假设检验与方差分析.ppt
假设检验与方差分析

三、假设检验的步骤
1、提出原假设(null hypothesis)和备择假设 (alternative hypothesis)
原假设为正待检验的假设:H0; 备择假设为可供选择的假设:H1 一般地,假设有三种形式:
(1)双侧检验:
H0 : 0; H1 :0 (2)左侧检验:
这两个例子中都是要对某种“陈述”做出判
断:
例1要判明工艺改革后零件平均 长度是否仍为4cm;
进行这种判断 的信息来自
例2要判明该批产品的次品率是 所抽取的样本
否低于3%。
所谓假设检验,就是事先对总体参数或总体分 布形式作出一个假设,然后利用样本信息来判断 原假设是否合理,即判断样本信息与原假设是否 有显著差异,从而决定是否接受或否定原假设
对比来构造检验统计量。
可以证明,若H0为真,则
2
(n 1)S 2
2 0
~
2 (n 1)
因此,可构造2 统计量进行总体方差
的假设检验。
当H0成立时,S2/02 接近于1,2的 值在一个适当的范围内,
当H0不成立时,S2/02远离1,2的值 相当大或相当小。
在例2中,由于所抽样本只为10,为小样本,因 此无法构造Z统 计量进行总体比例的假设检验。
如果总体X~N(,2),在方差已知的情况下,对总体均 值进行假设检验。
由于
因此,可通过构造Z统计量来进行假设检验:
注意: 如果总体方差未知,且总体分布未知,但如果是大样
本(n>=30),仍可通过 Z 统计量进行检验,只不过总体 方差需用样本方差 s 替代。
例3:根据以往的资料,某厂生产的产品的使用寿命服从正 态分布N(1020, 1002)。现从最近生产的一批产品中随机抽取16 件,测得样本平均寿命为1080小时。问这批产品的使用寿命 是否有显著提高(显著性水平:5%)?
多元统计分析第三章假设检验与方差分析

多元统计分析第三章假设检验与⽅差分析第3章多元正态总体的假设检验与⽅差分析从本章开始,我们开始转⼊多元统计⽅法和统计模型的学习。
统计学分析处理的对象是带有随机性的数据。
按照随机排列、重复、局部控制、正交等原则设计⼀个试验,通过试验结果形成样本信息(通常以数据的形式),再根据样本进⾏统计推断,是⾃然科学和⼯程技术领域常⽤的⼀种研究⽅法。
由于试验指标常为多个数量指标,故常设试验结果所形成的总体为多元正态总体,这是本章理论⽅法研究的出发点。
所谓统计推断就是根据从总体中观测到的部分数据对总体中我们感兴趣的未知部分作出推测,这种推测必然伴有某种程度的不确定性,需要⽤概率来表明其可靠程度。
统计推断的任务是“观察现象,提取信息,建⽴模型,作出推断”。
统计推断有参数估计和假设检验两⼤类问题,其统计推断⽬的不同。
参数估计问题回答诸如“未知参数θ的值有多⼤?”之类的问题,⽽假设检验回答诸如“未知参数θ的值是0θ吗?”之类的问题。
本章主要讨论多元正态总体的假设检验⽅法及其实际应⽤,我们将对⼀元正态总体情形作⼀简单回顾,然后将介绍单个总体均值的推断,两个总体均值的⽐较推断,多个总体均值的⽐较检验和协⽅差阵的推断等。
3.1⼀元正态总体情形的回顾⼀、假设检验在假设检验问题中通常有两个统计假设(简称假设),⼀个作为原假设(或称零假设),另⼀个作为备择假设(或称对⽴假设),分别记为0H 和1H 。
1、显著性检验为便于表述,假定考虑假设检验问题:设1X ,2X ,…,n X 来⾃总体),(2σµN 的样本,我们要检验假设100:,:µµµµ≠=H H (3.1)原假设0H 与备择假设1H 应相互排斥,两者有且只有⼀个正确。
备择假设的意思是,⼀旦否定原假设0H ,我们就选择已准备的假设1H 。
当2σ已知时,⽤统计量nX z σµ-=在原假设0H 成⽴下,统计量z 服从正态分布z )1,0(~N ,通过查表,查得)1,0(N 的上分位点2αz 。
《假设检验的概念》PPT课件

假设检验实例及解读
• 生物统计学实例:比较两个药物治疗组的患者生存率是否存在显著差异。 • 社会调查实例:通过问卷调查数据,研究两个群体之间的收入差异是否显著。
总结与回顾
假设检验是一种重要的统计方法,帮助我们进行数据分析和科学决策。通过清晰的步骤和方法,我们可以对总体参 数进行有效推断。
3 方差分析
4 非参数检验
用于比较多个样本均值之间是否存在显著差异。
当数据不满足正态分布假设时,使用的一类假设 检验方法。
注意事项
1 假设检验的局限性
假设检验是概率性推断,结果并不能绝对确定总体参数,仅供参考。
2 防范与排除偏差
在实际研究中,要注意样本选择的随机性和可比性,以排除偏差对推断结果的影响。
p值判定
4
参数估计和假设检验。
根据计算出的统计量,计算p值,并与显著性
水平比较,判断是否拒绝原假设。
5
结论推断
根据p值的判定结果,得出对总体参数的推断 结论,并解释研究的统计显著性和实际意义。
常见假设检验方法
1 单样本t检验
2 双样本t检验
用于比较一个样本的均值与总体均值是否存在显 著差异。
用于比较两个独立样本的均值是否存在显著差异。
应用领域
假设检验广泛应用于医学、社会科学、经济学等领 域,帮助我们进行数据分析和做出科学决策。
假设检验的步骤
1
假设设立
首先,根据研究问题,明确原假设和备择假
ห้องสมุดไป่ตู้
显著性水平确定
2
设,以便进行后续统计推断。
确定假设检验的显著性水平,通常为0.05或
0.01,用于判断统计显著性。
3
统计量计算
计算适应研究问题的合适统计量,以便进行
第六章-假设检验和方差分析(二)

X
1 2 3 4
方差分析中基本假定
❖ 假如备择假设成立,即H1: i (i=1,2,3,4)不全相等
至少有一种总体旳均值是不同旳 有系统误差
❖ 这意味着四个样本可能来自均值不同旳四个 正态总体,因而样本均值“不是很接近”
f(X)
X
3 1 2 4
第二节 单原因方差分析
一、单原因方差分析旳环节 二、方差分析中旳多重比较
1、原因或因子 ▪ 所要检验旳对象称为因子 ▪ 要分析饮料旳颜色对销售量是否有影响,颜色是要检
验旳原因或因子
2、水平 ▪ 原因旳详细体现称为水平 ▪ A1、A2、A3、 A4四种颜色就是原因旳水平
3、观察值 ▪ 在每个原因水平下得到旳样本值 ▪ 每种颜色饮料旳销售量就是观察值
方差分析旳基本思想和原理
2、对前面旳例子
▪ H0: 1 = 2 = 3 = 4
• 颜色对销售量没有影响
▪ H0: 1 ,2 ,3, 4不全相等
• 颜色对销售量有影响
构造检验旳统计量
1、为检验H0是否成立,需拟定检验旳统计量 2、构造统计量需要计算
▪ 水平旳均值 ▪ 全部观察值旳总均值 ▪ 离差平方和 ▪ 均方(MS)
水平旳均值 假定从第i个总体中抽取一种容量为ni旳简朴随机样本,第i个总
数
▪ SSE 旳自由度为n-k
构造检验旳统计量
1、SSA旳均方也称组间方差,记为MSA,计算公式为
MSA SSA k 1
前例的计算结果:MSA 76.8455 25.6152 4 1
2、SSE旳均方也称组内方差,记为MSE,计算公式为
MSE SSE nk
前例的计算结果:MSE 39.084 2.4428 20 4
商务统计学课件-单因素方差分析假设检验

总体均值之间的差异是显著的,所考察的因素对因变量取值有显 著的影响。 ➢反之,如果 F F (k 1, n k) 或 P ,则不能拒绝原假设H0, 说明各个总体均值之间的差异不明显,所考察的因素对因变量取 值没有显著的影响。
得出检验结论
➢在方差分析中,常用到的显著性水平取值为0.05、 0.01。 ➢通过 0.05 的检验时,称所考察的因素对因变量的 影响显著; ➢通过 0.01 的检验时,称所考察的因素对因变量的 影响高度显著。
1 k ni
n
i
1
j
X ij
1
是数据的总平均值
组间离差平方和
SSA
k ni
(Xi
X )2
i1 j1
其中,X i
1 ni
ni
X ij
j1
为水平 Ai 下的样本均值
组内离差平方和 SSE
k ni
( X ij
Xi )2
i1 j1
构建检验统计量
令T SST
k ni
X ij nX
i1 j1
ni
Ti
xij ni X i
2
( X ij
X i )( X i
X)
i1 j1
i1 j1
i1 j1
SSA SSE
构建检验统计量
组间方差 MSA SSA k1
组内方差 MSE SSE nk
构建检验统计量 ,
H 0 成立时,有 X ij ~ N (,, 2 ) 且相互独立
则
SSA
2
~
2 (k
1)
SSE
2
~
2 (n
k)
构建统计量
SSA
j1
k ni
假设检验-方差分析

置信上限: x + uα / 2 σ = 1.96 + 1.96 × 0.028 = 1.98
n 6
置信区间:(1.94,1.98) (3)作出判断结论:因为在H0成立的条件下 作出判断结论:因为在 成立的条件下95%的置信区间 作出判断结论 的置信区间 不包含µ ,故在显著水平α 下拒绝H 不包含µ0=2,故在显著水平α=0.05下拒绝 0。 下拒绝
u=
x − µ0 σ/ n
=
1 . 96 − 2 0 . 028 / 6
= − 3 . 4993
(3)给定α求临界值:取α=0.05,查表得u0.05/2=1.96, 由于|u|>1.96,故在显著性水平α=0.05下拒绝H0。
2、置信区间法 (1)提出原假设H0:µ=2,备择假设H1: µ≠2 (2)给定α求置信区间:取α=0.05,查表得u0.05/2=1.96, σ=0.028, =1.96,则: x 置信下限: x − uα / 2 σ = 1.96 − 1.96 × 0.028 = 1.94
t =
ቤተ መጻሕፍቲ ባይዱ
x − µ0 s/ n
=
0 . 47 − 0 . 5 0 . 05 / 25
= −3
(3) 由α=0.01及df=25-1=24,查表得 及 ,查表得P(|t|>3)=p<0.01, 拒绝 H0(0.001<p<0.01)。即该厂生产的这批药片不符合规定。 。即该厂生产的这批药片不符合规定。
(二)两个正态总体的检验 1、配对比较与成组比较
小概率事件在一次试验中不会发生。 二、假设检验步骤 1、提出原假设H0和备择假设H1 2、在原假设成立的条件下,构造一个分布已知的 统计量 用于检验原假设的合理性的统计量称为检验统 计量,简称检验。如S=f(X1,X2,…,Xn)使得 P(S∈S0)=α,即S∈S0是一个小概率事件。称S0为拒 绝域或临界域。
统计学原理——假设检验与方差分析

二、假设检验中的两类错误**
第Ⅰ类错误/弃真错误 (type Ⅰ error)
当原假设为真时拒绝原假设。犯第Ⅰ类错误的概率
通常记为 。
第Ⅱ类错误/取伪错误(type Ⅱ error)
n1 P 40010.2 320 f 5
所以为大样本分布,检验统计量 Z 近似服从 正态分布。样本数据显示:
p 100 0.25 400
Z p P0 0.25 0.20 0.05 2.5
P 1 P 0.21 0.2 0.02
n
400
在显著性水平 0.05 情况下,查表可知,
比RMB 245.95小或者比RMB 274.05大。所以,在双侧 检验(见下图8-1)中有两个拒绝域。
拒绝域
接受域
拒绝域
245.95
260.00
274.05
图8-1 双边检验的拒绝域与接受域
[例8-2] 在例8-1的假设检验中,如果样本的均值
为 X 240.00 ,当显著性水平为0.05时,原假设是否被 拒绝。
重点是三种不同情况下的假设检验方法,总体方差已 知时正态总体均值和总体比例的假设检验。
难点是总体方差未知时正态总体均值的假设检验和方 差分析。
第一节 假设检验
一、假设检验的概念
一、假设检验的概念
假设(hypothesis),又称统计假设,是对总体参数 的具体数值所作的陈述。
假设检验(hypothesis test) 是先对总体参数提出 某种假设,然后利用样本信息判断假设是否成立的过程。
(3) H0:μ = μ0 H1:μ<μ
假设检验方差分析

方差分析是通过比较不同组别之间的差异来检验假设
的一种统计方法。
02
它通过将总变异性分解为组间变异性和组内变异性,
来评估组间差异是否显著。
03
方差分析的基本思想是,如果各组之间存在显著差异
,那么组间变异性应该大于组内变异性。
方差分析的应用场景
01 比较不同组别之间的平均值是否存在显著差异。 02 检验一个或多个分类变量对连续变量的影响。 03 在实验设计中,用于评估不同处理或条件下的结
进行统计检验
根据样本数据和选择的统计量, 计算相应的值并进行统计检验。
提出假设
根据研究问题和数据情况,提 出原假设和备择假设。
确定显著性水平
确定一个合适的显著性水平, 用于判断假设是否成立。
做出推断
根据统计检验的结果,做出拒 绝或接受原假设的推断。
03 方差分析的原理及应用
方差分析的基本思想
01
提高数据分析的全面性和准确性。
04
加强假设检验和方差分析的理论研究,深入探讨其数 学原理和理论基础,为方法的改进和创新提供理论支 持。
THANKS FOR WATC
多因素方差分析用于比较多个分类变量与一个连续变量的关系。
详细描述
例如,比较不同品牌、不同型号、不同生产年份手机的使用寿命,通过多因素方差分析可以判断这些 因素对手机使用寿命的影响是否有显著差异。
05 结论
假设检验和方差分析的重要性
假设检验是统计学中一种重要的统计推断方法,通过检验假设是否成立,可以判断样本数据是否支持 或拒绝原假设,从而得出科学可靠的结论。
04 实际应用案例
单因素方差分析
总结词
单因素方差分析用于比较一个分类变 量与一个连续变量的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 布变量经Z变换后为标准化
Z X 0
x
• 则显Z然的,抽Z统样计分量布满将是足检Z验0统,σ计Z=量1的的标两准个正标态准分:布。
– (1)以标准误(被σx除)为单位,表示点估计值与零
假设参数(0)的距ຫໍສະໝຸດ ;– (2)在假定H0为真的情况下,有已知的概率分布(标 准正态分布)
– Z统计量可用于度量H0为真的可能性。如果对一定样本 计算Z统计量的特定值,记做Z*,若Z*=0,样本均值x
☺均x =值20☺
作出决策 拒绝假设
别无选择!
原假设与备择假设
原假设
(null hypothesis)
1. 研究者想收集证据予以反对的假设 2. 又称“0假设” 3. 总是有符号 , 或 4. 表示为 H0
– H0 : = 某一数值
– 指定为符号 =, 或
– 例如, H0 : 10cm
备择假设
(alternative hypothesis)
1. 研究者想收集证据予以支持的假设 2. 也称“研究假设” 3. 总是有符号 , 或 4. 表示为 H1
– H1 : <某一数值,或 某一数值 – 例如, H1 : < 10cm,或 10cm
提出假设
(例题分析)
• 【例】一种零件的生产标准是直径应为10cm,为 对生产过程进行控制,质量监测人员定期对一台加 工机床检查,确定这台机床生产的零件是否符合标 准要求。如果零件的平均直径大于或小于10cm, 则表明生产过程不正常,必须进行调整。试陈述用 来检验生产过程是否正常的原假设和备择假设
– (1)如果 ˆ是那样的接近于θ0,以至于经验规则判断
其与θ0是“一致的”,则接受零假设H0,因此拒绝对 立假设H1
– (2)如果 ˆ和 θ0是那样的不同,以至经验规则判断其
与θ0“不一致的”,则拒绝零假设,因此接受对立假 设。
单侧检验与双侧检验
• 考虑从一个无限大、均值μ为未知,标准差σ已知 的正态分布总体中随机抽样的例子。
假设的陈述
什么是假设?
(hypothesis)
• 对总体参数的具体数值所作的陈述,称为 假设
– 总体参数包括总体均值、比例、方差等
– 分析之前必须陈述
我认为这种新药的疗效 比原有的药物更有效!
什么是假设检验?
(hypothesis test)
1. 假设检验:先对总体的参数(或分布形式)提 出某种假设,然后利用样本信息判断假设是 否成立的过程
解:研究者想收集证据予以证明的假设应该是“ 生产过程不正常”。建立的原假设和备择假设为
H0 : 10cm H1 : 10cm (双侧检验)
提出假设
(例题分析)
• 【例】某品牌洗涤剂在它的产品说明书中声称: 平均净含量不少于500g。从消费者的利益出发, 有关研究人员要通过抽检其中的一批产品来验 证该产品制造商的说明是否属实。试陈述用于 检验的原假设与备择假设
推断统计
参数估计
假设检验
第一节 假设检验的基本问题
1 假设的陈述 2 两类错误与显著性水平 3 统计量与拒绝域 4 利用P值进行决策 5 统计显著性与实际显著性
• 请勿试图选出最合理的假设,只需要剔除 无法证实的假设——这就是假设检验的基 础:证伪。
• 参数估计是利用样本信息推断未知的总体 参数,而假设检验则是先对总体参数提出 一个假设值,然后利用样本信息判断这一 假设是否成立。
第八章 假设检验与方差分析
……正如一个法庭宣告某一判决为“无罪”而不为 “清白(innocent)”,统计检验的结论也应为“不 拒绝”而不为“接受”。
Jan Kmenta
假设检验
1 假设检验的基本问题 2 一个总体参数的检验 3 两个总体参数的检验
假设检验在统计方法中的地位
• 统计方法
描述统计
解:研究者抽检的意图是倾向于证实这种洗涤 剂的平均净含量并不符合说明书中的陈述 。建 立的原假设和备择假设为
H0 : 500 H1 : < 500(左侧检验)
提出假设
(例题分析)
• 【例】一家研究机构估计,某城市中家庭拥有 汽车的比例超过30%。为验证这一估计是否正 确,该研究机构随机抽取了一个样本进行检验。 试陈述用于检验的原假设与备择假设
• 例如,若想知道未知的总体均值是否等于特定值, 可选择双侧假设检验:
•
零假设为
0 。
H0
:
0
,双侧对立假设为H1
:
• 假定零假设为真,则可知:如果所有容量为n的随
机样本来自一个无限大的正态分布总体(均值 ,
标准差σ),且对每一样本计算连续随机变量X的
标x值准,差那为么x有一0 正。n态进抽一样步分还布可,假均定值,为如果x=正0态,分
2. 先确定备择假设,再确定原假设 3. 等号“=”总是放在原假设上 ,这是为了涵
盖备择假设H1不出现的所有情况。 4. 因研究目的不同,对同一问题可能提出不同
的假设(也可能得出不同的结论)
• 在统计假设检验推理中,检验总是从选择假设开 始的,实际上是零假设H0的检验。从感兴趣的总 体中选取大小为n的随机样本,由样本计算未知参 数θ的点估计值ˆ ,然后用一个假设检验的过程比 较 ˆ 与零假设的θ0值,比较过程因选择的对立假 设而变化,但无论使用哪一过程都将得到下列决 策之一:
2. 逻辑上运用反证法,统计上依据小概率原理
假设检验的基本思想
这个值不像我 们应该得到的 样本均值 ...
抽样分布
... 因此我们拒
绝假设 = 50
... 如果这是总 体的假设均值
20
= 50
H0
样本均值
假设检验的过程
总体
☺☺ ☺
☺☺ ☺☺ ☺☺
提出假设
我认为人口的平 均年龄是50岁
抽取随机样本
解:研究者想收集证据予以支持的假设是“该城 市中家庭拥有汽车的比例超过30%”。建立的原 假设和备择假设为
H0 : 30% H1 : 30%(右侧检验)
提出假设
(结论与建议)
1. 原假设和备择假设是一个完备事件组,而且 相互对立
– 在一项假设检验中,原假设和备择假设必有一 个成立,而且只有一个成立
为什么叫 0 假设?
之所以用零来修饰原假设,其原因是原假设 的内容总是表示没有差异或没有改变,或变 量间没有关系等等
零假设总是一个与总体参数有关的问题,所 以总是用希腊字母表示。关于样本统计量如 样本均值或样本均值之差的零假设是没有意 义的,因为样本统计量是已知的,当然能说 出它们等于几或是否相等