第七章_假设检验与方差分析习题答案

合集下载

梁前德《统计学》(第二版)学习指导与习题训练答案:07第七章 假设检验与方差分析 习题答案

梁前德《统计学》(第二版)学习指导与习题训练答案:07第七章 假设检验与方差分析 习题答案

旗开得胜1第七章 假设检验与方差分析 习题答案一、名词解释用规范性的语言解释统计学中的名词。

1. 假设检验:对总体分布或参数做出某种假设,然后再依据抽取的样本信息,对假设是否正确做出统计判断,即是否拒绝这种假设。

2. 原假设:又叫零假设或无效假设,是待检验的假设,表示为 H 0,总是含有等号。

3. 备择假设:是零假设的对立,表示为 H 1,总是含有不等号。

4. 单侧检验:备择假设符号为大于或小于时的假设检验。

5. 显著性水平:原假设为真时,拒绝原假设的概率。

6. 方差分析:是检验多个总体均值是否相等的一种统计分析方法。

二、填空题根据下面提示的内容,将适宜的名词、词组或短语填入相应的空格之中。

1. u ,nx σμ0-,标准正态; ),(),(2/2/+∞--∞nz nz σσααY2. 参数检验,非参数检验3. 弃真,存伪4. 方差旗开得胜25. 卡方, F6. 方差分析7. t ,u8. nsx 0μ-,不拒绝9. 单侧,双侧10.新产品的废品率为5% ,0.01 11.相关,总变异,组间变异,组内变异12.总变差平方和=组间变差平方和+组内变差平方和 13.连续,离散 14.总体均值 15.因子,水平 16.组间,组内 17.r-1,n-r18. 正态,独立,方差齐三、单项选择从各题给出的四个备选答案中,选择一个最佳答案,填入相应的括号中。

1.B 2.B 3. B 4.A 5.C 6.B 7.C 8.A 9.D 10.A 11.D 12.C四、多项选择从各题给出的四个备选答案中,选择一个或多个正确的答案,填入相应的括号中。

1.AC 2.A 3.B 4.BD 5. AD五、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。

1. 在任何情况下,假设检验中的两类错误都不可能同时降低。

( ×)样本量一定时2. 对于两样本的均值检验问题,若方差均未知,则方差分析和t检验均可使用,且两者检验结果一致。

《统计学》-第7章-习题答案

《统计学》-第7章-习题答案

第七章思考与练习参考答案1.答:函数关系是两变量之间的确定性关系,即当一个变量取一定数值时,另一个变量有确定值与之相对应;而相关关系表示的是两变量之间的一种不确定性关系,具体表示为当一个变量取一定数值时,与之相对应的另一变量的数值虽然不确定,但它仍按某种规律在一定的范围内变化。

2.答:相关和回归都是研究现象及变量之间相互关系的方法。

相关分析研究变量之间相关的方向和相关的程度,但不能确定变量间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况;回归分析则可以找到研究变量之间相互关系的具体形式,并可变量之间的数量联系进行测定,确定一个回归方程,并根据这个回归方程从已知量推测未知量。

3.答:单相关系数是度量两个变量之间线性相关程度的指标,其计算公式为:总体相关系数,样本相关系数。

复相关系数是多元线性回归分析中度量因变量与其它多个自变量之间的线性相关程度的指标,它是方程的判定系数2R 的正的平方根。

偏相关系数是多元线性回归分析中度量在其它变量不变的情况下两个变量之间真实相关程度的指标,它反映了在消除其他变量影响的条件下两个变量之间的线性相关程度。

4.答:回归模型假定总体上因变量Y 与自变量X 之间存在着近似的线性函数关系,可表示为t t t u X Y ++=10ββ,这就是总体回归函数,其中u t 是随机误差项,可以反映未考虑的其他各种因素对Y 的影响。

根据样本数据拟合的方程,就是样本回归函数,以一元线性回归模型的样本回归函数为例可表示为:tt X Y 10ˆˆˆββ+=。

总体回归函数事实上是未知的,需要利用样本的信息对其进行估计,样本回归函数是对总体回归函数的近似反映。

两者的区别主要包括:第一,总体回归直线是未知的,它只有一条;而样本回归直线则是根据样本数据拟合的,每抽取一组样本,便可以拟合一条样本回归直线。

第二,总体回归函数中的0β和1β是未知的参数,表现为常数;而样本回归直线中的0ˆβ和1ˆβ是随机变量,其具体数值随所抽取的样本观测值不同而变动。

第七章假设检验

第七章假设检验

第七章 假设检验一、单项选择1.关于学生t 分布,下面哪种说法不正确( )。

A 要求随机样本B 适用于任何形式的总体分布C 可用于小样本D 可用样本标准差S 代替总体标准差σ2.二项分布的数学期望为( )。

A n(1-n)pB np(1- p)C npD n(1- p)。

3.处于正态分布概率密度函数与横轴之间、并且大于均值部分的面积为( )。

A 大于0.5B -0.5C 1D 0.5。

4.假设检验的基本思想可用( )来解释。

A 中心极限定理B 置信区间C 小概率事件D 正态分布的性质5.成数与成数方差的关系是( )。

A 成数的数值越接近0,成数的方差越大B 成数的数值越接近0.3,成数的方差越大C 成数的数值越接近1,成数的方差越大D 成数的数值越接近0.5,成数的方差越大6.在统计检验中,那些不大可能的结果称为( )。

如果这类结果真的发生了,我们将否定假设。

A 检验统计量B 显著性水平C 零假设D 否定域7.对于大样本双侧检验,如果根据显著性水平查正态分布表得Z α/2=1.96,则当零假设被否定时,犯第一类错误的概率是( )。

A 20%B 10%C 5%D .1%8.关于二项分布,下面不正确的描述是( )。

A 它为连续型随机变量的分布;B 它的图形当p =0.5时是对称的,当p ≠ 0.5时是非对称的,而当n 愈大时非对称性愈不明显;C 二项分布的数学期望)(X E =μ=np ,变异数)(XD =2σ=npq ;D 二项分布只受成功事件概率p 和试验次数n 两个参数变化的影响。

9.事件A 在一次试验中发生的概率为41,则在3次独立重复试验中,事件A 恰好发生2次的概率为( )。

A21 B 161 C 643 D 649 10.设离散型随机变量X ~),2(p B ,若数学期望4.2)(=X E ,方差44.1)(=X D ,则参数p n ,的值为( ).A 4=n ,p =0.6B 6=n ,p =0.4C 8=n ,p =0.3D 12=n ,p =0.2三、多项选择1.关于正态分布的性质,下面正确的说法是( )。

7.假设检验方法----方差齐性检验、方差分析

7.假设检验方法----方差齐性检验、方差分析

单因素完全随机设计方差分析的过程
• 例3 某小学语文教研组为研究学习环境对小 学生学习成绩的影响,从三年级中随机抽取20 名学生,随机分成四组,在四种环境下进行学 习,其效果如表8-5,四种不同的学习环境对 学习成绩的影响是否有显著差异?
方差分析概要表
离差平方和其它求法
• 方差分析中关键步骤:求离差平方和. 为计算方便,往往用原始观测值直接求平 方和,公式如下:
处理 区组 A B C D Xi.
I II III X.j Xi
91 92.5 91.5 275 91.67
64.5 59 54 177.5 59.17
83.5 91.5 83.5 258.5 86.17
75.5 74 71 220.5 73.5
314.5 317 300.0 931.5
单因素随机区组设计方差分析的过程
平均数间的多重比较
单因素随机区组设计方差分析的过程
例 1、 有四种小学语文实验教材,分别代号为A、B、C、D。 为比较其教学效果,按随机区组实验(设计)原则,将小学分 为城镇重点小学、城镇一般小学和乡村小学三个区组,分 别代号为I、II、III,并分别在每个区组中随机地抽取4所 小学,它们分别被随机地指派实验一种教材。经一年教学 后通过统一考试得到各校的平均成绩如下表。问四种教材 的教学效果是否一致?
单因素随机区组设计方差分析的过程
被试的分配分三种情况: (1) 一个被试作为一个区组,不同的被试(区组)均需接受全 部k个实验处理; (2) 每一区组内被试的人数是实验处理数的整数倍; (3) 区组内的基本单元不是个别被试,而是以一个团体为 单元。
随机区组设计由于同一区组接受所有实验处理,试 实验处理之间有相关,所以也称为相关组设计(被试内 设计)。它把区组效应从组内平方和中分离出来。这时, 总平方和=组间平方和+区组平方和+误差项平方和

六西格玛绿带:假设检验与方差分析课后测试

六西格玛绿带:假设检验与方差分析课后测试

六西格玛绿带:假设检验与方差分析课后测试1、运用方差分析的方式对一个母集团的平均检定,样品大,并且知道西格玛时,需要使用哪种检验(10分)A Z检验B T检验C双样本t检验D成对数据t检验正确答案:A1、基础统计学中的描述性统计可以分为(10分)A图表法B参数估计C数量表示法D假设检验正确答案:A C2、关于假设检验存在的错误之一,即错杀,下列说法正确的是(10分)A原假设为真时拒绝原假设B错误的概率记为α,被称为显著性水平C原假设为假时未拒绝原假设D错误的概率记为β正确答案:A B3、在假设检验中,按P值进行决策规则,下列说法正确的是(10分)A将检验统计量的值与α水平的临界值进行比较。

B在原假设为真的条件下,检验统计量的观察值大于或等于其计算值的概率。

C反映实际观测到的数据与原假设之间不一致的程度。

D被称为观察到的(或实测的)显著性水平。

正确答案:B C D4、运用方差分析的方式对两个以上母集团的平均检定,需要使用哪种检验(10分)A单因子方差分析B双因子方差分析C双样本t检验D成对数据t检验正确答案:A B5、下列关于方差分析中的群内变动和群间变动的说法正确的是(10分)A群内变动是同一条件或者子组内的变动B群间变动是不同条件或者子组间的变动C群内变动又叫组内变动D组间变动又叫群间变动正确答案:A B C D1、在方差分析的应用中,如果P小于0.05,而且R-sq大于80%,说明原假设一定是正确的。

(10分)A正确B错误正确答案:错误2、在假设检验中,原假设和备择假设必须设置为一致的。

(10分)A正确B错误正确答案:错误3、方差分析的实质是双样本T测试的扩展,是找出几个样本平均差异的方法。

(10分)A正确B错误正确答案:正确4、均值检验的应用条件是样本含量N较大,或总体标准差已知。

(10分)A正确B错误正确答案:正确。

(完整word版)医学统计学第二版高等教育出版社课后习题答案

(完整word版)医学统计学第二版高等教育出版社课后习题答案

第一章绪论1.举例说明总体和样本的概念。

研究人员通常需要了解和研究某一类个体,这个类就是总体。

总体是根据研究目的所确定的所有同质观察单位某种观察值(即变量值)的集合,通常有无限总体和有限总体之分,前者指总体中的个体是无限的,如研究药物疗效,某病患者就是无限总体,后者指总体中的个体是有限的,它是指特定时间、空间中有限个研究个体。

但是,研究整个总体一般并不实际,通常能研究的只是它的一部分,这个部分就是样本。

例如在一项关于2007年西藏自治区正常成年男子的红细胞平均水平的调查研究中,该地2007年全部正常成年男子的红细胞数就构成一个总体,从此总体中随即抽取2000人,分别测的其红细胞数,组成样本,其样本含量为2000人。

2.简述误差的概念。

误差泛指实测值与真实值之差,一般分为随机误差和非随机误差。

随机误差是使重复观测获得的实际观测值往往无方向性地围绕着某一个数值左右波动的误差;非随机误差中最常见的为系统误差,系统误差也叫偏倚,是使实际观测值系统的偏离真实值的误差。

3.举例说明参数和统计量的概念。

某项研究通常想知道关于总体的某些数值特征,这些数值特征称为参数,如整个城市的高血压患病率。

根据样本算得的某些数值特征称为统计量,如根据几百人的抽样调查数据所算得的样本人群高血压患病。

统计量是研究人员能够知道的,而参数是他们想知道的。

一般情况下,这些参数是难以测定的,仅能够根据样本估计。

显然,只有当样本代表了总体时,根据样本统计量估计的总体参数才是合理的。

4.简述小概率事件原理。

当某事件发生的概率小于或等于0.05时,统计学上习惯称该事件为小概率事件,其含义是该事件发生的可能性很小,进而认为它在一次抽样中不可能发生,这就是所谓的小概率事件原理,它是进行统计推断的重要基础。

第二章调查研究设计1.调查研究主要特点是什么?调查研究的主要特点是:①研究的对象及其相关因素(包括研究因素和非研究因素)是客观存在的,不能人为给予干预措施②不能用随机化分组来平衡混杂因素对调查结果的影响。

作业题07 假设检验

作业题07 假设检验

第七章 假设检验 作业习题答案7.1 设总体2(,)N ξμσ~,其中参数μ,2σ为未知,试指出下面统计假设中哪些是简单假设,哪些是复合假设:(1)0:0,1H μσ==; (2)0:0,1H μσ=>; (3)0:3,1H μσ<=; (4)0:03H μ<<; (5)0:0H μ=.7.2 设1225,,,ξξξ 取自正态总体(,9)N μ,其中参数μ未知,x 是子样均值,如对检验问题001:,:H H μμμμ=≠取检验的拒绝域:12250{(,,,):||}c xx x x c μ=-≥ ,试决定常数c,使检验的显著性水平为0.057.3 设子样1225,,,ξξξ 取自正态总体20(,)N μσ,20σ已知,对假设检验0010:,:H H μμμμ=>,取临界域12n 0{(,,,):|}c x x x c ξ=> ,(1)求此检验犯第一类错误概率为α时,犯第二类错误的概率β,并讨论它们之间的关系;(2)设0μ=0.05,20σ=0.004,α=0.05,n=9,求μ=0.65时不犯第二类错误的概率。

7.4 设一个单一观测的ξ子样取自分布密度函数为()f x 的母体,对()f x 考虑统计假设:0011101201:():()00x x x H f x H f x ≤≤≤≤⎧⎧==⎨⎨⎩⎩其他其他试求一个检验函数使犯第一,二类错误的概率满足2min αβ+=,并求其最小值。

7.5 设某产品指标服从正态分布,它的根方差σ已知为150小时。

今由一批产品中随机抽取了26个,测得指标的平均值为1637小时,问在5%的显著性水平下,能否认为该批产品指标为1600小时?7.6 某电器零件的平均电阻一直保持在2.64Ω,根方差保持在0.06Ω,改变加工工艺后,测得100个零件,其平均电阻为2.62Ω,根方差不变,问新工艺对此零件的电阻有无显著差异?去显著性水平α=0.01。

六西格玛绿带:假设检验与方差分析课后测试

六西格玛绿带:假设检验与方差分析课后测试

六西格玛绿带:假设检验与方差分析课后测试•1、运用方差分析的方式对一个母集团的平均检定,样品大,并且知道西格玛时,需要使用哪种检验(10分)AZ检验BT检验C双样本t检验D成对数据t检验正确答案:A•1、基础统计学中的描述性统计可以分为(10分)A图表法B参数估计C数量表示法D假设检验正确答案:A C•2、关于假设检验存在的错误之一,即错杀,下列说法正确的是(10分)A原假设为真时拒绝原假设B错误的概率记为α,被称为显著性水平C原假设为假时未拒绝原假设D错误的概率记为β正确答案:A B•3、在假设检验中,按P值进行决策规则,下列说法正确的是(10分)A将检验统计量的值与α水平的临界值进行比较。

B在原假设为真的条件下,检验统计量的观察值大于或等于其计算值的概率。

C反映实际观测到的数据与原假设之间不一致的程度。

D被称为观察到的(或实测的)显著性水平。

正确答案:B C D•4、运用方差分析的方式对两个以上母集团的平均检定,需要使用哪种检验(10分)A单因子方差分析B双因子方差分析C双样本t检验D成对数据t检验正确答案:A B•5、下列关于方差分析中的群内变动和群间变动的说法正确的是(10分)A群内变动是同一条件或者子组内的变动B群间变动是不同条件或者子组间的变动C群内变动又叫组内变动D组间变动又叫群间变动正确答案:A B C D•1、在方差分析的应用中,如果P小于0.05,而且R-sq大于80%,说明原假设一定是正确的。

(10分)A正确B错误正确答案:错误•2、在假设检验中,原假设和备择假设必须设置为一致的。

(10分)A正确B错误正确答案:错误•3、方差分析的实质是双样本T测试的扩展,是找出几个样本平均差异的方法。

(10 分)A正确B错误正确答案:正确•4、均值检验的应用条件是样本含量N较大,或总体标准差已知。

(10分)A正确B错误正确答案:正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 假设检验与方差分析 习题答案一、名词解释用规范性的语言解释统计学中的名词。

1. 假设检验:对总体分布或参数做出某种假设,然后再依据抽取的样本信息,对假设是否正确做出统计判断,即是否拒绝这种假设。

2. 原假设:又叫零假设或无效假设,进行统计检验时预先建立的假设,表示为 H 0,总是含有等号。

3. 备择假设:是零假设的对立,表示为 H 1,总是含有不等号。

4. 单侧检验:备择假设符号为大于或小于时的假设检验。

5. 显著性水平:原假设为真时,拒绝原假设的概率。

6. 方差分析:通过对数据总变异进行分解,来检验多个总体均值是否相等的一种统计分析方法。

二、填空题根据下面提示的内容,将适宜的名词、词组或短语填入相应的空格之中。

1. u ,n x σμ0-,标准正态; ),(),(2/2/+∞--∞n z n z σσαα2. 参数检验,非参数检验3. 弃真,存伪4. 方差5. 卡方, F6. 方差分析7. t ,u 8. n s x 0μ-,不拒绝9. 单侧,双侧10.新产品的废品率为5% ,0.0111.相关,总变异,组间变异,组内变异12.总变差平方和=组间变差平方和+组内变差平方和13.连续,离散14.总体均值15.因子,水平16.组间,组内17.r-1,n-r18. 正态,独立,方差齐三、单项选择从各题给出的四个备选答案中,选择一个最佳答案,填入相应的括号中。

1.B2.B 3. B 4.A 5. C 6. B 7. C 8. A 9. D 10. A 11. D 12. C四、多项选择从各题给出的四个备选答案中,选择一个或多个正确的答案,填入相应的括号中。

1.AC2.A 3.B 4.BD 5. AD五、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。

1. 在任何情况下,假设检验中的两类错误都不可能同时降低。

( × )样本量一定时2. 对于两样本的均值检验问题,若方差均未知,则方差分析和t 检验均可使用,且两者检验结果一致。

( √ )3. 方差分析中,组间离差平方和总是大于组内离差平方和。

( × )不一定4. 在假设检验中,如果在显著性水平0.05下拒绝了00:μμ≤H ,则在同一水平一定可以拒绝假设00:μμ=H 。

( × )不一定5. 为检验k 个总体均值是否显著不同,也可以用t 检验,且与方差分析相比,犯第一类错误的概率不变。

( × )会增加6. 方差分析中,若拒绝了零假设,则认为各个总体均值均有显著性差异。

( × ) 不完全相等六、简答题根据题意,用简明扼要的语言回答问题。

1. 假设检验与统计估计有何区别与联系?【答题要点】假设检验是在给定显著性水平下,计算出拒绝域,并根据样本统计量信息来做出是否拒绝零假设的决策;区间估计是利用样本信息来推断总体参数的一个可能范围。

区间估计结果可以用于假设检验,但假设检验不能用作区间估计。

2. 双侧检验与单侧检验有什么区别?【答题要点】双侧检验的零假设为等号,备择假设为不等号,得到的拒绝域为双侧的;单侧检验的备择假设或者是大于,或者是小于,其拒绝域为单侧区间。

双侧检验适合于生产过程中的决策问题,而单侧假设则适合于判断声明有效性和技术、方法等的有效性。

3. 假设检验一般有哪几个步骤?【答题要点】提出假设,给定显著性水平;计算统计量;计算拒绝域,做出决策七、论述题根据题意回答要点,并适当从理论上进行阐述。

1. 小概率原则与假设检验是什么关系?【答题要点】假设检验的基本思想是利用概率意义下的“反证法”来拒绝原假设,“反证法”的理论依据是小概率原理:即小概率事件在一次试验中不可能发生。

通过抽样,以样本资料为依据进行假设检验,由于样本的取得可以看作是一次试验,通过判断由样本构成的统计量是否为小概率事件,来判断原假设是否成立。

2. 方差分析的基本思想是什么?【答题要点】将全部观察值总的离均差平方和及自由度分解为两个或多个部分,除随机误差外,其余每个部分的变异可由某个因素的作用加以解释,通过比较不同来源变异的均方,借助F分布做出统计推断,从而了解该因素对观察指标有无影响。

八、案例分析把学习过的统计学原理与教科书中的案例内容结合起来,讨论案例后提出的问题。

案例分析:《现金股利与上市公司未来收益的实证分析》(见梁前德主编的《统计学》(第二版),高等教育出版社,2008年版)问题1. 作者是如何运用假设检验方法论证现金股利与上市公司未来收益的?【答题要点】首先将股利进行分组,然后利用单因素方差分析法,来检验上市公司未来收益是否在各组之间有显著差异。

问题2. 结合案例内容,你认为应该怎样科学构建统计实证分析框架?【答题要点】结合专业背景知识、科学的选取指标是实证分析的基础,在此基础上选择正确的抽样方法,以降低抽样推断带来的误差,最后是基于具体问题,选择合适的统计分析方法。

问题3. 案例中采用了哪几种统计检验方法?与教材中的内容有何异同?【答题要点】案例中采用了两样本方差齐性的F 检验、两样本的异方差t 检验、单因素方差分析两样本等方差t 检验,以及成对样本的均值检验。

案例中,在应用统计分析方法之前,都检验了相应统计分析方法的前提条件是否得到满足,而不是想当然的选择某种统计方法。

九、能力训练根据提供的训练资料和相应的训练要求,用已经学过的统计学基本原理和统计方法,分析一些具体的社会经济问题,以加深理解假设检验与方差分析的方法及其运用。

训练目标1掌握总体均值的假设检验方法。

【解答】【训练资料1】(1)提出假设5.0:5.0:10≠↔=μμH H(2)计算统计量u=0.219(3)做出决策:给定显著性水平0.05,拒绝域为),96.1()96.1,(∞--∞ ,所以不拒绝零假设,即认为包装机工作正常。

【解答】【训练资料2】(1)提出假设200:200:10>↔≤μμH H(2)计算统计量t=2.62(3)做出决策:给定显著性水平0.05,拒绝域为),83.1(∞,所以拒绝零假设,即电子元件的平均值有所提高。

【解答】【训练资料3】(1)提出假设5.32:5.32:10≠↔=μμH H(2)计算统计量u=-3.06(3) 做出决策:给定显著性水平0.05,拒绝域为),96.1()96.1,(∞--∞ ,所以拒绝零假设,即认为这批零件的平均长度不是32.50mm 。

【解答】【训练资料4】(1)提出假设74:74:10≠↔=μμH H(2)计算统计量t=-4.65(3) 做出决策:给定显著性水平0.05,拒绝域为),13.2()13.2,(∞--∞ ,所以拒绝零假设,即经常参加体育锻炼的中学生心脏功能有显著差异。

【解答】【训练资料5】(1)提出假设250:250:10≠↔=μμH H(2)计算统计量u=3.33(3) 做出决策:给定显著性水平0.05,拒绝域为),96.1()96.1,(∞--∞ ,所以拒绝零假设,即认为该批果酱不符合标准。

【解答】【训练资料6】(1)提出假设0:0:10≠↔=μμH H(2)计算统计量t=2.327(3) 做出决策:给定显著性水平0.05,拒绝域为),14.2()14.2,(∞--∞ ,所以拒绝零假设,即孪生兄弟先后出生的体重显著不同。

【解答】【训练资料7】(1)提出假设211210::μμμμ≠↔=H H(2)计算统计量u=0.97(3) 做出决策:给定显著性水平0.05,拒绝域为),96.1()96.1,(∞--∞ ,所以不拒绝零假设,即使用原料A 与使用原料B 生产的产品重量的均值相等。

【解答】【训练资料8】(1)提出假设211210::μμμμ≠↔=H H(2)计算统计量u=0.268(3) 做出决策:给定显著性水平0.05,拒绝域为),96.1()96.1,(∞--∞ ,所以不拒绝零假设,即两机床加工的零件外径无显著差异。

训练目标2掌握总体成数的假设检验方法。

【解答】【训练资料1】(1)提出假设95.0:95.0:10≠↔=P H P H(2)计算统计量u=1.03(3) 做出决策:给定显著性水平0.05,拒绝域为),96.1()96.1,(∞--∞ ,所以不拒绝零假设,即该企业全部产品的合格率达到了95%。

【解答】【训练资料2】(1)提出假设6.0:6.0:10>↔≤P H P H(2)计算统计量u=0.41(3) 做出决策:给定显著性水平0.05,拒绝域为),645.1()645.1,(∞--∞ ,所以不拒绝零假设,即彩电的居民家庭拥有率没有增长。

【解答】【训练资料3】1. 提出假设98.0:98.0:10≠↔=P H P H计算统计量u=0.09做出决策:给定显著性水平0.05,拒绝域为),96.1()96.1,(∞--∞ ,所以不拒绝零假设,即认为推销员的话真实。

2. 显著性水平α应该大,从而犯第二类错误的概率就小,损失就越小。

【解答】【训练资料4】(1)提出假设211210::μμμμ≠↔=H H(2)平均含脂率差为0.006,统计量t=0.058(3) 做出决策:给定显著性水平0.05,拒绝域为),1.2()1.2,(∞--∞ ,所以不拒绝零假设,即处理前后的含脂率无显著变化。

【解答】【训练资料5】(1)提出假设211210::μμμμ<↔≥H H(2)计算统计量t=-4.65(3) 做出决策:给定显著性水平0.05,拒绝域为),73.1()73.1,(∞--∞ ,所以拒绝零假设,即乙方案比率高于甲方案。

训练目标3掌握总体方差的假设检验方法。

【解答】【训练资料1】(1)提出假设2221122210::σσσσ≠↔=H H (2)计算统计量F=1.34(3) 做出决策:给定显著性水平0.05,拒绝域为),2.2(∞,所以不拒绝零假设,即两总体的方差相等。

【解答】【训练资料2】(1)提出假设64:64:2120=↔=σσH H(2)计算统计量65.102=χ(3) 做出决策:给定显著性水平0.05,拒绝域为),023.19()7.2,(∞-∞ ,所以不拒绝零假设,即车间铜丝折断力的方差是64。

【解答】【训练资料3】(1)提出假设2221122210::σσσσ≠↔=H H (2)计算统计量F=1.07(3) 做出决策:给定显著性水平0.05,拒绝域为),535.17()18.2,(∞-∞ ,所以不拒绝零假设,即在70℃和80℃的条件下针织品断裂强度没有差别。

【解答】【训练资料4】(1)提出假设2.1:2.1:10>↔≤σσH H(2)计算统计量94.452=χ(3) 做出决策:给定显著性水平0.05,拒绝域为),261.7(∞,所以拒绝零假设,即纱的均匀度变劣。

相关文档
最新文档