏估计.24.设321,,X X X 是来自总体()2,σμN 的一个样本,试验证:32112110351ˆX X X ++=μ,32121254131ˆX X X ++=μ,都是参数μ的无偏估计,并指出哪个更有效.25.从总体()1,1μN 抽取一个容量为1n 的样本:1,,,21n X X X ,从总体()4,2μN 抽取一个容量为2n 的样本:2,,,21n Y Y Y ,求21μμα-=的最大似然估计αˆ.假定总的样本容量21n n n +=不变时,求21,n n 使αˆ的方差最小. 26.为了测量一台机床的椭圆度,从全部产品中随机抽取100件进行测量,求得样本均值为mm X 081.0=,样本标准差为mm S 025.0=,求平均椭圆度μ的置信水平为0.95的置信区间.27.自动机床加工的同类零件中,随机抽取9件,测得长度如下:21.1,21.3,21.4,21.5,21.3,21.7,21.4,21.3,21.6,已知零件长度X 服从()2,σμN ,置信水平为0.95,(1) 若15.0=σ,求μ置信区间; (2) 若σ未知,求μ置信区间; (3) 若4.21=μ,求σ置信区间; (4) 若μ未知,求σ置信区间. 28.设总体X 服从()23,μN ,如果希望μ的置信水平为0.9的置信区间长度不超过2,则需要抽取的样本容量至少是多少?29.某厂利用两条自动化流水线灌装面粉,分别从两条流水线上抽取12和17的两个独立样本,其样本均值和样本方差分别为:6.10=X ,4.221=S ,5.9=Y ,7.422=S ,假设两条生产线上灌装面粉的重量都服从正态分布,其均值分别为21,μμ,方差相等,求21μμ-的置信水平为0.9的置信区间. 30.设两位化验员独立对某种聚合物含氯量用相同方法各作10次测定,其测定值的样本方差分别为:5419.021=S ,6065.022=S ,设2221,σσ分别为两位化验员所测定值总体的方差,设两位化验员的测定值都服从正态分布,求方差比2221σσ的置信水平为0.9的置信区间.31.从一批产品中抽取100个产品,发现其中有9个次品,求这批产品的次品率p 的置信水平为0.9的置信区间.答案详解1.C 2.B 3.31.064.D 5.C 6.D 7.A 8.B 9.对10.(1) 矩估计因为()⎰∞+∞-=dx x xf EX 11+==⎰θθθθdx x ,所以21⎪⎭⎫⎝⎛-=EX EX θ,而X EX =∧,由此得参数θ的矩估计量为21ˆ⎪⎪⎭⎫ ⎝⎛-=X X θ (2) 最大似然估计似然函数为:()()∏==ni i x f L 1θ()()121-=θθnnx x x ,两边取对数, ()θL ln ()()nx x x n21ln 1ln 2-+=θθ,令()θθd L d ln ()0ln 21221=+=n x x x n θθ, 得参数θ的最大似然估计为:212ln ˆ⎪⎭⎫⎝⎛=∑=ni i x n θ11.(1) 矩估计因为()⎰∞+∞-=dx x xf EX ⎰∞+-=022222dx exx θθ⎰∞+∞--=dx e xx 2222221θθ⎰∞+∞--=dx exx 2222222θθπθπθπ22=, 所以EX πθ2=,而X EX =∧,由此得参数θ的矩估计量为X πθ2ˆ=。
统计学贾俊平第四版第七章课后答案目前最全

7.1从一个标准差为5的总体中抽出一个容量为40的样本,样本均值为25。
(1) 样本均值的抽样标准差x σ等于多少?(2) 在95%的置信水平下,允许误差是多少?解:已知总体标准差σ=5,样本容量n =40,为大样本,样本均值x =25, (1)样本均值的抽样标准差x σ=n σ=405=0.7906 (2)已知置信水平1-α=95%,得 α/2Z =1.96, 于是,允许误差是E =nα/2σZ =1.96×0.7906=1.5496。
7.2 某快餐店想要估计每位顾客午餐的平均花费金额。
在为期3周的时间里选取49名顾客组成了一个简单随机样本。
(1)假定总体标准差为15元,求样本均值的抽样标准误差。
x nσ=49==2.143 (2)在95%的置信水平下,求边际误差。
x x t σ∆=⋅,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=2z α 因此,x x t σ∆=⋅2x z ασ=⋅0.025x z σ=⋅=1.96×2.143=4.2 (3)如果样本均值为120元,求总体均值 的95%的置信区间。
置信区间为:(),x x x x -∆+∆=()120 4.2,120 4.2-+=(115.8,124.2) 7.37.4 从总体中抽取一个n=100的简单随机样本,得到x =81,s=12。
要求:大样本,样本均值服从正态分布:2,xN n σμ⎛⎫ ⎪⎝⎭或2,s xN n μ⎛⎫⎪⎝⎭置信区间为:2x z x z n n αα⎛-+ ⎝n 100=1.2 (1)构建μ的90%的置信区间。
2z α=0.05z =1.645,置信区间为:()81 1.645 1.2,81 1.645 1.2-⨯+⨯=(79.03,82.97)(2)构建μ的95%的置信区间。
2z α=0.025z =1.96,置信区间为:()81 1.96 1.2,81 1.96 1.2-⨯+⨯=(78.65,83.35)(3)构建μ的99%的置信区间。
统计学练习题及答案

第三章数据分布特征的描述1.下面是我国人口和国土面积资料:────────┬───────────────│根据第四人次人口普查调整数指标├──────┬────────│1982年│1990年────────┼──────┼────────人口总数│101654 │114333男│52352 │58904女│49302 │55429────────┴──────┴────────国土面积960万平方公里。
试计算所能计算的全部相对指标。
2.某企业2014年某产品单位成本520元,2015年计划规定在上年的基础上单位成本降低5%,实际降低6%,试确定2015年单位成本的计划数与实际数,并计算2015年单位成本比计划降低多少3.某市共有50万人,其市区人口占85%,郊区人口占15%,为了解该市居民的收入水平,在市区抽查了1500户居民,每人平均收入为1400元;在郊区抽查了1000户居民,每人年平均收入为1380元,若这两个抽样数字具有代表性,则计算该市居民年平均收入应采用哪一种形式的平均数方法进行计算4根据上表资料计算:(1)哪个班级统计学成绩好(2)哪个班级的成绩分布差异大哪个班级的成绩更稳定5.2014年8月份甲、乙两农贸市场资料如下:────┬──────┬─────────┬─────────品种│价格(元/斤)│甲市场成交额(万元)│乙市场成交量(万斤)────┼──────┼─────────┼─────────甲│││2乙│││1丙│││1────┼──────┼─────────┼─────────合计│──││4────┴──────┴─────────┴─────────试问哪一个市场农产品的平均价格较高并说明原因。
6.某车间有甲、乙两个生产组,甲组平均每个工人的日产量36件,标准差件。
乙组工人资料如下:要求:(1)计算乙组平均每个工人的日产量和标准差。
(2)比较甲、乙两个生产小组哪个组的平均日产量更有代表性比较哪组的产量更稳定比较哪组的产量差异大第四章抽样调查检验结果如下:1.某进出口公司出口茶叶,为检查其每包规格的重量,抽取样本100包,(1)确定每包平均重量的抽样平均误差和极限误差;(2)估计这批茶叶每包平均重量的范围,确定是否达到规格要求。
《统计学》课后练习题答案

3.4统计图的规范
3.5如何用Excel做统计图
习题
一、单项选择题
1.统计表的结构从形式上看包括()、横行标题、纵栏标题、数字资料四个部分。(知识点3.1答案:D)
A.计量单位B.附录C.指标注释D.总标题
2.如果统计表中数据的单位都一致,我们可以把单位填写在()。(知识点3.1答案:C)
A.指标B.标志C.变量D.标志值
8.以一、二、三等品来衡量产品质地的优劣,那么该产品等级是()。(知识点:1.7答案:A)
A.品质标志B.数量标志C.质量指标D.数量指标
9.()表示事物的质的特征,是不能以数值表示的。(知识点:1.7答案:A)
A.品质标志B.数量标志C.质量指标D.数量指标
10.在出勤率、废品量、劳动生产率、商品流通费用额和人均粮食生产量五个指标中,属于数量指标的有几个()。(知识点:1.7答案:B)
1.统计调查方案的主要内容是( )( )( )( )( )。(知识点2.2答案:ABCDE)
A.调查的目的B.调查对象C.调查单位D.调查时间E.调查项目
2.全国工业普查中( )( )( )( )( )。(知识点2.2答案:ABCE)
A.所有工业企业是调查对象B.每一个工业企业是调查单位C.每一个工业企业是报告单位
频数f
(棵)
频率
(%)
向上累积
向下累积
频数(棵)
频率(%)
频数(棵)
频率(%)
80-90
8
7.3
8
7.3
110
100.0
90-100
9
8.2
17
15.5
102
92.7
100-110
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章参数估计练习题7.1 从一个标准差为5的总体中抽出一个样本量为40的样本,样本均值为25。
(1)样本均值的抽样标准差等于多少?(2)在95%的置信水平下,边际误差是多少?解:⑴已知样本均值的抽样标准差⑵已知,,,,边际误差7.2 某快餐店想要估计每位顾客午餐的平均花费金额,在为期3周的时间里选取49名顾客组成了一个简单随机样本。
(1)假定总体标准差为15元,求样本均值的抽样标准误差;(2)在95%的置信水平下,求边际误差;(3)如果样本均值为120元,求总体均值的95%的置信区间。
解.已知.根据查表得=1.96(1)标准误差:(2).已知=1.96所以边际误差=*1。
96*=4。
2(3)置信区间:7.3 从一个总体中随机抽取的随机样本,得到,假定总体标准差,构建总体均值的95%的置信区间.置信区间:(87818。
856,121301.144)7.4 从总体中抽取一个的简单随机样本,得到,。
(1)构建的90%的置信区间.(2)构建的95%的置信区间.(3)构建的99%的置信区间.解;由题意知, ,。
(1)置信水平为,则。
由公式即则置信区间为79。
026~82。
974(2)置信水平为,由公式得=81即81=(78.648,83。
352),则的95%的置信区间为78。
648~83。
352(3)置信水平为,则。
由公式=即则置信区间为7.5 利用下面的信息,构建总体均值的置信区间。
(1),,,置信水平为95%。
(2),,,置信水平为98%.(3),,,置信水平为90%。
⑴置信水平为95%解:置信下限:置信上限:⑵解:置信下限:置信上限:⑶=3.419,s=0。
974,n=32,置信水平为90%根据t=0。
1,查t 分布表可得。
所以该总体的置信区间为(=3.4190.283即3.4190.283=(3.136 ,3。
702)所以该总体的置信区间为3.136~3.702.7.6 利用下面的信息,构建总体均值的置信区间。
(1)总体服从正态分布,且已知,,,置信水平为95%。
(2)总体不服从正态分布,且已知,,,置信水平为95%.(3)总体不服从正态分布,未知,,,,置信水平为90%.(4)总体不服从正态分布,未知,,,,置信水平为99%。
(1)解:已知,,,1—%,所以总体均值的置信区间为(8647,9153)(2)解:已知,,,1-%,所以总体均值的置信区间为(8734,9066)(3)解:已知,,s=500,由于总体方差未知,但为大样本,可用样本方差来代替总体方差∵置信水平1—=90% ∴∴置信区间为所以总体均值的置信区间为(8761,9039)(4)解:已知,,,由于总体方差未知,但为大样本,可用样本方差来代替总体方差置信水平1—α=99%∴∴置信区间为所以总体均值的置信区间为(8682,9118)7.7 某大学为了解学生每天上网的时间,在全校7500名学生中采取不重复抽样方法随机抽取36人,调查他们每天上网的时间,得到的数据见Book7.7(单位:h)。
求该校大学生平均上网时间的置信区间,置信水平分别为90%、95%和99%.解:已知:n=361。
当置信水平为90%时,,所以置信区间为(2.88,3。
76)2。
当置信水平为95%时,,所以置信区间为(2.80,3。
84)3.当置信水平为99%时,,所以置信区间为(2。
63,4.01)7.8 从一个正态总体中随机抽取样本量为8的样本,各样本值见Book7。
8.求总体均值95%的置信区间。
已知:总体服从正态分布,但未知,n=8为小样本,,根据样本数据计算得:总体均值的95%的置信区间为:,即(7.11,12.89)。
7.9 某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离(单位:km)数据见Book7.9.求职工上班从家里到单位平均距离95%的置信区间。
已知:总体服从正态分布,但未知,n=16为小样本,=0.05,根据样本数据计算可得:,s=4.113从家里到单位平均距离得95%的置信区间为:,即(7.18,11。
57)。
7.10 从一批零件中随机抽取36个,测得其平均长度为149.5cm,标准差为1.93cm。
(1)试确定该种零件平均长度95%的置信区间。
(2)在上面的估计中,你使用了统计中的哪一个重要定理?请简要解释这一定理。
解:已知n=36, =149.5,置信水平为1-=95%,查标准正态分布表得=1。
96.根据公式得:=149.51.96即149.51。
96=(148.9,150.1)答:该零件平均长度95%的置信区间为148.9~150.1(3)在上面的估计中,你使用了统计中的哪一个重要定理?请简要解释这一定理。
答:中心极限定理论证。
如果总体变量存在有限的平均数和方差,那么,不论这个总体的分布如何,随着样本容量的增加,样本均值的分布便趋近正态分布。
在现实生活中,一个随机变量服从正态分布未必很多,但是多个随即变量和的分布趋于正态分布则是普遍存在的。
样本均值也是一种随机变量和的分布,因此在样本容量充分大的条件下,样本均值也趋近正态分布,这位抽样误差的概率估计理论提供了理论基础。
7.11 某企业生产的袋装食品采用自动打包机包装,每袋标准重量为100g。
现从某天生产的一批产品中按重复抽样随机抽取50包进行检查,测得每包重量(单位:g)见Book7。
11。
已知食品重量服从正态分布,要求:(1)确定该种食品平均重量的95%的置信区间.(2)如果规定食品重量低于100g属于不合格,确定该批食品合格率的95%的置信区间。
(1)已知:总体服从正态分布,但未知。
n=50为大样本。
=0.05,=1.96根据样本计算可知=101。
32 s=1.63该种食品平均重量的95%的置信区间为即(100。
87,101。
77)(2)由样本数据可知,样本合格率:。
该批食品合格率的95%的置信区间为:=0。
9=0.90.08,即(0.82,0。
98)答:该批食品合格率的95%的置信区间为:(0.82,0。
98)7.12 假设总体服从正态分布,利用Book7.12的数据构建总体均值的99%的置信区间。
根据样本数据计算的样本均值和标准差如下;=16。
13 =0。
8706 E= Z=2。
58*=0。
45置信区间为E 所以置信区间为(15。
68,16.58)7.13 一家研究机构想估计在网络公司工作的员工每周加班的平均时间,为此随机抽取了18名员工,得到他们每周加班的时间数据见Book7。
13(单位:h)。
假定员工每周加班的时间服从正态分布,估计网络公司员工平均每周加班时间的90%的置信区间。
解:已知=13.56 7。
80 n=18E=*置信区间=[—,+]所以置信区间=[13。
56—1.645*(7。
80/),13.56+1。
645*(7.80/)]=[10。
36, 16.76]7.14 利用下面的样本数据构建总体比例的置信区间。
(1),,置信水平为99%.(2),,置信水平为95%。
(3),,置信水平为90%.(1),,置信水平为99%。
解:由题意,已知n=44, 置信水平a=99%, Z=2。
58又检验统计量为:PZ,故代入数值计算得,PZ=(0.316,0.704),总体比例的置信区间为(0.316,0。
704)(2),,置信水平为95%。
解:由题意,已知n=300, 置信水平a=95%,Z=1。
96又检验统计量为:PZ,故代入数值计算得,PZ=(0.777,0.863), 总体比例的置信区间为(0。
777,0。
863)(3),,置信水平为90%。
解:由题意,已知n=1150,置信水平a=90%, Z=1。
645又检验统计量为:PZ,故代入数值计算得,PZ=(0.456,0。
504),总体比例的置信区间为(0.456,0.504)7.15 在一项家电市场调查中,随机抽取了200个居民户,调查他们是否拥有某一品牌的电视机。
其中拥有该品牌电视机的家庭占23%。
求总体比例的置信区间,置信水平分别为90%和95%.解:由题意可知n=200,p=0。
23(1)当置信水平为1-=90%时,Z=1。
645所以=0.230.04895即0.230。
04895=(0。
1811,0.2789),(2)当置信水平为1-=95%时,Z=1。
96所以=0.230.05832即0.230.05832=(0.1717,0.28835);答:在居民户中拥有该品牌电视机的家庭在置信水平为90%的置信区间为(18。
11%,27。
89%),在置信水平为95%的置信区间为(17。
17%,28.835%)7.16 一位银行的管理人员想估计每位顾客在该银行的月平均存款额。
他假设所有顾客月存款额的标准差为1000元,要求估计误差在200元以内,应选取多大的样本?解:已知,E=1000,,由公式可知n=(2.58*2.58*1000*1000)/(200*200)=167答:置信水平为99%,应取167个样本。
7.17 要估计总体比例,计算下列个体所需的样本容量。
(1),,置信水平为96%.(2),未知,置信水平为95%。
(3),,置信水平为90%。
(1)解:已知, , =2.05由得=2522答:个体所需的样本容量为2522。
(2)解:已知, =1.96由得601答:个体所需的样本容量为601。
(3)解:已知,, =1。
645由得=268答:个体所需的样本容量为268.7.18 某居民小区共有居民500户,小区管理者准备采取一向新的供水设施,想了解居民是否赞成.采取重复抽样方法随机抽取了50户,其中有32户赞成,18户反对.(1)求总体中赞成该项改革的户数比例的置信区间,置信水平为95%。
(2)如果小区管理者预计赞成的比例能达到80%,应抽取多少户进行调查?(1)已知:n=50根据抽样结果计算的样本比例为P=32/50=60%根据(7。
8)式得:即答:置信区间为(51。
37%,76.63%)(2)已知则有:答:应抽取62户进行调查7.19 根据下面的样本结果,计算总体标准差的90%的置信区间.(1),,.(2),,.(3),,。
解:已知,1)查表知,由公式得,解得(1。
72,2。
40)2)查表知,由公式得,解得(0.015,0。
029)3)查表知,由公式得,解得(24.85,41.73)7.20 顾客到银行办理业务时往往需要等待一些时间,而等待时间的长短与许多因素有关,比如,银行的业务员办理业务的速度,顾客等待排队的方式等等。
为此,某银行准备采取两种排队方式进行试验,第一种排队方式是所有顾客都进入一个等待队列;第二种排队方式是:顾客在三个业务窗口处列队三排等待。
为比较哪种排队方式使顾客等待的时间更短,银行各随机抽取了10名顾客,他们在办理业务时所等待的时间(单位:min)见Book7。