七年级数学垂线的概念、画法、性质与角度计算

合集下载

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下相交线和平行线知识点总结本章介绍了平面内两条直线相交与平行的关系,重点探讨了两条直线相交时形成角的特征、两条直线互相垂直的特性、两条直线平行的条件和特征,以及有关图形平移变换的性质。

本文将对其中的重点知识点进行总结。

5.1 相交线1.邻补角与对顶角当两条直线相交时,所形成的四个角具有不同的关系。

其中,对顶角是具有特殊位置关系的两个角,它们的大小相等;邻补角则是互为反向延长线的两个角,它们的和为180度。

2.垂线垂线是指当两条直线相交时,其中一个角为直角的情况。

垂线具有两个性质:一是过一点只有一条直线与已知直线垂直;二是连接直线外一点与直线上各点的垂线段最短。

3.垂线的画法画垂线的方法有两种:一是过直线上一点画已知直线的垂线;二是过直线外一点画已知直线的垂线。

画法可采用“一靠二移三画”的方法。

4.点到直线的距离点到直线的距离是指直线外一点到这条直线的垂线段的长度。

记忆时应结合图形进行理解。

本章内容的重点是垂线和其性质、平行线的判定方法和性质、平移和其性质,以及这些知识点的组织运用。

在研究这些知识点时,需要注意记忆其定义和性质,掌握其画法和应用方法。

垂线是指从一个点垂直于一条直线或平面的线段,而垂线段则是垂线的长度。

它们都具有垂直的性质,可以用来计算点到直线的距离或两点间的距离。

点到直线的距离是特殊的两点(即已知点与垂足)间距离,而两点间的距离是点与点之间的长度。

线段和距离都是长度的概念,但线段是一种图形,不能等同于距离。

平行线是指在同一平面内不相交的两条直线,它们的位置关系只有两种:相交和平行。

判断两条直线的位置关系可以根据它们的公共点个数来确定,有且只有一个公共点时两直线相交,无公共点时两直线平行,两个或两个以上公共点时两直线重合。

平行公理指出,经过直线外一点,有且只有一条直线与这条直线平行。

同时,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

三线八角是指两条直线被第三条直线所截形成的八个角,包括同位角、内错角和同旁内角。

垂线(知识讲解)-七年级数学下册基础知识专项讲练(人教版)

垂线(知识讲解)-七年级数学下册基础知识专项讲练(人教版)

专题5.4垂线(知识讲解)1.理解垂直作为两条直线相交的特殊情形,掌握垂直的定义及性质;2.理解并运用“垂线段最短”解决实际问题;3.理解点到直线的距离的概念,并会度量点到直线的距离;4.能依据对顶角、邻补角及垂直的概念与性质,进行简单的计算.1.垂线的定义:两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.特别说明:(1)记法:直线a 与b 垂直,记作:a b ⊥;直线AB 和CD 垂直于点O,记作:AB⊥CD 于点O.(2)垂直的定义具有二重性,既可以作垂直的判定,又可以作垂直的性质,即有:90AOC ∠=° 判定性质CD⊥AB.:过一点画已知直线的垂线,可通过直角三角板来画,具体方法是使直角三角板的一条直角边和已知直线重合,沿直线左右移动三角板,使另一条直角边经过已知点,沿此直角边画直线,则所画直线就为已知直线的垂线(如图所示).特别说明:(1)如果过一点画已知射线或线段的垂线时,指的是它所在直线的垂线,垂足可能在射线的反向延长线上,也可能在线段的延长线上.(2)过直线外一点作已知直线的垂线,这点与垂足间的线段为垂线段.3.垂线的性质:(1)在同一平面内,过一点有且只有一条直线与已知直线垂直.(2)连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.特别说明:(1)性质(1)成立的前提是在“同一平面内”,“有”表示存在,“只有”表示唯一,“有且只有”说明了垂线的存在性和唯一性.(2)性质(2)是“连接直线外一点和直线上各点的所有线段中,垂线段最短.”实际上,连接直线外一点和直线上各点的线段有无数条,但只有一条最短,即垂线段最短.在实际问题中经常应用其“最短性”解决问题.4.点到直线的距离:定义:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.特别说明:(1)点到直线的距离是垂线段的长度,是一个数量,不能说垂线段是距离;(2)求点到直线的距离时,要从已知条件中找出垂线段或画出垂线段,然后计算或度量垂线段的长度.【典型例题】类型一、垂线➽➼定义的理解➼➻垂直✬✬直角1.如图,直线AB ,CD 相交于点O ,下列条件:90AOD ∠=︒①;AOC BOC ∠=∠②;AOC BOD ∠=∠③,其中能说明AB CD ⊥的有()A .①B .①或②C .①或③D .①或②或③【答案】B 【分析】根据垂直定义“当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直”进行判定即可.解:90AOD ∠=︒①,可以得出AB CD ⊥,故符合题意;180AOC BOC ∠+∠=︒ ②,AOC BOC ∠=∠,故符合题意,90AOC BOC ∴∠=∠=︒,可以得出AB CD ⊥;AOC BOD ∠=∠③,不能得到AB CD ⊥,故不符合题意;故能说明AB CD ⊥的有①②.故选:B .【点拨】此题主要考查了垂直定义,关键是通过条件计算出其中一个角为90︒.举一反三:【变式1】如图,同一平面内的三条直线交于点O ,130∠=︒,260∠=︒,AB 与CD 的关系是()A .平行B .垂直C .重合D .以上均有可能【变式2】如图,120∠=︒,则2∠的度数是()A.50︒B.60︒C.70︒D.80︒【答案】C【分析】根据图象可得:∠1+∠2=90°,代入求解即可得出结果.解:∵∠1+∠2+90°=180°,∴∠1+∠2=90°,∵∠1=20°,∴∠2=70°,故选:C.【点拨】题目主要考查角度计算,从图中得出∠1+∠2=90°是解题关键.类型二、垂线➽➼垂线的画法条射线重合,折痕a即为所求,下列判断正确的是()A.只有嘉嘉对B.只有淇淇对C.两人都对D.两人都不对【答案】C【分析】根据垂直的定义即可解答.解:嘉嘉利用量角器画90°角,可以画垂线,方法正确;淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a垂直直线l,方法正确,故选:C.【点拨】本题主要考查了作图、垂线的定义,掌握垂直的定义是解答本题的关键.举一反三:【变式1】下列用三角板过点P画AB的垂线CD,正确的是()【变式2】过一条线段外一点,作这条线段的垂线,垂足在()A.这条线段上B.这条线段的端点处C.这条线段的延长线上D.以上都可以【答案】D【分析】画一条线段的垂线就是画线段所在直线的垂线,进而得出答案.解答:由垂线的定义知,画一条线段的垂线,垂足可以在线段上,可以是线段的端点,也可以在线段的延长线上.故选D.【点拨】本题主要考查线段垂线的画法,正确把握垂线的定义是关键.类型三、垂线➽➼点到直线的距离✬✬垂线段画法3.如图,90AOB ∠=︒,P 是OB 上的一点,用刻度尺分别度量点P 到直线OA 和到直线OC 的距离.【答案】点P 到直线OA 的距离约为2cm ,点P 到直线OC 的距离约为1.1cm【分析】过点P 作PD OC ⊥,用刻度尺分别度量PO 和PD 的长度,即可得到点P 到直线OA 和到直线OC 的距离.【详解】解:过点P 作PD OC ⊥,用刻度尺分别度量,可得点P 到直线OA 的距离约为2cm ,点P 到直线OC 的距离约为1.1cm .【点拨】本题考查了点到直线的距离,解题的关键是清楚点到直线的距离是垂线段的长度.举一反三:【变式1】如图,AB 、CD 、NE 相交于点O ,OM 平分BOD ∠,OM ON ⊥,55AOC ∠=︒.(1)线段______的长度表示点M 到NE 的距离;(2)比较MN 与MO 的大小(用“<”号连接):____________,并说明理由:____________;(3)求AON ∠的度数.【答案】(1)MO ;(2)MO MN <,是因为垂线段最短;(3)62.5︒【分析】(1)根据点到直线的距离求解即可;(2)根据垂线段最短求解即可;(3)根据垂直的定义和角之间的关系求解即可.(1)解:线段MO 的长度表示点M 到NE 的距离,故答案为:MO ;(2)解:比较MN 与MO 的大小为:MO MN <,是因为垂线段最短,故答案为:MO MN <,是因为垂线段最短;(3)解:55BOD AOC ∠=∠=︒ ,OM 平分BOD ∠,27.5BOM ∴∠=︒,18018027.59062.5AON BOM MON ∴∠=︒-∠-∠=︒-︒-︒=︒.【点拨】本题考查了点到直线的距离、角平分线、垂线段最短,解题的关键是掌握点到直线的距离.【变式2】已知:点P 是直线MN 外一点,点A 、B 、C 是直线MN 上三点,分别连接PA 、PB 、PC .(1)通过测量的方法,比较PA 、PB 、PC 的大小,直接用“>”连接;(2)在直线MN 上能否找到一点D ,使PD 的长度最短?如果有,请在图中作出线段PD ,并说明它的理论依据;如果没有,请说明理由.【答案】(1)PA PB PC >>;(2)见解析,垂线段最短【分析】(1)直接测量,比较大小即可;(2)作MN 的垂线,垂足为D ,PD 即所求.解:(1)通过测量可知, 3.7PA =cm , 3.2PB =cm , 2.8PC =cm ,故PA PB PC >>;(2)过点P 作PD MN ⊥,则PD 最短.理由:垂线段最短【点拨】本题考查了垂线段最短的性质,解题关键是能熟练的测量线段的长度,知道垂线段最短.类型四、垂线➽➼点到直线的距离✬✬垂线段的长4.如图,在ABC 中,90ACB ∠=︒,8cm AC =,6cm BC =,10cm AB =,点P 从点A 出发,沿射线AB 以2/cm s 的速度运动,点Q 从点C 出发,沿线段CB 以1cm /s 的速度运动,P 、Q 两点同时出发,当点Q 运动到点B 时P 、Q 停止运动,设Q 点的运动时间为t 秒.(1)当t =______时,2BP CQ =;(2)当t =______时,BP BQ =;(3)画CD AB ⊥于点D ,并求出CD 的值;(4)当t =______时,有2ACP ABQ S S = .举一反三:【变式1】如图,点A、点B是直线l上两点,AB=10,点M在直线l外,MB=6,MA=8,∠AMB=90°,若点P为直线l上一动点,连接MP,则线段MP的最小值是____.【答案】4.8【分析】根据垂线段最短可知:当MP⊥AB时,MP有最小值,利用三角形的面积可列式计算求解MP的最小值.解:当MP⊥AB时,MP有最小值,∵AB=10,MB=6,MA=8,∠AMB=90°,∴AB•MP=AM•BM,即10MP=6×8,解得MP=4.8.故答案为:4.8.【点拨】本题主要考查垂线段最短,三角形的面积,找到MP最小时的P点位置是解题的关键.【变式2】如图,在三角形ABC中,AC=5,BC=6,BC边上的高AD=4,若点P在边AC 上(不与点A,C重合)移动,则线段BP最短时的长为_________________.中考真题专练4.(2022·江苏常州·中考真题)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A .垂线段最短B .两点确定一条直线C .过一点有且只有一条直线与已知直线垂直D .过直线外一点有且只有一条直线与已知直线平行【答案】A【分析】根据垂线段最短解答即可.解:行人沿垂直马路的方向走过斑马线,体现的数学依据是垂线段最短,故选:A .【点拨】本题考查垂线段最短,熟知垂线段最短是解答的关键.举一反三:【变式1】(2022·河南·中考真题)如图,直线AB ,CD 相交于点O ,EO ⊥CD ,垂足为O .若∠1=54°,则∠2的度数为()A .26°B .36°C .44°D .54°【答案】B 【分析】根据垂直的定义可得90COE ∠=︒,根据平角的定义即可求解.解: EO ⊥CD ,90COE ∴∠=︒,12180COE ∠+∠+∠=︒ ,2180905436∴∠=︒-︒-︒=︒.故选:B .【点拨】本题考查了垂线的定义,平角的定义,数形结合是解题的关键.【变式2】(2021·北京·中考真题)如图,点O 在直线AB 上,OC OD ⊥.若120AOC ∠=︒,则BOD ∠的大小为()A .30︒B .40︒C .50︒D .60︒【变式3】(2021·浙江杭州·中考真题)如图,设点P 是直线l 外一点,PQ l ⊥,垂足为点Q ,点T 是直线l 上的一个动点,连接PT ,则()A .PT PQ≥2B .PT PQ ≤2C .PT PQ ≥D .PT PQ≤【答案】C 【分析】根据垂线段距离最短可以判断得出答案.【详解】解:根据点P 是直线l 外一点,PQ l ⊥,垂足为点Q ,∴是垂线段,即连接直线外的点P与直线上各点的所有线段中距离最短,PQ=,当点T与点Q重合时有PQ PT≥,综上所述:PT PQ故选:C.【点拨】本题考查了垂线段最短的定义,解题的关键是:理解垂线段最短的定义.。

垂线的性质

垂线的性质

5 .1.2 垂线的性质阜才中学郭春苗教材分析:垂线的性质选自人教版七年级下册第五章相交线与平行线第二节__垂线。

垂线的性质是本章教学中的重点和难点,是学习下一章“平面直角坐标系”的直接基础。

目标分析:1、了解垂线、点到直线的距离的意义2、理解垂线的性质,3、会用三角板过一点画已知直线的垂线,并会度量点到直线的距离. 教学重、难点:重点:垂线的意义,性质和画法。

难点:点到直线的距离的概念的理解.学情分析:学生在前面已经学习了平面内两条直线的位置关系,已经对垂直有了初步的认识。

但是学生对几何概念的认识往往还只停留于形上,对其本质的认识还需要靠老师的引领去探索教学程序设计一、复习导入揭示课题1.垂直定义:当两条直线相交所成的四个角中,有一个角是直角时,这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足.2.垂直的书写形式二、扬帆起航深入理解(一).垂线的性质11.探索一、请你认真画一画,看看有什么收获(1)利用三角尺或量角器画已知直线l 的垂线,这样的垂线能画__________条;⑵如图2,经过直线l 上一点 A 画l 的垂线,这样的垂线能画_____条;⑶如图 3,经过直线 l 外一点 B 画 l 的垂线,这样的垂线能画_____条;2.垂线的性质1:经过探索,我们可以发现:在同一平面内,过一点有且只有一条直线与已知直线垂直.注意:(1)前提条件“同一平面内”必不可少(2) 过一点画已知线段(或射线)的垂线,就是画这条线段(或射线)所在直线的垂线.垂足可以在线段上,也可以在线段的延长线上。

3.如图,AB ⊥l ,BC ⊥l ,B 为垂足,那么A ,B ,C 三点在同一条直线上,理由是( )A .经过直线外一点有且只有一条直线与这条直线平行B .如果两条直线都与第三条直线平行,那么这两条直线也互相平行C .在同一平面内,过一点有且只有一条直线与已知直线垂直D .在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行(二)垂线的性质21.思考:在灌溉时,要把河中的水引到农田P 处,如何挖渠能使渠道最短?(此问题就是“直线外一点与已知直线上各点所连的线段中,有没有最短的线段?”)2.利用几何画板演示垂线段最短3.垂线段的概念4.垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.注意:垂线是 ,垂线段是一条 ,点到直线的距离是一个数量,不能说“垂线段”是距离.三、乘风破浪 例题精讲图1 图2图3例1.如图所示,AC⊥BC,CD⊥AB于D,CD=4.8,BC=8,BD=6.4,AD=3.6, AC=6 ,则点C到AB的距离是________,点A到BC的距离是_______,点B到CD的距离是_______,A,B两点之间的距离是_______,AC>CD的依据是_________.例2:如图,是一个同学跳远的位置跳远成绩怎么表示?利用的数学原理是什么?四、直挂云帆能力提升拓展:如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.五、满载而归总结归纳本节课你有哪些收获?六、牛刀小试反馈成果1.在下列语句中,正确的是().A.在同一平面内,一条直线只有一条垂线B.在同一平面内,过直线上一点的直线只有一条C.在同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条D.在同一平面内,垂线段就是点到直线的距离2.如果直线外一点到直线的距离是5 cm,那么该点与直线上任意一点所连成的线段的长一定是()A.5 cm B.小于5 cm C.大于5 cmD.大于或等于5 cm3.如图,在铁路旁有一李庄,现要建一座火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在 ( )A.A点B.B点C.C点D.D点4.如图所示,AC⊥BC,CD⊥AB于D,AC=6,BC=8,AB=10,则A、C两点间的距离是________,点B到AC的距离是________,点C到AB的距离是________,AC>CD 的依据是_______。

七年级数学下册5.1.2垂线教案(新版)新人教版

七年级数学下册5.1.2垂线教案(新版)新人教版

一、预习导学(甲)(乙)这是两幅草坪的图案。

在绿色的草坪上,画着两条交叉的道路。

你觉得甲图、乙图那幅更漂亮、更匀称。

这是什么原因?演示自制教具,这两条相交线有没有特殊位置?什么情况下它们的位置特殊?图甲是两条直线相交的一种特殊情况,它在生活、生产实际中应用比较广,你有没有见过?例如:书本相邻的两条边、窗户框相邻的两边、红十字等,因此今天我们就来研究这种特殊情况二、新课探究(一)垂线的定义直线a不动,当直线b转到什么位置时,两条直线互相垂直?转动木条b时,它和不动的木条a互相垂直的位置有几个?当a、b相交有一个角是直角时,其他三个角呢?垂线的定义:当两条直线相交所成的四个角,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫垂足。

建筑工人在砌墙时,常用铅垂线来检查所砌的墙面是否和地面(水平面)垂直。

(二)符号表示“⊥”读作“垂直于”如AB⊥CD垂足为O,含义:直线AB与直线CD垂直,垂足是O你能说出由什么条件能知道AB与CD互相垂直吗?∵∠BOC=90º(已知)∴AB⊥CD (垂直的定义)其它三个角中的一个角等于90º,能不能得到AB⊥CD 呢?反过来,如果AB⊥CD,那么可得到什么结论?(填空)∵AB⊥CD于O (已知)∴________________(垂直的定义)(三)垂线的画法(1)已知直线l,有多少条直线与已知直线l垂直?(2)点与直线的位置关系有几种?如图2中,过点A画直线BD的垂线B ·A DAD 图1 B在学生画出垂线的基础上,教师总结出用三角板画垂线的基本方法强调用两条直角边“一贴”:贴住已知直线,“一靠”:靠住已知点再画线并引导学生思考:这样画出的为何是已知直线的垂线?(四)发现垂线的性质在学生熟练地画出各条垂线之后,1、过A点作BD的垂线有没有?2、过A点作BD的垂线有几条?在此基础上,又引导学生概括出:垂线的第一个性质公理:过一点有且只有一条直线与注:①“有且只有”中,“有”指“存在”,“只有”指(五)垂线的第二个性质1、量跳远的成绩时有人想多量点,都采取了什么手段?为什麽?2、用刻度尺量一量下列垂线段OP与线段PA、PB、PC的大小PA B O C(1)什么是垂线段?直线外一点与直线上各点连结的所有的线段中,垂线段最短六、点到直线的距离要把水渠的水引到水池C,为了节省人力物力财力,请你十分钟小测1、下列说法是否正确:两条直线相交,有一条角是直角,则两条直线互相垂直。

人教版七年级数学下册相交线,垂线(基础)知识讲解

人教版七年级数学下册相交线,垂线(基础)知识讲解

相交线,垂线(基础)知识讲解【学习目标】1.了解两直线相交所成的角的位置和大小关系,理解邻补角和对顶角概念,掌握对顶角的性质;2.理解垂直作为两条直线相交的特殊情形,掌握垂直的定义及性质;3.理解点到直线的距离的概念,并会度量点到直线的距离;4.能依据对顶角、邻补角及垂直的概念与性质,进行简单的计算.【要点梳理】知识点一、邻补角与对顶角1.邻补角:如果两个角有一条公共边,并且它们的另一边互为反向延长线,那么具有这种关系的两个角叫做互为邻补角.要点诠释:(1)邻补角的定义既包含了位置关系,又包含了数量关系:“邻”指的是位置相邻,“补”指的是两个角的和为180°.(2)邻补角是成对出现的,而且是“互为”邻补角.(3)互为邻补角的两个角一定互补,但互补的两个角不一定互为邻补角.(4)邻补角满足的条件:①有公共顶点;②有一条公共边,另一边互为反向延长线.2.对顶角及性质:(1)定义:由两条直线相交构成的四个角中,有公共顶点没有公共边(相对)的两个角,互为对顶角.(2)性质:对顶角相等.要点诠释:(1)由定义可知只有两条直线相交时,才能产生对顶角.(2)对顶角满足的条件:①相等的两个角;②有公共顶点且一角的两边是另一角两边的反向延长线.【高清课堂:相交线两条直线垂直】知识点二、垂线1.垂线的定义:两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.要点诠释:⊥;(1)记法:直线a与b垂直,记作:a b直线AB和CD垂直于点O,记作:AB⊥CD于点O.(2) 垂直的定义具有二重性,既可以作垂直的判定,又可以作垂直的性质,即有:∠=°判定90AOCCD⊥AB.性质2.垂线的画法:过一点画已知直线的垂线,可通过直角三角板来画,具体方法是使直角三角板的一条直角边和已知直线重合,沿直线左右移动三角板,使另一条直角边经过已知点,沿此直角边画直线,则所画直线就为已知直线的垂线(如图所示).要点诠释:(1)如果过一点画已知射线或线段的垂线时,指的是它所在直线的垂线,垂足可能在射线的反向延长线上,也可能在线段的延长线上.(2)过直线外一点作已知直线的垂线,这点与垂足间的线段为垂线段.3.垂线的性质:(1)在同一平面内,过一点有且只有一条直线与已知直线垂直.(2)连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.要点诠释:(1)性质(1)成立的前提是在“同一平面内”,“有”表示存在,“只有”表示唯一,“有且只有”说明了垂线的存在性和唯一性.(2)性质(2)是“连接直线外一点和直线上各点的所有线段中,垂线段最短.”实际上,连接直线外一点和直线上各点的线段有无数条,但只有一条最短,即垂线段最短.在实际问题中经常应用其“最短性”解决问题.4.点到直线的距离:定义:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.要点诠释:(1)点到直线的距离是垂线段的长度,是一个数量,不能说垂线段是距离;(2)求点到直线的距离时,要从已知条件中找出垂线段或画出垂线段,然后计算或度量垂线段的长度.【典型例题】类型一、邻补角与对顶角1.如图所示,M、N是直线AB上两点,∠1=∠2,问∠1与∠2,∠3与∠4是对顶角吗? ∠1与∠5,∠3与∠6是邻补角吗?【答案与解析】解:∠1和∠2,∠3和∠4都不是对顶角.∠1与∠5,∠3与∠6也都不是邻补角.【总结升华】牢记两条直线相交,才能产生对顶角或邻补角.举一反三:【变式】判断正误:(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角. ()(2)如果两个角相等,那么这两个角是对顶角.()(3)有一条公共边的两个角是邻补角. ()(4)如果两个角是邻补角,那么它们一定互补. ()(5)有一条公共边和公共顶点,且互为补角的两个角是邻补角.()【答案】(1)×(2)×(3)×(4)√(5)×,反例:∠AOC为120°,射线OB为∠AOC的角平分线,∠AOB与∠AOC互补,且有边公共为AO,公共顶点为O,但它们不是邻补角.2.如图所示,直线AB、CD相交于点O,∠1=65°,求∠2、∠3、∠4的度数【答案与解析】解:∵∠1是∠2的邻补角,∠1=65°,∴∠2=180°-65°=115°.又∵∠1和∠3是对顶角,∠2与∠4是对顶角∴∠3=∠1=65°,∠4=∠2=115°.【总结升华】 (1)两条直线相交所成的四个角中,只要已知其中一个角,就可以求出另外三角;(2)求出∠2后用“对顶角相等”,求∠3和∠4.举一反三:【变式】(2015•梧州)如图,已知直线AB与CD交于点O,ON平分∠DOB,若∠BOC=110°,则∠AON的度数为度.【答案】145.解:∵∠BOC=110°,∴∠BOD=70°,∵ON为∠BOD平分线,∴∠BON=∠DON=35°,∵∠BOC=∠AOD=110°,∴∠AON=∠AOD+∠DON=145°.3. 任意画两条相交的直线,在形成的四个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?根据这种位置关系将它们分类.【答案与解析】解:如图,任意两条相交直线,两两相配共组成6对角,在这6对角中,它们的位置关系有两种:①有公共顶点,一边重合,另一边互为反向延长线;②有公共顶点,角的两边互为反向延长线.这6对角为∠1与∠2,∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4,∠3与∠4,其中∠1=∠3,∠2=∠4,∠1+∠2=180°,∠3+∠4=180°,∠1+∠4=180°,∠2+∠3=180°.在位置上∠1与∠3,∠2与∠4是对顶角,∠1与∠2,∠3与∠4,∠l与∠4,∠2与∠3是邻补角.【总结升华】两条相交的直线,两两相配共组成6对角,这6对角中有:4对邻补角,2对对顶角类型二、垂线4.下列语句中,正确的有 ( )①一条直线的垂线只有一条;②在同一平面内,过直线上一点有且仅有一条直线与已知直线垂直;③两直线相交,则交点叫垂足;④互相垂直的两条直线形成的四个角一定都是直角.A.0个 B.1个 C.2个 D.3个【答案】C【解析】正确的是:②④【总结升华】充分理解垂直的定义与性质.举一反三:【变式1】直线l外有一点P,则点P到直线l的距离是( ).A.点P到直线l的垂线的长度.B.点P到直线l的垂线段.C.点P到直线l的垂线段的长度.D.点P到直线l的垂线.【答案】C5.(2015•河北模拟)如图,已知点O在直线AB上,CO⊥DO于点O,若∠1=145°,则∠3的度数为()A.35°B.45°C.55°D.65°【答案】C.【解析】解:∵∠1=145°,∴∠2=180°﹣145°=35°,∵CO⊥DO,∴∠COD=90°,∴∠3=90°﹣∠2=90°﹣35°=55°.【总结升华】本题考查了垂线和邻补角的定义;弄清两个角之间的互补和互余关系是解题的关键.【高清课堂:相交线403101经典例题3】举一反三:【变式】如图, 直线AB和CD交于O点, OD平分∠BOF, OE ⊥CD于点O, ∠AOC=40 ,则∠EOF=_______.【答案】130°.6.(2016春•抚州校级期中)如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点 B.B点 C.C点 D.D点【思路点拨】根据垂线段最短可得答案.【答案】A.【解析】解:根据垂线段最短可得:应建在A处,故选:A.【总结升华】此题主要考查了垂线段的性质,关键是掌握从直线外一点到这条直线所作的垂线段最短.举一反三:【变式】(1)用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?(2)经过直线l上一点A画l的垂线,这样的垂线能画出几条?(3)经过直线l外一点B画l的垂线,这样的垂线能画出几条?【答案】解:(1)能画无数条;(2)能画一条;(3)能画一条.。

2020春七彩课堂初中数学人教版七年级下册教学课件5.1.2垂线

2020春七彩课堂初中数学人教版七年级下册教学课件5.1.2垂线

解:∵∠BOE=∠NOE,∴∠BON=2∠EON=40°, ∴∠NOC=180°-∠BON =180°-40°=140°,
∠MOC=∠BON=40°. ∵AO⊥BC,∴∠AOC=90°, ∴∠AOM=∠AOC-∠MOC=90°-40°=50°, ∴∠NOC=140°,∠AOM=50°.
课堂检测
拓广探索题
=90°+55°=145°
探究新知 知识点 2
5.1 相交线/
垂线的画法及其性质
(1)画已知直线l的垂线能画几条? (2)过直线l上的一点A画l的垂线,这样的垂线能画几条? (3)过直线l外的一点B画l的垂线,这样的垂线能画几条?
.B .
Al
探究新知 如图,已知直线 l,作l的垂线. A
l O
5.1 相交线/
素养目标
5.1 相交线/
3. 掌握垂线的性质,并会利用所学知识进行简单 的推理.
2. 掌握垂直的概念,能根据垂直求出角的度数.
1. 理解垂线的概念,会用三角尺或量角器过 一点画已知直线的垂线 .
探究新知
5.1 相交线/
知识点 1 垂线的定义
问题1:如右图,
C
(1)∠AOC的对顶角是哪个角?
这两个角的关系怎样?
探究新知
5.1 相交线/
方格本的横线和竖线 铅垂线和水平线
探究新知
5.1 相交线/
素养考点 1 利用垂直求角的度数
例1 如图AB⊥CD垂足为O,∠COF=56°,求∠AOE?
解:∵AB⊥CD(已知)
C F
∴∠COB=90°(垂直的定义)
56°
∴∠BOF= ∠COB-∠COF =90°-56°=34°
A
C
巩固练习

初中数学知识归纳角的平分线与垂直线的性质与计算方法

初中数学知识归纳角的平分线与垂直线的性质与计算方法

初中数学知识归纳角的平分线与垂直线的性质与计算方法初中数学知识归纳:角的平分线与垂直线的性质与计算方法在初中数学课程中,我们学习了许多与角度相关的知识。

其中,角的平分线和垂直线是角度的重要性质之一。

本文将归纳总结角的平分线和垂直线的性质与计算方法,帮助读者更好地理解和运用这些概念。

一、角的平分线的性质与计算方法角的平分线是指通过一个角的顶点将该角分成两个相等的角。

平分线有以下性质和计算方法:1. 平分线相交于角的顶点,并将角分为两个相等的角。

假设有一个角ACB,通过顶点C作一条线段CD,若角ACD和角BCD相等,则线段CD就是角ACB的平分线。

2. 平分线上的点到角的两边的距离相等。

对于平分线CD来说,CD到CA的距离等于CD到CB的距离,即CD = CD。

这也是为什么平分线得名的原因。

3. 根据平分线的性质可以解决一些问题。

例如,已知一个角ACB和一个点D在角ACB的内部,我们可以通过作平分线CD来求得角ACD和角BCD的度数,进一步计算出角ACD和角BCD的具体数值。

二、垂直线的性质与计算方法垂直线是指与另一条线段或线相交,且与之相交的角度为90度的直线。

垂直线有以下性质和计算方法:1. 垂直线相交于一个点,并产生四个直角。

当两条线段或线相交于一点时,所形成的四个角度都是直角,即每个角度都等于90度。

2. 判断两条线段或线之间是否垂直。

两条线段或线之间的夹角为90度时,可以判断它们是垂直的关系。

可以通过测量角度或通过判断两条线的斜率是否相乘为-1来确定两者的垂直性。

3. 解决一些与垂直线相关的问题。

垂直线常常用于求解与直角三角形相关的问题。

例如,已知两条直线AB和CD相交于点E,且角AEC为90度,我们可以利用垂直线的性质计算出其他角度的度数,进而解决具体的问题。

三、数学归纳与实际应用角的平分线和垂直线的性质不仅仅是数学领域的概念,也在生活中有着广泛的应用。

1. 平分线的应用平分线在几何图形的构造中起着重要的作用。

人教版初中数学七年级下-相交线和平行线知识点总结

人教版初中数学七年级下-相交线和平行线知识点总结

人教版初中数学七年级下 相交线和平行线知识点总结本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征,两条直线互相垂直所具有的特性,两条直线平行的长期共存条件和它所有的特征以及有关图形平移变换的性质,利用平移设计一些优美的图案.。

重点:垂线和它的性质,平行线的判定方法和它的性质,平移和它的性质,以及这些的组织运用.1、邻补角与对顶角图形 顶点 边的关系 大小关系 对顶角∠1与∠2 有公共顶点∠1的两边与∠2的两边互为反向延长线对顶角相等 即∠1=∠2邻补角∠3与∠4有公共顶点∠3与∠4有一条边公共,另一边互为反向延长线。

∠3+∠4=180°注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角 ⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。

⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。

1 2 4 32、垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

符号语言记作:如图所示:AB ⊥CD ,垂足为O⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

简称:垂线段最短。

3、垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。

注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。

画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相交线之垂线
在相交线的模型中,固定木条a,转动木条b。

当b的位置变化时,a、b所成的∠α也会发生变化。

当∠α=90°时(如图1),你能得到什么结论?我们说a与b互相垂直,记作a⊥b。

(图1)
【知识梳理1】垂线的相关概念及推理
1.当∠α=90°时(如图1)此时,我们说a与b互相垂直,记作a⊥b。

(图2)
2.垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫作另一条直线的垂线,它们的交点叫作垂足。

如图2,AB⊥CD,垂足为O。

注:(1)∠α可以是四个角中的任意一个角,不是限定不变的某一个角。

(2)在画图时,要标记直角符号“┐”,垂线是一条直线而不是线段或射线。

3.推理格式
∵∠AOC=90°(已知)∴AB⊥CD(垂直的定义)
反过来也成立:∵AB⊥CD于点O(已知)
∴∠AOC=∠BOC=∠BOD=∠AOD=90°(垂直的定义)
注:垂直的定义既是垂直的性质,也是垂直的判定方法。

【重点剖析】遇到线段、射线的垂直问题,指的是它们所在的直线互相垂直,画线段或射线的垂线是指画它们所在直线的垂线,垂足可能在线上,也可能在其延长线上。

【知识梳理2】垂线的画法
经过一点作(已知直线上或直线外),画已知直线的垂线,步骤如下:
①靠线:让直角三角板的一条直角边(或某条刻度线)与已知直线重合;
②靠点:沿直线移动,使直角三角板的另一条直角边经过已知点;
③画线:沿直角边画线,则这条直线就是经过这个点的已知直线的垂线。

例:1.在下列各图中,过点P 画出射线AB 或线段AB 的垂线 2.过点P 作∠AOB 两边的垂线
【例题精讲】
例1.下列说法正确的有( )
①两条直线相交,交点叫垂足;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③在同一平面内,一条直线有且只有一条垂线;④在同一平面内,一条线段有无数条垂线;⑤过任意一点不可能向一条射线或线段所在的直线作垂线;⑥若直线1l ⊥2l ,则1l 是2l 的垂线,2l 不是1l 的垂线。

A 、2个
B 、3个
C 、4个
D 、5个
例2. 在下图中分别过点P 作AB 的垂线。

【试一试】
1.过一条线段外一点,画这条线段的垂线,垂足在( )。

A 、在这条线段上
B 、这条线段的端点
C 、在这条线段的延长线上
D 、都有可能
2.过点P 分别向角的两边作垂线
【知识梳理3】垂直的性质
1.在同一平面内,过一点有且只有一条直线与已知直线垂直。

注:(1)“过一点”中的这一点的位置可以在已知直线上,也可以在已知直线外。

(2)“有且只有”说明了垂线的存在性和唯一性。

2.连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

注:(1)“一点”必须在直线外,如果这点在直线上,那么构不成垂线段,所有这点不能在直线上。

(2)垂线是直线,垂线段是线段。

学法点睛:垂直、垂线、垂线段的概念辨析
概念定义图形记法
垂直直线AB、CD相交,所夹的角是
90°,AB与CD互
相垂直
AB⊥CD
垂线两条直线互相垂直,其中一条直
线叫作另一条直线的垂线,单独
的一条直线不能叫垂线。

直线a是直线b的垂
线或直线b是直线a
的垂线
垂线段连接直线l外一点A与直线l上
各点的线段中,与直线l垂直的
线段叫作点A到直线l的垂线
段。

线段AO是直线l
的垂线段
(备用图)
例5.如图,直线AB 与CD 交于点O ,OE ⊥AB 于点O ,∠EOD :∠DOB =3:1,求∠COE 的度数。

【巩固练习】
1.到直线L 的距离等于2cm 的点有( )
A.0个
B.1个;
C.无数个
D.无法确定
2..点P 为直线m 外一点,点A,B,C 为直线m 上三点,PA=4cm,PB=5cm,PC=2cm,则点P 到 直线m 的距离为( ) A.4cm B.2cm; C.小于2cm D.不大于2cm
3.如图所示,直线AB,CD,EF 交于点O,OG 平分∠BOF,且CD∠EF,∠AOE=70°,∠求∠DOG 的度数.
1.已知直线AB 、CB 、l 在同一平面内,若AB ⊥l ,垂足为B ,CB ⊥l ,垂足也为B ,则符合题意的图形可以是( )
G
O
F
E
D
C
B
A
2.中学生体育测试有个项目是立定跳远,那么立定跳远成绩的测定利用的数学原理是()A.两点之间,线段最短B.过一点有且只有一条直线与已知直线垂直
C.两点确定一条直线D.点到直线,垂线段最短
3.如图,OD∠OB,OC⊥OA,∠BOC=32°,则∠AOD的度数是()
A.150° B.125°C.132° D.148°
(第3题)(第4题)4.如图,CD∠EF,垂足为O,AB是过点O的直线,∠1=50°,则∠2的度数是()A.40° B.50°C.60° D.70°
5.过一个钝角的顶点向一边作垂线,把这个钝角分成的两个角的比为1:6,则这个钝角的度数
是。

6.到直线l的距离等于2cm的点由个。

7.如图,P是∠AOB的OB边上的一点,CD是一条线段,请分别过P点画OA、OB和线段CD的垂线。

8.如图,已知点O为直线AB上一点,OD平分∠AOC,OE平分∠COB,试说明OD⊥OE。

1.下列说法中能得到两直线垂直的说法有( )
①两条直线相交,所成的四个角中有一个角是直角;②两条直线相交,所成的四个角相等;③两条直线相交,有一组邻补角相等;④两条直线相交,对顶角互补。

A .1个
B .2个
C .3个
D .4个
2.点到直线的距离是指( ) A .直线外一点到这条直线的垂线段
B .直线外一点到这条直线的垂线段的长度
C .直
线外一点与这条直线上任一点所连接的线段 D .直线外一点与这条直线上任一点所连线段的长度 3.a 、b 、c 为同一平面内的三条直线,若a 与b 不平行,b 与c 不平行,那么下列判断正确的是( )
A .a 与c 一定不平行
B .a 与c 一定平行
C .a 与b 垂直
D .a 与c 可能相交,也可能平行
4.定义:直线1l 与2l 相交于点O ,对于平面内任意一点M ,点M 到直线1l 、2l 的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( )
A .1个
B .2个
C .4个
D .无数个
5.如图,直线AB 、CD 相交于点O ,射线OM 平分∠AOC ,ON ⊥OM 。

若∠AOM =35°,则∠CON 的度数是( )
A .35°
B .45°
C .55°
D .65°
(第5题)
(第6题)
6.如图,PO ⊥OR ,垂足为O ,OQ ⊥PR ,垂足为Q ,且PO =4cm ,RO =3cm ,PR =5cm ,OQ =2.4cm ,PQ =3.2cm ,则点O 到直线PR 的距离是 cm ,点P 到直线OQ 的距离是 cm ,点R 到直线
的距离是3cm ,点P 到直线 的距离是4cm 。

7.如图,AB ⊥CD ,垂足为点B ,EF 平分∠ABD ,则∠CBF 的度数为 。

(第7题) (第8题)
8.如图,已知直线AD 、BE 、CF 相交于点O ,OG ⊥AD ,且∠BOC =35°,∠FOG =30°,则∠DOE 的度数是 。

9.作图
(1)如图1,M 是直线AB 外一点,过点M 的直线MN 与AB 交于点N ,过点M 画直线CD ⊥MN ; (2)如图2,点P 是∠ABC 的边AB 上的一点,直线EF 经过点P 且与直线BC 平行;
(3)如图3,点A 、B 分别在直线1l 、2l 上,过点A 作直线2l 的垂线段AM ,过点B 作直线1l 的垂线。

(图1) (图2) (图3) 10.如图,AB ⊥CD ,垂足为O ,且∠2=26°,求∠1、∠3、∠EOC 和∠BOE 的度数。

10.如图,OA ⊥OB ,∠AOD =
1
2
∠COD ,∠BOC =∠AOD +90°,求∠DOC 的度数。

12.如图,点O在直线AB上,OD平分∠COB,且∠AOD:∠DOB=3:1。

试判断AB与OC的位置关系。

13.如图,AB是一河流,要铺设管道将河水引到C、D两个用水点,现有两种铺设管道的方案:
方案一:过点C、D分别作AB的垂线,垂足分别为E、F,沿CE、DF铺管道;
方案二:连接CD交AB于点P,沿PC、PD铺管道。

这两种铺设管道的方案哪种更节省材料?为什么?
认识同位角、内错角、同旁内角
1.同位角:在截线同旁,被截线相同的一侧的两角。

(如图1)
(图1)(图2)(图3)2.内错角:在截线两旁,被截线之内的两角。

(如图2)。

相关文档
最新文档