单片机红外遥控器原理
单片机的红外通信原理

单片机的红外通信原理
单片机的红外通信原理是通过红外发射器和红外接收器进行数据的发送和接收。
红外发射器是一个用于发射红外光信号的器件,它通过电流激励而发射出红外光。
红外接收器则是一个用于接收红外光信号的器件,它可以将接收到的红外光信号转换成对应的电压信号。
在红外通信过程中,发送端的单片机首先将需要发送的数据转换成红外光信号。
这可以通过对红外发射器施加电压的方式来实现。
当电压施加在红外发射器上时,它会以特定的频率发射红外光信号。
这个特定的频率一般是在红外光线可见范围之外,人眼无法看到。
接收端的单片机上安装了红外接收器,它可以接收来自发送端发射的红外光信号。
红外接收器将接收到的红外光信号转换成电压信号,并通过单片机进行处理。
单片机根据接收到的信号特征,判断出是哪个发射器发出的信号,并解码出相应的数据信息。
然后,单片机可以根据接收到的数据进行相应的操作,比如控制其他器件的开关或者进行数据的存储和处理。
红外通信在遥控器、红外设备和红外传感器等方面有着广泛的应用。
通过红外通信,可以实现无线传输和控制,具有灵活性高、成本低的优势。
单片机红外遥控原理

红外遥控原理人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。
其中红光的波长范围为0.62~0.76um;紫光的波长范围为0.38~0.46。
比紫光的波长还要短的光叫紫外线,比红光的波长还要长的光叫红外线。
红外线遥控技术就是利用波长为0.76~1.5μm之间的近红外线来传送控制信号的。
常用的红外遥控系统一般分发射和接收两个部分。
发射部分的主要元件为红外发光二极管。
它实际上是一只特殊的发光二极管,由于其内部材料不同于普通发光二极管,因而在其两端施加一定电压时,它便发出的是红外线而不是可见光。
目前大量使用的红外发光二极管发出的红外线波长为940nm左右,外形与普通5发光二极管相同,只是颜色不同。
红外发光二极管一般有黑色、深蓝、透明三种颜色。
判断红外发光二极管好坏的办法与判断普通二极管一样:用万用表电阻挡量一下红外发光二极管的正、反向电阻即可。
红外发光二极管的发光效率要用专门的仪器才能精确测定,而业余条件下只能用拉距法来粗略判定。
接收部分的红外接收管是一种光敏二极管。
在实际应用中要给红外接收二极管加反向偏压,它才能正常工作,亦即红外接收二极管在电路中应用时是反向运用,这样才能获得较高的灵敏度。
红外接收二极管一般有圆形和方形两种。
由于红外发光二极管的发射功率都较小,所以红外接收二极管接收到的信号比较微弱,因此就要增加高增益放大电路。
前些年常用μPC1373H、CX20106A等红外接收专用放大电路。
最近几年不论是业余制作还是正式产品,大多都采用成品红外接收头。
成品红外接收头的封装大致有两种:一种采用铁皮屏蔽;一种是塑料封装。
均有三只引脚,即电源正、电源负和数据输出(VO或OUT)。
红外接收头的引脚排列因型号不同而不尽相同,可参考厂家的使用说明。
成品红外接头的优点是不需要复杂的调试和外壳屏蔽,使用外壳屏蔽,使用起来如同一只三极管,非常方便。
但在使用时注意成品红外接收头的载波频率。
单片机STM32F103C8T6的红外遥控器解码系统设计

单片机STM32F103C8T6的红外遥控器解码系统设计一、本文概述本文旨在详细阐述基于STM32F103C8T6单片机的红外遥控器解码系统的设计和实现过程。
随着科技的不断进步和智能化设备的普及,红外遥控器作为一种常见的遥控设备,已经广泛应用于家电、安防、玩具等多个领域。
然而,红外遥控器发出的红外信号往往需要通过解码器才能被设备正确识别和执行,因此,设计一款高效、稳定、可靠的红外遥控器解码系统具有重要意义。
本文将首先介绍红外遥控器的基本原理和信号特点,然后详细阐述STM32F103C8T6单片机的性能特点和在红外遥控器解码系统中的应用优势。
接着,将详细介绍红外遥控器解码系统的硬件设计,包括红外接收头的选择、电路设计和PCB制作等。
在软件设计部分,将详细阐述如何通过STM32F103C8T6单片机的编程实现红外信号的接收、解码和处理,以及如何将解码后的数据通过串口或其他通信方式发送给主控制器。
本文还将对红外遥控器解码系统的性能进行测试和分析,包括信号接收距离、解码速度和稳定性等方面的测试。
将总结本文的主要工作和创新点,并对未来的研究方向进行展望。
通过本文的研究和实现,旨在为红外遥控器解码系统的设计提供一种新的思路和方法,同时也为相关领域的研究人员提供有益的参考和借鉴。
二、红外遥控器基础知识红外遥控器是一种常见的无线遥控设备,它利用红外光作为信息载体,通过发射和接收红外光信号实现对设备的远程控制。
这种遥控方式因其简单、低成本和无需视线连接等优点,在各类消费电子产品中得到了广泛应用,如电视机、空调、音响等。
红外遥控器的工作原理主要基于红外辐射和光电器件的检测。
遥控器内部通常包含一个或多个红外发射管,当按下按键时,发射管会发射出特定频率和编码的红外光信号。
接收端则配备有红外接收头,该接收头内部有一个光敏元件(如硅光敏三极管或光敏二极管),用于检测红外光信号并将其转换为电信号。
为了区分不同的按键操作,红外遥控器通常采用特定的编码方式对按键信号进行编码。
51单片机设计的红外线遥控器电路图及工作原理

51单片机设计的红外线遥控器电路图及工作原理你家里是否有一个电视机遥控器或者空调机遥控器呢?你是否也想让它遥控其他的电器甚至让它遥控您的电脑呢?那好,跟我一起做这个“红外遥控解码器”。
该小制作所需要的元件很少:单片机TA89C2051一只,RS232接口电平与TTL电平转换心片MAX232CPE 一只,红外接收管一只,晶振11.0592MHz,电解电容10uF4只,10uF 一只,电阻1K1个,300欧姆左右1个,瓷片电容30P2个。
发光二极管8个。
价钱不足20元。
电路图及原理:主控制单元是单片机AT89C2051,中断口INT0跟红外接受管U1相连,接收红外信号的脉冲,8个发光二极管作为显示解码输出(也可以用来扩展接其他控制电路),U3是跟电脑串行口RS232相连时的电平转换心片,9、10脚分别与单片机的1、2脚相连,(1脚为串行接收,2脚为串行发送),MAX232CPE的7、8脚分别接电脑串行口的2(接收)脚、3(发送脚)。
晶振采用11.0592MHz,这样才能使得通讯的波特率达到9600b/s,电脑一般默认值是9600b/s、8位数据位、1位停止位、无校验位。
电路就这么简单了,现在分析具体的编程过程吧。
如图所示,panasonic遥控器的波形是这样的(经过反复测试的结果)。
开始位是以3.6ms低电平然后是3.6ms高电平,然后数据表示形式是0.9ms低电平0.9ms 高电平周期为1.8ms表示“0”,0.9ms低电平2.4ms高电平周期为3.3ms表示“1”,编写程序时,以大于3.4ms小于3.8ms高电平为起始位,以大于2.2ms小于2.7ms高电平表示“1”,大于0.84ms小于1.11ms高电平表示“0”。
因此,我们主要用单片机测量高电平的长短来确定是“1”还是“0”即可。
定时器0的工作方式设置为方式1:mov tmod,#09h,这样设置定时器0即是把GATE置1,16位计数器,最大计数值为2的16次方个机器周期,此方式由外中断INT0控制,即INT0为高时才允许计数器计数。
红外遥控器原理

遥控器使用方便,功能多.目前已广泛应用在电视机、VCD、DVD、空调等各种家用电器中,且价格便宜,市场上非常容易买到。
如果能将遥控器上许多的按键解码出来.用作单片机系统的输入.则解决了常规矩阵键盘线路板过大、布线复杂、占用I/O口过多的弊病。
而且通过使用遥控器,操作时可实现人与设备的分离,从而更加方便使用。
一、编码格式1、0和1的编码遥控器发射的信号由一串O和1的二进制代码组成.不同的芯片对0和1的编码有所不同。
通常有曼彻斯特编码和脉冲宽度编码。
TC9012的O和1采用PWM方法编码,即脉冲宽度调制,其O码和1码如图1所示(以遥控接收输出的波形为例)。
O码由O.56ms低电平和0.56 ms高电平组合而成.脉冲宽度为1.12ms。
1码由0.56ms低电平和1.69ms高电平组合而成.脉冲宽度为2.25ms。
在编写解码程序时.通过判断脉冲的宽度,即可得到0或1。
2、按键的编码当我们按下遥控器的按键时,遥控器将发出如图2的一串二进制代码,我们称它为一帧数据。
根据各部分的功能。
可将它们分为5部分,分别为引导码、地址码、地址码、数据码、数据反码。
遥控器发射代码时.均是低位在前,高位在后。
由图2分析可以得到.引导码高电平为4.5ms,低电平为4.5ms。
当接收到此码时.表示一帧数据的开始。
单片机可以准备接收下面的数据。
地址码由8位二进制组成,共256种.图中地址码重发了一次。
主要是加强遥控器的可靠性.如果两次地址码不相同.则说明本帧数据有错.应丢弃。
不同的设备可以拥有不同的地址码.因此。
同种编码的遥控器只要设置地址码不同,也不会相互干扰。
图中的地址码为十六进制的0EH(注意低位在前)。
在同一个遥控器中.所有按键发出的地址码都是相同的。
数据码为8位,可编码256种状态,代表实际所按下的键。
数据反码是数据码的各位求反,通过比较数据码与数据反码.可判断接收到的数据是否正确。
如果数据码与数据反码之间的关系不满足相反的关系.则本次遥控接收有误.数据应丢弃。
单片机红外的原理及应用

单片机红外的原理及应用1. 红外传感器的工作原理红外传感器是一种利用红外线进行检测和控制的电子设备。
它主要通过接收和解码红外线信号来实现对环境的感知和反馈。
红外传感器的工作原理如下:1.发射红外线信号:红外传感器内置一颗红外发射二极管,当电流流过发射二极管时,它会产生红外线信号,并向外发射。
2.接收红外线信号:红外传感器还内置有一个红外接收二极管,它可以接收外界发射过来的红外线信号。
3.解码红外线信号:接收到红外线信号后,红外传感器会将其进行解码,并根据解码结果来判断是否有外界物体存在或执行相应的控制指令。
2. 红外传感器的应用领域由于红外传感器具有非接触、反应迅速、精准度高等特点,它在许多领域都得到了广泛的应用。
以下是红外传感器常见的应用领域:•安防领域:红外传感器可以用于人体检测、入侵报警等安防系统中。
当有人进入红外传感器的感知范围时,系统会发出警报或进行相应的控制。
•智能家居领域:红外传感器可以通过接收红外遥控器发送的信号,实现对家电设备(如电视、空调、音响等)的控制。
用户只需用遥控器发出相应的指令,红外传感器就可以识别并执行相应的操作。
•自动化控制领域:红外传感器可以用于自动化控制系统中,实现对设备的自动检测和控制。
例如,在工业生产中,红外传感器可以用来检测物体的位置、温度等参数,从而实现对生产过程的监控和控制。
•运动检测领域:红外传感器可以用于运动检测设备中,如自动门、楼梯照明等。
当有人经过时,红外传感器会感知到并触发相应的装置,实现自动开门或照明的功能。
3. 单片机中红外传感器的应用在单片机中,红外传感器可以与其他模块(如LCD显示屏、蜂鸣器、按键等)结合使用,实现更复杂的功能。
以下是一些常见的单片机红外传感器的应用案例:•红外遥控器:单片机可以通过红外传感器接收外部遥控器发送的红外信号,根据不同的按键码进行相应的操作,如控制电视机、空调等家电设备。
•红外测距:单片机可以利用红外传感器接收外界发射的红外光信号,根据接收到的光强来估计物体的距离。
单片机中的红外遥控技术

单片机中的红外遥控技术随着科技的发展,红外遥控技术逐渐应用于各个领域,其中包括单片机系统。
本文将探讨单片机中的红外遥控技术,并介绍其工作原理、应用场景以及未来的发展趋势。
一、工作原理单片机中的红外遥控技术主要基于红外线通信原理。
首先,红外遥控器将用户指令转化为红外信号,然后通过红外发射器向目标设备发送信号。
接收设备上的红外接收器将接收到的红外信号转换为电信号,并通过单片机进行解码和处理,最终实现对目标设备的遥控。
在工作原理中,三个主要组件起着关键作用:红外遥控器、红外发射器和红外接收器。
红外遥控器通常包含按钮、编码器和红外发射二极管。
当用户按下按钮时,编码器将对应的指令编码为红外信号,并通过红外发射二极管发射出去。
红外接收器则负责接收红外信号,并将其转换为电信号发送给单片机进行解码。
二、应用场景红外遥控技术在单片机中有着广泛的应用场景。
其中一些典型的场景包括:1. 家电控制:通过单片机和红外接收器,用户可以利用红外遥控技术控制电视、空调、音响等家电设备。
只需一个遥控器就可以轻松实现对多个设备的控制,提高了用户的便利性和生活质量。
2. 车载设备:红外遥控技术在车载设备中的应用逐渐增多。
例如,通过单片机和红外接收器,驾驶员可以通过车载系统控制音乐、导航等功能,从而提高了驾驶的安全性和便利性。
3. 安防系统:红外遥控技术也广泛应用于安防系统中。
通过单片机和红外接收器,用户可以通过遥控器控制门锁、摄像头等设备,实现对家庭或办公场所的安全监控和管理。
4. 工业自动化:在工业领域,红外遥控技术可以用于实现对机器人、仪表等设备的远程控制。
通过单片机和红外接收器,工程师可以轻松地操控设备,提高生产效率和工作效益。
三、未来发展趋势随着科技的不断进步,红外遥控技术在单片机中也在不断发展和创新。
以下是未来几个发展趋势的预测:1. 蓝牙和Wi-Fi技术的整合:蓝牙和Wi-Fi技术的发展将为单片机中的红外遥控技术带来更广阔的应用前景。
单片机的红外遥控器编码原理与实现

单片机的红外遥控器编码原理与实现红外遥控器是我们日常生活中常见的一种设备,用于控制电器设备的开关、音量调节等操作。
而单片机作为一种重要的电子元器件,可以通过编程来实现红外遥控器的功能。
本文将介绍单片机的红外遥控器编码原理和实现过程。
一、红外编码原理红外遥控器通过发送红外信号来控制电器设备的开关。
而红外编码原理是指在红外遥控器中,将按键的信息编码成红外信号发送出去。
在遥控器中,每个按键对应一个特定的红外编码。
当按下某个按键时,遥控器会将该按键的特定编码发送出去。
接收器设备会解码接收到的红外信号,并根据解码结果来执行相应的操作。
二、红外编码实现步骤1. 硬件准备实现红外遥控器编码,首先需要准备以下硬件设备:- 单片机模块- 红外发射模块- 按键模块- 电源供应模块2. 硬件连接将单片机模块、红外发射模块、按键模块和电源供应模块按照电路图进行连接。
确保连接正确并固定好各个模块。
3. 软件编程使用单片机的编程语言(如C语言)进行编程,实现红外遥控器的功能。
具体的编程步骤如下:- 初始化相关的引脚和中断,包括红外发射引脚和按键引脚。
- 设置红外编码的格式和协议,如NEC编码、SONY编码等。
- 通过按键模块检测按键是否被按下,如果按键被按下,则执行相应的红外编码发送操作。
- 根据按键的不同,发送不同的红外编码信号。
4. 红外编码发送编写代码实现红外编码信号的发送。
根据选择的编码协议和格式,在编程中设置相应的红外编码参数,并通过红外发射模块将编码信号发送出去。
5. 测试和调试完成编程后,进行测试和调试。
将红外编码器面对接收器设备,按下遥控器的按键,观察接收器设备是否成功接收到信号并执行相应的操作。
通过以上步骤,就可以实现单片机的红外遥控器编码功能。
三、红外编码的应用红外遥控器的编码原理可以应用于各种控制场景,例如家电控制、智能家居系统、工业自动化等。
通过编程,可以实现不同按键对应不同设备的控制,提高生活和工作的便利性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单片机红外遥控器原理
单片机红外遥控器原理
红外遥控技术是一种通过红外线信号传输控制信息的技术。
它已经广泛应用于家电、汽车、医疗设备、通讯设备等各个领域。
单片机红外遥控器是一种使用单片机作为控制核心的红外遥控器,它利用红外线作为载体,通过调制、解调技术实现遥控信号的传输和接收。
下面我们来详细了解单片机红外遥控器的工作原理。
1. 红外传感器
红外遥控器的核心组件是红外传感器,它是将红外线转换成电信号的装置。
当我们按下遥控器上的按钮时,红外传感器会接收到遥控器发出的红外信号,然后将其转换成电信号并传输给单片机进行处理。
2. 调制和解调技术
在红外遥控器中,通常会采用调制技术和解调技术来保证数据的传输和接收的可靠性。
调制技术是将数字信号转换成模拟信号,然后通过载波信号进行传输。
而解调技术则是将接收到的模拟信号转换成数字信号。
这样做的好处是可以减小干扰,提高传输的可靠性。
3. 编码器和解码器
在单片机红外遥控器中,通常会使用编码器和解码器来处理遥控信号。
编码器是将按键的信号转换成对应的数字编码,然后传输给红外传感器进行发送。
解码器则是接收红外传感器传来的信号,解析成对应的按键信号,然后传输给单片机进行处理。
这样做可以有效地避免信号的混淆和干扰。
4. 单片机处理
单片机是整个红外遥控器系统的控制核心,它可以通过编程来实现对遥控信号的处理和解析。
当单片机接收到红外传感器传来的信号后,它会根据预先设定的编码和解码规则来进行信号的解析和处理,然后执行对应的操作。
例如,控制家电设备的开关、调节音量等。
5. 发射器和接收器
单片机红外遥控器中包含了两个主要部分:发射器和接收器。
发射器用于发送红外信号,它通过编码器将按键信号转换成对应的红外编码,然后发送出去。
接收器则用于接收外部红外信号,通过解码器将其解析成对应的按键信号,然后传输给单片机。
这样设计可以提高遥控器的使用距离和灵敏度。
综上所述,单片机红外遥控器是一种利用红外线进行信号传输的遥控器。
它通过红外传感器接收外部红外信号,经过调制、解调技术传输给单片机。
单片机根据
预设的编码和解码规则进行信号的处理和解析,从而实现对家电设备等的远程控制。
这种遥控器具有使用方便、稳定可靠的特点,在日常生活中得到了广泛的应用。