第八 假设检验与方差分析
假设检验-方差分析及回归分析

1.645 时,拒绝 H0。
率有显著提高,此时犯(第一类)错误的 5% 。 概率不会超过
若取 0.005 , 查表得
z 0.005 2.57 , 仍有 z 3.125 2.57 , 所以在显著性水平 0.005 下
也拒绝 H0,从而可断定犯错误的概率 不会超过 0.5% 。
( n1 1) s ( n2 1) s , n1 n2 2
2 1 2 2
若 t t ( n1 n 2 2) ,则拒绝 H0
2
右边检验
H 0 : 1 2 0 , H 1 : 1 2 0
若 t t ( n1 n 2 2 ) ,则拒绝 H0
第八章 假设检验
第九章 方差分析及回归分析
第八章 假设检验
§1 假设检验
§2 正态总体均值的假设检验
§3 正态总体方差的假设检验
§5 分布拟合检验
§1 假设检验 实际推断原理 概率很小的事件在一
次试验中实际上可认为是不会发生的。本章 的内容,一是已知总体的分布类型,而对包 含的未知参数作某些假设,二是未知总体的 分布类型,而对总体的分布作出假设。 所谓假设检验就是提出假设后,根据实 际推断原理作出接受还是拒绝的判断。
2
均未知。 2 2 2 2 H0 : 1 2 , H1 : 1 2
s 检验统计量 F , s
若 F F ( n1 1, n 2 1)
2
2 1 2 2
或 F F1 ( n1 1, n 2 1) ,
2
则拒绝 H0。
若
2 2
F1 ( n1 1, n2 1) F F ( n1 1, n2 1) ,
假设检验与方差分析 习题及答案

第七章 假设检验与方差分析 习题答案一、名词解释用规范性的语言解释统计学中的名词。
1. 假设检验:对总体分布或参数做出某种假设,然后再依据抽取的样本信息,对假设是否正确做出统计判断,即是否拒绝这种假设。
2. 原假设:又叫零假设或无效假设,是待检验的假设,表示为 H 0,总是含有等号。
3. 备择假设:是零假设的对立,表示为 H 1,总是含有不等号。
4. 单侧检验:备择假设符号为大于或小于时的假设检验。
5. 显著性水平:原假设为真时,拒绝原假设的概率。
6. 方差分析:是检验多个总体均值是否相等的一种统计分析方法。
二、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。
1. 在任何情况下,假设检验中的两类错误都不可能同时降低。
( × ) 样本量一定时2. 对于两样本的均值检验问题,若方差均未知,则方差分析和t 检验均可使用,且两者检验结果一致。
( √ )3. 方差分析中,组间离差平方和总是大于组内离差平方和。
( × )不一定4. 在假设检验中,如果在显著性水平0.05下拒绝了00:μμ≤H ,则在同一水平一定可以拒绝假设00:μμ=H 。
( × )不一定5. 为检验k 个总体均值是否显著不同,也可以用t 检验,且与方差分析相比,犯第一类错误的概率不变。
( × )会增加6. 方差分析中,若拒绝了零假设,则认为各个总体均值均有显著性差异。
( × ) 不完全相等六、简答题根据题意,用简明扼要的语言回答问题。
1. 假设检验与统计估计有何区别与联系?【答题要点】假设检验是在给定显著性水平下,计算出拒绝域,并根据样本统计量信息来做出是否拒绝零假设的决策;区间估计是利用样本信息来推断总体参数的一个可能范围。
区间估计结果可以用于假设检验,但假设检验不能用作区间估计。
2. 双侧检验与单侧检验有什么区别?【答题要点】双侧检验的零假设为等号,备择假设为不等号,得到的拒绝域为双侧的;单侧检验的备择假设或者是大于,或者是小于,其拒绝域为单侧区间。
如何撰写报告中的方差分析与假设检验

如何撰写报告中的方差分析与假设检验引言:在实证研究中,方差分析和假设检验是常用的统计方法。
它们可以帮助研究者评估不同组别之间的差异并确定结果的显著性。
然而,撰写报告时,对方差分析和假设检验的描述和解释往往带有一定的难度。
本文将从数据的准备、实验设计、统计方法和结果解读几个方面进行详细论述。
具体而言,我们将探讨实验设计中的依赖变量和自变量、方差分析和假设检验的基本概念、结果呈现的方式、以及如何进行结果解读。
一、数据准备:方差分析和假设检验的首要前提是有一组可靠的数据。
在进行实验之前,研究者需要确定准确的变量和测量方法,并设计有效的实验条件。
此外,在收集数据之前,应确保样本的代表性以及样本量的合理性。
数据的准备阶段应特别注意数据的清理和检验。
只有经过仔细清理的数据才能保证结果的准确性和可靠性。
二、实验设计:实验设计是方差分析和假设检验中的关键环节。
在设计实验时,研究者需要考虑自变量、依赖变量和控制变量。
自变量是影响依赖变量的因素,而控制变量是排除其他可能影响结果的因素。
一个好的实验设计应具备以下几个要素:随机分组、重复性、平衡性和隐蔽性。
只有在这些条件下,方差分析和假设检验的结果才能具备统计学上的合理性。
三、方差分析的基本概念:方差分析是用来比较两个或多个组别平均值差异的统计方法。
它的基本原理是通过计算组内变差和组间变差来评估组别之间的差异。
组内变差反映了组内个体的异质性,而组间变差衡量了不同组别之间的异质性。
通过比较组内变差和组间变差的大小,我们可以判断组别之间的显著性差异。
四、假设检验的基本概念:假设检验是用来验证统计假设的方法。
在方差分析中,我们通常会对两个假设进行检验,即零假设和备择假设。
零假设是指没有组别差异存在,备择假设是指组别差异显著存在。
通过计算统计量和确定显著性水平,我们可以通过拒绝或接受零假设来得出结论。
五、结果呈现的方式:在报告中呈现方差分析和假设检验的结果时,应该包括所使用的统计方法、样本的特征和主要结果。
8方差分析(一)

差值大小产生原因:抽样误差
Xj-X
病例号 1 2 3 4 均值 A药组 1 (4-3) 1 (4-3) 1 (4-3) 1 (4-3) 4 B药组 0 (3-3) 0 (3-3) 0 (3-3) 0 (3-3) 3 C药组 -1 (2-3) -1 (2-3) -1 (2-3) -1 (2-3) 2
N(μC,σ2) N(μB,σ2) N(μA,σ2)
△
△★ △★ 2
◆ ◆△ 3
★ ★ 4
◆ ◆
若μA=μB=μC=μ, 则3个样本来自同一总体
△
△★ △★ 2
◆ ◆△ 3
★A≠XB≠XC的原因是什么?
① 止痛药作用存在 μA≠μB≠μC 不存在 μA=μB=μC ② 抽样误差 一定存在
1 2 1 2 1 2
通常情况下,一般采用双侧检验.
0.05
0.025
0.025
-1.96
-1.64
假设检验的两种类型错误 统计推断目的是通过由有限的样本认 识无限的总体。由于假设检验是根据 “小概率事件实际不可能性原理”来 决定是否拒绝无效假设的,所以不论 是拒绝还是不拒绝无效假设,都没有 100%的把握。因此,在假设检验时可 能犯两类错误。
表
服用A,B,C药的疼痛分值
━━━━━━━━━━━━━━━━━━━━ 分组 A药 B 药 C药 ━━━━━━━━━━━━━━━━━━━━ 3 2 2 5 2 1 3 4 3 5 4 2 ━━━━━━━━━━━━━━━━━━━━ 例数 4 4 4 均值 4 3 2 方差 1.334 1.334 0.666 ━━━━━━━━━━━━━━━━━━━━ X=3
多次采用t检验时的假阳性率
若单次t检验假阳性错误的概率为0.05, 若进行两次t检验不犯假阳性错误的概率为 0.9025,犯假阳性错误的概率为0.0975。 若进行三次t检验不犯假阳性错误的概率为 0.8573,犯假阳性错误的概率为0.1426.
统计分析中的假设检验与方差分析

统计分析中的假设检验与方差分析统计分析是一种科学的方法,通过对数据进行收集、整理、分析和解释,帮助我们了解现象背后的规律和关系。
在统计分析中,假设检验和方差分析是两个重要的概念和工具。
本文将介绍这两个概念的基本原理和应用。
一、假设检验假设检验是统计学中的一种常用方法,用于判断样本数据是否能够反映总体的特征。
在假设检验中,我们首先提出一个原假设(H0)和一个备择假设(H1),然后通过对样本数据的分析,判断是否拒绝原假设。
在假设检验中,我们需要进行以下几个步骤:1. 确定原假设和备择假设:原假设通常是我们要证伪的观点,备择假设则是我们要支持的观点。
例如,我们想要检验某个新药物是否有效,原假设可以是“该药物无效”,备择假设可以是“该药物有效”。
2. 选择显著性水平:显著性水平(α)是我们在进行假设检验时所允许的错误概率。
通常情况下,我们选择的显著性水平为0.05或0.01。
如果计算得到的p值小于显著性水平,则我们拒绝原假设。
3. 计算检验统计量:检验统计量是根据样本数据计算得到的一个数值,用于判断样本数据是否支持备择假设。
常见的检验统计量包括t值、F值等。
4. 判断拒绝或接受原假设:根据计算得到的检验统计量和显著性水平,我们可以判断是否拒绝原假设。
如果p值小于显著性水平,则我们拒绝原假设,否则我们接受原假设。
假设检验在实际应用中具有广泛的应用,例如医学研究、市场调查、工程设计等。
通过假设检验,我们可以对研究结果进行客观的评估和判断,从而做出更准确的决策。
二、方差分析方差分析是一种用于比较多个样本均值是否存在显著差异的统计方法。
在方差分析中,我们将总体分为若干个独立的组,然后通过计算组间方差和组内方差的比值,来判断不同组之间的均值是否存在显著差异。
方差分析的基本原理是利用方差的性质来比较样本均值之间的差异。
具体步骤如下:1. 确定独立变量和因变量:独立变量是我们要比较的不同组别,而因变量是我们要研究的特征或指标。
项目八假设检验回归分析与方差分析

项目八 假设检验、回归分析与方差分析实验2 回归分析实验目的 学习利用Mathematica 求解一元线性回归问题. 学会正确使用命令线性回归Regress, 并从输出表中读懂线性回归模型中各参数的估计, 回归方程, 线性假设的显著性检验结果, 因变量Y 在预察点0x 的预测区间等.基本命令1.调用线性回归软件包的命令<<Statistics\LinearRegression.m 输入并执行调用线性回归软件包的命令<<Statistics\LinearRegression.m或调用整个统计软件包的命令<<Statistics`2.线性回归的命令Regress一元和多元线性回归的命令都是Regress. 其格式是Regress[数据, 回归函数的简略形式, 自变量,RegressionReport(回归报告)->{选项1,选项2,选项3,…}]注: 回归报告中包含BestFit(最佳拟合,即回归函数), ParameterCITable(参数的置信区间表), PredictedResponse(因变量的预测值), SinglePredictionCITable(因变量的预测区间), FitResiduals(拟合的残差), SummaryReport(总结性报告)等.3.抹平“集合的集合”的命令Flatten命令Flatten[A]将集合的集合A 抹平为只有一个层次的集合. 例如, 输入Flatten[{{1,2,3},{1,{3}}}]则输出{1,2,3,1,3}.4.非线性拟合的命令NonlinearFit 使用的基本格式为NonlinearFit [数据, 拟合函数, (拟合函数中的)变量集, (拟合函数中的)参数, 选项] 注: 拟合函数中既有变量又有参数, 变量的个数要与数据的形式相应. 参数集中往往需 要给出各参数的初值. 选项的内容主要是指定拟合算法、迭代次数和精度.实验举例例2.1 (教材 例2.1) 某建材实验室做陶粒混凝土实验室中, 考察每立方米)(3m 混凝土的水泥用量(kg)对混凝土抗压强度)/(2cm kg 的影响, 测得下列数据:7.894.866.822.804.771.742602502402302202103.711.686.646.613.589.56200190180170160150yx y x 抗压强度水泥用量抗压强度水泥用量(1) 画出散点图;(2) 求y 关于x 的线性回归方程,ˆˆˆx b a y+=并作回归分析; (3) 设2250=x kg, 求y 的预测值及置信水平为0.95的预测区间.先输入数据:aa = {{150,56.9},{160,58.3},{170,61.6},{180,64.6},{190,68.1},{200,71.3},{210,74.1},{220,77.4},{230,80.2},{240,82.6},{250,86.4},{260,89.7}};(1) 作出数据表的散点图. 输入ListPlot[aa,PlotRange->{{140,270},{50,90}}]则输出图2.1.图2.1(2) 作一元回归分析, 输入Regress[aa,{1,x},x,RegressionReport->{BestFit,ParameterCITable,SummaryReport}]则输出{BestFit->10.2829+0.303986x, ParameterCITable->Estimate SE CI 1 10.2829 0.850375 {8.388111,12.1776}, x 0.303986 0.00409058 {0.294872,0.3131} ParameterTable->Esimate SE Tstat PValue 110.28290.85037512.09222.71852710-⨯,x 0.303986 0.00409058 74.3137 4.884981510-⨯ Rsquared->0.998193,AdjustedRSquared->0.998012, EstimatedVariance->0.0407025,ANOV A Table->DF SumOfSq MeanSq Fratio PValue Model1 1321.43 1321.435522.524.773961510-⨯Error10 2.39280.23928Total 11 1323.82现对上述回归分析报告说明如下:BestFit(最优拟合)-> 10.2829+0.303986x 表示一元回归方程为x y 303986.02829.10+=;ParameterCITable(参数置信区间表)中: Estimate 这一列表示回归函数中参数a , b 的点估计为aˆ=10.2829 (第一行), b ˆ= 0.303986 (第二行); SE 这一列的第一行表示估计量a ˆ的标准差为0.850375, 第二行表示估计量bˆ的标准差为0.00409058; CI 这一列分别表示a ˆ的置信水平为0.95的置信区间是(8.388111,12.1776), bˆ的置信水平为0.95的置信区间是 (0.294872,0.3131).ParameterTable(参数表)中前两列的意义同参数置信区间表; Tstat 与Pvalue 这两列的第一行表示作假设检验(t 检验):0:,0:10≠=a H a H 时, T 统计量的观察值为12.0922, 检验统计量的P 值为2.71852710-⨯, 这个P 值非常小, 检验结果强烈地否定0:0=a H , 接受0:1≠a H ; 第二行表示作假设检验(t 检验): ,0:0=b H 0:1≠b H 时T 统计量的观察值为74.3137, 检验统计量的P 值为 4.884981510-⨯, 这个P 值也非常小, 检验结果强烈地否定,0:0=b H 接受0:1≠b H .Rsquared->0.998193, 表示.998193.0)()(2==总平方和回归平方和SST SSR R 它说明y 的变化有99.8%来自x 的变化; AdjustedRSquared->0.998012, 表示修正后的=2~R 0.998012.EstimatedVariance->0.0407025, 表示线性模型),0(~,2σεεN bx a y ++=中方差2σ的估计为0.0407025.ANOV A Table(回归方差分析表)中的DF 这一列为自由度: Model(一元线性回归模型)的自由度为1, Error(残差)的自由度为,102=-n Total(总的)自由度为.111=-nSumOfSq 这一列为平方和: 回归平方和=SSR 1321.43, 残差平方和=SSE 2.3928,总的平方和=+=SSE SSR SST 1323.82;MeanSq 这一列是平方和的平均值, 由SumOfSq 这一列除以对应的DF 得到, 即.23928.02,43.13211=-===n SSEMSE SSR MSR FRatio 这一列为统计量MSEMSRF =的值, 即.52.5522=F 最后一列表示统计量F 的P 值非常接近于0. 因此在作模型参数)(b =β的假设检验(F 检验):0:;0:10≠=ββH H 时, 强烈地否定0:0=βH , 即模型的参数向量.0≠β因此回归效果 非常显著.(3) 在命令RegressionReport 的选项中增加RegressionReport->{SinglePredictionCITable}就可以得到在变量x 的观察点处的y 的预测值和预测区间. 虽然0.14=x 不是观察点, 但是可以用线性插值的方法得到近似的置信区间. 输入aa=Sort[aa]; (*对数据aa 按照水泥用量x 的大小进行排序*)regress2=Regress[aa,{1,x},x,RegressionReport->{SinglePredictionCITable}](*对数据aa 作线性回归, 回归报告输出y 值的预测区间*)执行后输出{SinglePredictionCITable-> Observed PredictedSE CI56.9 55.8808 0.55663 {54.6405,57.121} 58.3 58.92060.541391 {57.7143,60.1269} 61.6 61.9605 0.528883 {60.7821,63.1389} 64.6 65.00030.519305 {63.8433,66.1574} 68.1 68.0402 0.51282 {66.8976,69.1828} 71.3 71.0801 0.509547 {69.9447,72.2154}} 74.1 74.1199 0.509547 {72.9846,75.2553} 77.4 77.1598 0.51282 {76.0172,78.3024} 80.2 80.1997 0.519305 {79.0426,81.3567} 82.6 83.2395 0.528883 {82.0611,84.4179} 86.4 86.2794 0.541391 {85.0731,87.4857} 89.7 89.3192 0.55663 {88.079,90.5595}上表中第一列是观察到的y 的值, 第二列是y 的预测值, 第三列是标准差, 第四列是相应的预测区间(置信度为0.95). 从上表可见在)4.77(220==y x 时, y 的预测值为77.1598, 置信度为0.95的预测区间为(76.0172,75.2553), 在)2.80(230==y x 时, y 的预测值为80.1997, 置信度为0.95的预测区间为{79.0426,81.3567}. 利用线性回归方程, 可算得=0x 225时, y 的预测值为78.68, 置信度为0.95的预测区间为(77.546, 79.814).利用上述插值思想, 可以进一步作出预测区间的图形. 先输入调用图软件包命令<<Graphics`执行后再输入{observed2,predicted2,se2,ci2}=Transpose[(SinglePredictionCITable/.regress2)[[1]]];(*取出上面输出表中的四组数据, 分别记作observed2,predicted2,se2,ci2*) xva12=Map[First,aa];(*取出数据aa 中的第一列, 即数据中x 的值, 记作xva12*) Predicted3=Transpose[{xva12,predicted2}];(*把x 的值xva12与相应的预测值predicted2配成数对, 它们应该在一条回 归直线上*)lowerCI2=Transpose[{xva12,Map[First,ci2]}];(*Map[First,ci2]取出预测区间的第一个值, 即置信下限. x 的值xva12与相应 的置信下限配成数对*)upperCI2=Transpose[{xva12,Map[Last,ci2]}];(*Map[Last,ci2]取出预测区间的第二个值, 即置信上限. x 的值xva12与相应的置信上限配成数对*)MultipleListPlot[aa,Predicted3,lowerCI2,upperCI2,PlotJoined->{False,True,True,True},SymbolShape->{PlotSymbol[Diamond],None,None, None}, PlotStyle->{Automatic,Automatic,Dashing[{0.04,0.04}], Dashing[{0.04,0.04}]}](*把原始数据aa 和上面命令得到的三组数对predicted3,lowerCI2,upperCI2 用多重散点图命令MultipleListPlot 在同一个坐标中画出来. 图形中数据 aa 的散点图不用线段连接起来, 其余的三组散点图用线段连接起来, 而 且最后两组数据的散点图用虚线连接.*)则输出图2.2.图2.2从图形中可以看到, 由Y 的预测值连接起来的实线就是回归直线. 钻石形的点是原始数 据. 虚线构成预测区间.多元线性回归例2.2 (教材 例2.2) 一种合金在某种添加剂的不同浓度下, 各做三次试验, 得到数据如下表:8.323.327.298.277.288.301.306.321.313.274.297.312.318.292.250.300.250.200.150.10Yx 抗压强度浓度(1) 作散点图;(2) 以模型),0(~,22210σεεN x b x b b Y +++=拟合数据, 其中2210,,,σb b b 与x 无关;(3) 求回归方程,ˆˆˆˆ2210x b x b b y ++=并作回归分析. 先输入数据bb={{10.0,25.2},{10.0,27.3},{10.0,28.7},{15.0,29.8},{15.0,31.1},{15.0,27.8},{20.0,31.2},{20.0,32.6}, {20.0,29.7},{25.0,31.7},{25.0,30.1},{25.0,32.3}, {30.0,29.4},{30.0,30.8},{30.0,32.8}};(1) 作散点图, 输入ListPlot[bb,PlotRange->{{5,32},{23,33}},AxesOrigin->{8,24}]则输出图2.3.图2.3(2) 作二元线性回归, 输入Regress[bb,{1,x,x^2},x,RegressionReport->{BestFit,ParameterCITable,SummaryReport}](*对数据bb 作回归分析, 回归函数为,2210x b x b b ++用{1,x,x^2}表示, 自变量为x, 参数0b ,1b ,2b 的置信水平为0.95的置信区间)执行后得到输出的结果:{bestFit->19.0333+1.00857x-0.020381x 2, ParameterCITable->Estimate SE CI119.0333 3.27755{11.8922,26.1745} x 1.00857 0.356431{0.231975,1.78517}x 2 -0.0203810.00881488{-0.0395869,-0.00117497}ParameterTable->Estimate SE Tstat PValue 119.03333.277555.807180.0000837856x 1.00857 0.356431 2.82964 0.0151859 x 2 -0.0203810.00881488-2.312110.0393258Rsquared->0.614021,AdjustedRSquared->0.549692, EstimatedVariance->2.03968,ANOV A Table->DF SumOfSqMeanSq Fratio PValue Mode1 2 38.937119.4686 9.54490.00330658Error 12 24.47622.03968Total14 63.4133从输出结果可见: 回归方程为,020381.000857.10333.192x x Y -+=.020381.0ˆ,00857.1ˆ,0333.19ˆ210-===b b b 它们的置信水平为0.95的置信区间分别是 (11.8922,26.1745),(0.231975,1.78517),(-0.0395869,-0.00117497).假设检验的结果是: 在显著性水平为0.95时它们都不等于零. 模型),0(~,22210σεεN x b x b b Y +++=中,2σ的估计为2.03968. 对模型参数T b b ),(21=β是否等于零的检验结果是: .0≠β因此回归效果显著.非线性回归例2.3 下面的数据来自对某种遗传特征的研究结果, 一共有2723对数据, 把它们分成8类后归纳为下表.36.1937.1991.2079.2115.2342.257.2908.3887654321917461203246071021579y x 遗传性指标分类变量频率研究者通过散点图认为y 和x 符合指数关系:,c ae y bx += 其中c b a ,,是参数. 求参数c b a ,,的最小二乘估计.因为y 和x 的关系不是能用Fit 命令拟合的线性关系, 也不能转换为线性回归模型. 因此考虑用(1)多元微积分的方法求c b a ,,的最小二乘估计; (2)非线性拟合命令NonlinearFit 求c b a ,,的最小二乘估计.(1) 微积分方法 输入Off[Genera1::spe11] Off[Genera1::spe111] Clear[x,y,a,b,c]dataset={{579,1,38.08},{1021,2,29.70},{607,3,25.42},{324,4,23.15},{120,5,21.79},{46,6,20.91},{17,7,19.37},{9,8,19.36}}; (*输入数据集*) y[x_]:=a Exp[b x]+c (*定义函数关系*)下面一组命令先定义了曲线c ae y bx +=与2723个数据点的垂直方向的距离平方和, 记为).,,(c b a g 再求),,(c b a g 对c b a ,,的偏导数,,,cgb g a g ∂∂∂∂∂∂分别记为.,,gc gb ga 用FindRoot 命令解三个偏导数等于零组成的方程组(求解c b a ,,). 其结果就是所要求的c b a ,,的最小二乘估计. 输入Clear[a,b,c,f,fa,fb,fc]g[a_,b_,c_]:=Sum[dataset[[i,1]]*(dataset[[i,3]]-a*Exp[dataset[[i,2]]*b]-c)^2,{i,1,Length[dataset]}] ga[a_,b_,c_]=D[g[a,b,c],a]; gb[a_,b_,c_]=D[g[a,b,c],b]; gc[a_,b_,c_]=D[g[a,b,c],c]; Clear[a,b,c]oursolution=FindRoot[{ga[a,b,c]==0,gb[a,b,c]==0,gc[a,b,c]==0},{a,40.},{b,-1.},{c,20.}](* 40是a 的初值, -1是b 的初值, 20是c 的初值*)则输出{a->33.2221,b->-0.626855,c->20.2913} 再输入yhat[x_]=y[x]/.oursolution则输出20.2913+33.2221x e 626855.0这就是y 和x 的最佳拟合关系. 输入以下命令可以得到拟合函数和数据点的图形:p1=Plot[yhat[x],{x,0,12},PlotRange->{15,55},DisplayFunction->Identity]; pts=Table[{dataset[[i,2]],dataset[[i,3]]},{i,1,Length[dataset]}]; p2=ListPlot[pts,PlotStyle->PointSize[.01],DisplayFunction->Identity]; Show[p1,p2,DisplayFunction->$DisplayFunction];则输出图2.4.图2.4(2) 直接用非线性拟合命令NonlinearFit 方法 输入data2=Flatten[Table[Table[{dataset[[j,2]],dataset[[j, 3]]},{i,dataset[[j,1]]}],{j,1,Length[dataset]}],1]; (*把数据集恢复成2723个数对的形式*)<<Statistics`w=NonlinearFit[data2,a*Exp[b*x]+c,{x},{{a,40},{b,-1},{c,20}}]则输出x e 626855.02221.332913.20-+这个结果与(1)的结果完全相同. 这里同样要注意的是参数c b a ,,必须选择合适的初值.如果要评价回归效果, 则只要求出2723个数据的残差平方和.)ˆ(2∑-i i yy 输入 yest=Table[yhat[dataset[[i,2]]],{i,1, Length[dataset]}];yact=Table[dataset[[i,3]],{i,1,Length[dataset]}]; wts=Table[dataset[[i,1]],{i,1,Length[dataset]}]; sse=wts.(yact-yest)^2 (*作点乘运算*)则输出59.9664即2723个数据的残差平方和是59.9664. 再求出2723个数据的总的相对误差的平方和.]ˆ/)ˆ[(2∑-i i i y yy 输入 sse2=wts.((yact-yest)^2/yest) (*作点乘运算)则输出2.74075由此可见, 回归效果是显著的.实验习题1.某乡镇企业的产品年销售额x 与所获纯利润y 从1984年的数据(单位:百万元)如下表3.225.207.174.157.135.117.94.83.84.65.43.349.328.294.241.214.176.147.104.95.71.69493929190898887868584y x 纯利润销售额年度 试求y 对x 的经验回归直线方程, 并作回归分析.2.在钢线碳含量对于电阻的效应的研究中, 得到以下数据268.236.2221191815/95.080.070.055.040.030.010.0%/Ωμy x 电阻碳含量试求y 对x 的经验回归直线方程, 并作简单回归分析.(1) 画出散点图;(2) 求y 关于x 的线性回归方程,ˆˆˆx b a y+=并作回归分析; (3) 求0.14=x 时y 的置信水平为0.95的预测区间.4.下面给出了某种产品每件平均单价Y (单位:元)与批量x (单位:件)之间的关系的一组数 据18.120.121.124.126.130.140.148.155.165.170.181.1908075706560504035302520y x(i)作散点图. (ii)以模型),0(~,22210σεεN x b x b b Y +++=拟合数据, 求回归方程,ˆˆˆˆ2210x b x b b Y ++=并作简单回归分析.]。
概率与统计中的假设检验和方差分析

概率与统计中的假设检验和方差分析统计学是研究数据收集、分析和解释的科学。
在统计学的研究中,假设检验和方差分析是两个重要的工具。
本文将对这两个概念进行详细介绍,并探讨它们在实际问题中的应用。
一、假设检验假设检验是指根据样本数据对总体参数提出的关于总体的假设进行检验的过程。
假设检验主要包括以下几个步骤:1. 提出原假设(H0)和备选假设(H1):原假设是对总体参数的某种陈述,备选假设是对原假设的否定。
例如,假设检验中常见的原假设是总体参数等于某个特定值,备选假设是总体参数不等于该特定值。
2. 选择检验统计量:检验统计量是根据样本数据计算的统计量,用于衡量观察到的样本结果与原假设之间的差异。
3. 确定显著性水平(α):显著性水平是在假设检验中指定的判断标准,通常取0.05或0.01。
当P值(观察到的统计量发生的概率)小于显著性水平时,拒绝原假设,否则接受原假设。
4. 进行假设检验:根据选择的检验统计量,计算其观察值,并与理论上的检验统计量分布进行比较,得出拒绝或接受原假设的结论。
假设检验在实际中的应用非常广泛,比如医学研究中对新药物疗效的检验、市场调研中对产品平均销量的检验等。
二、方差分析方差分析是一种用于比较多个总体均值差异是否显著的统计方法。
方差分析的基本思想是将总体的差异分解成不同成分,通过比较成分之间的差异来判断总体均值是否存在差异。
方差分析主要包括以下几个步骤:1. 提出假设:假设要比较的多个总体没有显著差异(H0),备选假设为多个总体之间存在显著差异(H1)。
2. 计算变异程度:将总体的差异分解成组间变异和组内变异两部分。
组间变异是指各个样本均值与总体均值之间的差异,组内变异是指同一样本内各个观测值与样本均值之间的差异。
3. 计算F值:根据组间变异和组内变异的比值计算F值。
F值越大,说明组间差异相对于组内差异的贡献越大。
4. 判断显著性:将计算得到的F值与理论上的F分布进行比较,得出拒绝或接受原假设的结论。
假设检验-方差分析

置信上限: x + uα / 2 σ = 1.96 + 1.96 × 0.028 = 1.98
n 6
置信区间:(1.94,1.98) (3)作出判断结论:因为在H0成立的条件下 作出判断结论:因为在 成立的条件下95%的置信区间 作出判断结论 的置信区间 不包含µ ,故在显著水平α 下拒绝H 不包含µ0=2,故在显著水平α=0.05下拒绝 0。 下拒绝
u=
x − µ0 σ/ n
=
1 . 96 − 2 0 . 028 / 6
= − 3 . 4993
(3)给定α求临界值:取α=0.05,查表得u0.05/2=1.96, 由于|u|>1.96,故在显著性水平α=0.05下拒绝H0。
2、置信区间法 (1)提出原假设H0:µ=2,备择假设H1: µ≠2 (2)给定α求置信区间:取α=0.05,查表得u0.05/2=1.96, σ=0.028, =1.96,则: x 置信下限: x − uα / 2 σ = 1.96 − 1.96 × 0.028 = 1.94
t =
ቤተ መጻሕፍቲ ባይዱ
x − µ0 s/ n
=
0 . 47 − 0 . 5 0 . 05 / 25
= −3
(3) 由α=0.01及df=25-1=24,查表得 及 ,查表得P(|t|>3)=p<0.01, 拒绝 H0(0.001<p<0.01)。即该厂生产的这批药片不符合规定。 。即该厂生产的这批药片不符合规定。
(二)两个正态总体的检验 1、配对比较与成组比较
小概率事件在一次试验中不会发生。 二、假设检验步骤 1、提出原假设H0和备择假设H1 2、在原假设成立的条件下,构造一个分布已知的 统计量 用于检验原假设的合理性的统计量称为检验统 计量,简称检验。如S=f(X1,X2,…,Xn)使得 P(S∈S0)=α,即S∈S0是一个小概率事件。称S0为拒 绝域或临界域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
㈢ 单侧检验与双侧检验
单侧检验是指检验统计量的取值位于其抽样 分布的某一侧范围内时拒绝原假设,也就是 说抽样分布的某一侧构成了拒绝域。
双侧检验是指检验统计量的取值位于其抽样 分布的任何一侧范围内时拒绝原假设,也就 是说抽样分布的左右两侧共同构成了拒绝域。
二、假设检验中的两类错误**
第Ⅰ类错误/弃真错误 (type Ⅰ error)
当原假设为真时拒绝原假设。犯第Ⅰ类错误的概率
通常记为 。
第Ⅱ类错误/取伪错误(type Ⅱ error)
当原假设为假时没有拒绝原假设。犯第Ⅱ类错误的
概率通常记为 。
在统计实践中,进行假设检验时一般先控制第Ⅰ类 错误发生的概率,并确定犯第Ⅰ类错误的概率最大值, 称为检验的显著性水平。显著性水平一般选择为0.05和 0.01。
本章学习目的
理解原假设、备择假设、两类错误、单侧检验、双侧 检验、方差分析等概念。
掌握三种不同的实际情况下——陈述正确性、研究性、 决策——建立假设检验的方法。
掌握总体方差已知或未知时正态总体的均值假设检验 和总体比例的假设检验。
本章重难点提示
重点是三种不同情况下的假设检验方法,总体方差已 知时正态总体均值和总体比例的假设检验。
原假设(null hypothesis),又称零假设,用 H0 表示,是指研究者想收集证据予以反对的假设。
备择假设(alternative hypothesis),用 H1或 H 表示,是指研究者想收集证据予以支持的假设,它与原 假设陈述的内容相反。
假设检验的三种类型
1.对陈述正确性的检验
在这种情况下,原假设通常是基于假定的陈述是正确 的。然后建立备择假设,为拒绝提供统计证据,从而 证明这个假定的陈述是错误的。
假设检验的步骤
1.确定原假设和备择假设; 2.选择检验统计量; 3.确定检验的显著性水平 ; 4.用显著性水平来确定拒绝原假设 H0的检验统
计量的临界值、拒绝域; 5.根据样本数据,计算检验统计量的值; 6.⑴将统计量的值与临界值进行比较,并作出
决策:若统计量的值落在拒绝域内,拒绝原 假设 H0,否则不拒绝原假设 H0。
体是正态分布的。
示例
[例8-1] 某公司称其应收账金额的均值为RMB260.00,
审计师希望通过选取一个的样本计算样本均值来检验是否 如此。只有当样本均值与RMB260.00的假设值差别较大 时,审计师才会拒绝这个假设,已知应收账款金额的标准
差为 43.00,计算0.05显著性水平下假设检验的样本均
或⑵根据第5步的检验统计量的值计算 p 值。 运用 p值来确定是否拒绝。
㈠ 总体方差已知时正态总体均值的假设检验
当总体方差 2 已知,用正态分布来检验总
体均值的假设值的情况如下:
⑴ 当样本数 n 30 (大样本)时的任
意分布总体,(根据中心极限定理);
⑵ 当样本数 n p 30 (小样本)但是总
值临界值。
计算过程
假设: H0 : 260.00 ; H1 : 260.00 显著性水平: 0.05
检验统计量:n 36 , 43.00 的样本的 X
样本均值的临界值 =0
g X
2
260.00 1.96 43.00 36
260.00 14.05 245.95 ~ 274.05
计算过程
假设: H0 : 75 ; H1 : f 75 左单边检验
显著性水平: 0.05
检验统计量:n 6 , 2 14 的样本的 值
由于总体服从方差已知的正态分布,所以在原 假设下,检验统计量
X 0
78 75 14
1.964
当 0.05 时,对应于的双侧检验的临界值
0.025 1.96
2
检验统计量的值为
0.025 1.96
2
X 0 X
240.00 260.00
43.00 36
2.79
因为 2.79 p 1.96 ,落在拒绝域内,所以否定原
假设,也就是说有95%的可靠程度否定原假设。如果将
样本均值与图8-1中均值的临界值比较,将得到相同的
假设检验的三种形式
设 0 表示在原假设和备择假设中考虑的某 一特定数值, 表示总体的实际值。对总体
的假设检验一定要采取下面的三种形式之一 :
⑴ H0 : 0 H1 : p 0
⑵ H0 : 0
⑶ H0 : 0
H1 : f 0 H1 : 0
㈡ 拒绝域与检验统计量
拒绝域是指能够作出拒绝原假设这一结论的 所有可Байду номын сангаас的样本取值范围。
结论。
拒绝域
接受域
拒绝域
-1.96
1.96
图8-2 双边检验的拒绝域与接受域
示例
[例8-3] 某商场销售一种产品,原每周销售量服
从平均值为75,方差为14的正态分布。销售方案 更新后,为了考察销售量是否提高,抽查了6周销 售量,求得平均销售量为78,假定方差不变,问 在显著性水平0.05下,销售方案更新后对周销售 量是否有显著提高?
因此,为了拒绝原假设,这个样本均值的值必须
比RMB 245.95小或者比RMB 274.05大。所以,在双侧 检验(见下图8-1)中有两个拒绝域。
拒绝域
接受域
拒绝域
245.95
260.00
274.05
图8-1 双边检验的拒绝域与接受域
[例8-2] 在例8-1的假设检验中,如果样本的均值
为 X 240.00,当显著性水平为0.05时,原假设是否被拒 绝。
难点是总体方差未知时正态总体均值的假设检验和方 差分析。
第一节 假设检验
一、假设检验的概念
假设(hypothesis),又称统计假设,是对总体参数 的具体数值所作的陈述。
假设检验(hypothesis test) 是先对总体参数提出 某种假设,然后利用样本信息判断假设是否成立的过程。
㈠ 原假设与备择假设
2.对研究性假设的检验
在研究性假设检验的调查研究中,应该建立原假设和 备择假设,并用备择假设来表示研究性假设,这样如 果拒绝,将支持样本所得出的结论以及应该采取某些 行动。
3.对决策情况下的检验
在决策情况下的检验研究中,决策者必须从两种措施 中挑选其中一种,无论是接受还是拒绝,都必须采取 一定的措施。