大学物理实验微波综合特性研究实验报告
微波实验报告

实验题目:电磁场与微波实验仿真部分班级:姓名:学号:日期:目录实验一微带分支线匹配器 (1)一、实验目的 (1)二、实验原理 (1)1.支节匹配器 (1)2. 微带线 (1)三、实验内容 (2)四、实验步骤 (2)五、仿真过程 (2)1、单支节匹配 (2)2、双支节匹配 (5)3.思考题 (9)五、结论与思考 (10)实验二微带多节阻抗变换器 (12)一、实验目的 (12)二、实验原理 (12)三、实验内容 (13)四、实验步骤 (13)五、实验过程 (14)1、纯电阻负载 (14)五、结论与思考 (24)实验三微带功分器 (26)一、实验目的 (26)二、实验原理 (26)1、散射矩阵 (26)2、功分器 (27)三、实验内容 (28)四、实验步骤 (28)五、实验过程 (28)1、计算功分器参数 (28)2、确定微带线尺寸 (29)3、绘制原理图 (29)4、仿真输出 (30)五、结论与思考 (34)附录:心得体会 (35)实验一 微带分支线匹配器一、实验目的1. 熟悉支节匹配器的匹配原理;2. 了解微带线的基本概念和元件模型;3. 掌握Smith 图解法设计微带线匹配网络。
二、实验原理1.支节匹配器随着工作频率的提高及响应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。
因此,在频率高达一定数值以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现阻抗匹配网络。
常用的匹配电路有:支节匹配器,四分之一波长阻抗变换器,指数线匹配器等。
支节匹配器分单支节、双支节和三支节匹配。
这类匹配器是在主传输线上并联适当的电纳(或串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的,此电纳(或)电抗元件常用一终端短路或开路段构成。
图1.1 支节匹配器原理单支节匹配的基本思想是选择支节到阻抗的距离d ,使其在距负载d 处向主线看去的导纳Y 是0Y jB +形式。
微波实验报告波导波长测量

篇一:电磁场与微波实验报告波导波长的测量电磁场与微波测量实验报告学院:班级:组员:撰写人:学号:序号:实验二波导波长的测量一、实验内容波导波长的测量【方法一】两点法实验原理如下图所示:按上图连接测量系统,可变电抗可以采用短路片。
当矩形波导(单模传输te10模)终端(z=0)短路时,将形成驻波状态。
波导内部电场强度(参见图三之坐标系)表达式为:e =ey =e0 sin(?xa) sin?z在波导宽面中线沿轴线方向开缝的剖面上,电场强度的幅度分布如图三所示。
将探针由缝中插入波导并沿轴向移动,即可检测电场强度的幅度沿轴线方向的分布状态(如波节点和波腹点的位置等)。
yz两点法确定波节点位置将测量线终端短路后,波导内形成驻波状态。
调探针位置旋钮至电压波节点处,选频放大器电流表表头指示值为零,测得两个相邻的电压波节点位置(读得对应的游标卡尺上的刻度值t1和t2),就可求得波导波长为:?g = 2 tmin-tmin由于在电压波节点附近,电场(及对应的晶体检波电流)非常小,导致测量线探针移动“足够长”的距离,选频放大器表头指针都在零处“不动”(实际上是眼睛未察觉出指针有微小移动或指针因惰性未移动),因而很难准确确定电压波节点位置,具体测法如下:把小探针位置调至电压波节点附近,尽量加大选频放大器的灵敏度(减小衰减量),使波节点附近电流变化对位置非常敏感(即小探针位置稍有变化,选频放大器表头指示值就有明显变化)。
记取同一电压波节点两侧电流值相同时小探针所处的两个不同位置,则其平均值即为理论节点位置:1tmin = ? t1 ? t2 ?2最后可得?g = 2 tmin- tmin (参见图四)【方法二】间接法矩形波导中的h10波,自由波长λ0和波导波长?g满足公式:?g =???? 1 ? ? ??2a?2其中:?g=3?108/f,a=2.286cm通过实验测出波长,然后利用仪器提供的对照表确定波的频率,利用公式cλ0=确定出λ0,再计算出波导波长?g。
北邮微波实验报告

北邮微波实验报告北邮微波实验报告引言:微波技术是现代通信领域的重要组成部分,其在无线通信、雷达探测、卫星通信等方面发挥着重要作用。
本次实验旨在通过对微波的实际操作,深入了解微波的特性和应用。
一、实验目的本次实验的主要目的是:1. 了解微波的基本特性和传输原理;2. 掌握微波实验仪器的使用方法;3. 学习微波的传输线特性及其在微波系统中的应用。
二、实验原理微波是指频率在300MHz至300GHz之间的电磁波,具有较高的频率和较短的波长。
微波的传输线主要包括同轴电缆和微带线两种,其特性阻抗和传输损耗与频率、材料和结构参数有关。
三、实验步骤1. 实验仪器准备:将微波发生器、功率计、频谱分析仪等仪器连接好,确保仪器间的连接正确可靠。
2. 测量微波信号的功率:使用功率计对微波信号的功率进行测量,记录下测量结果。
3. 测量微波信号的频谱:使用频谱分析仪对微波信号的频谱进行测量,观察并记录下频谱特性。
4. 测量微波传输线的特性阻抗:将微波传输线连接好,通过测量反射系数和传输系数等参数,计算出传输线的特性阻抗。
5. 测量微波传输线的传输损耗:通过测量微波信号在传输线中的衰减量,计算出传输线的传输损耗。
6. 分析实验结果:根据实验数据,分析微波信号的功率、频谱特性以及传输线的特性阻抗和传输损耗等。
四、实验结果与分析通过实验测量,我们得到了微波信号的功率、频谱特性以及传输线的特性阻抗和传输损耗等数据。
根据实验结果可以得出以下结论:1. 微波信号的功率与输入功率之间存在一定的关系,可以通过功率计进行测量和调整。
2. 微波信号的频谱特性与信号的频率和幅度有关,可以通过频谱分析仪进行测量和分析。
3. 微波传输线的特性阻抗与线路结构和材料参数有关,可以通过测量反射系数和传输系数等参数进行计算。
4. 微波传输线的传输损耗与线路长度和材料损耗有关,可以通过测量微波信号在传输线中的衰减量进行计算。
五、实验总结通过本次实验,我们深入了解了微波的特性和应用,并掌握了微波实验仪器的使用方法。
微波技术基础实验报告

微波技术基础实验报告一、实验目的1.掌握微波信号的基本特性和参数的测量方法;2.了解微波器件的性能指标和测试方法;3.加深对微波传输线和网络理论的理解和实践。
二、实验设备和原理实验设备:微波信号源、功率计、波导固有模发生器、波间仪、反射器等。
实验原理:微波技术是指在高频范围内进行电磁波的传输、控制和处理的一套技术体系,其频率范围通常为0.3GHz至300GHz。
微波技术具有频率高、信息容量大和传输距离远等优点,广泛应用于通信、雷达、航空航天等领域。
三、实验步骤和内容1.根据实验要求,搭建实验电路;2.测量微波信号源输出功率,通过功率计测量微波信号源输出功率;3.测量波导波导的传输特性,通过波间仪测量微波信号通过波导时的传输特性;4.测量波导器件的特性,通过波间仪测量波导器件的特性;5.测量波导管中的固有模,通过固有模发生器和反射器测量波导管中的固有模。
四、实验结果和数据分析1.根据实验条件,测量到微波信号源输出功率为10dBm;2.根据测量结果,绘制出波导波导的传输特性曲线,分析其传输性能;3.根据实验条件,测量到波导器件的插入损耗为3dB;4.根据实验条件和测量数据,计算出波导管中的固有模的频率范围和衰减值,并进行数据分析。
五、实验结论1.微波信号源输出功率为10dBm;2.波导波导的传输特性曲线显示了其良好的传输性能;3.波导器件的插入损耗为3dB,插入损耗越小,器件性能越好;4.波导管中的固有模的频率范围为0.3GHz至3GHz,衰减值为-10dB。
六、实验总结通过本次实验,我深入理解了微波技术的基本特性和参数的测量方法,掌握了微波器件的性能指标和测试方法,并加深了对微波传输线和网络理论的理解和实践。
通过实验数据的测量和分析,我对微波技术的应用和性能有了更深入的认识,实验收获颇丰。
实验5微波的传输特性和基本参数测量

实验五微波的传输特性和基本测量0 前言在微波测量技术中,微波测量的主要内容是频率、驻波比、功率等基本参数。
在微波工程设计中,多数情况下由于边界条件的复杂性,理论分析往往只能获得近似解,最终要通过微波测量来解决,因此,掌握微波测量技术对今后实际科研工作是非常有用的。
1 实验目的(1)初步了解微波测量系统,了解微波器件的使用和特性。
(2)了解微波测量技术,微波的传输特性。
(3)熟悉测量微波的基本参数:频率、驻波比。
(4)了解微波波导波长以及自由空间波长之间的关系。
2 原理2.1 频率的测定由于波长与频率满足关系λ=c/f,因此波长的测量和频率的测量是等效的。
在分米波和厘米波波段,频率的测量常采用谐振腔式波长计,而谐振腔波长计又可分两种:即是传输型谐振腔波长计和吸收型谐振腔波长计。
传输型谐振腔有两个耦合元件,一个将能量从微波系统输入谐振腔,另一个将能量从谐振腔输出到指示器。
当谐振腔调谐于待测频率时,能量传输最大,指示器的读数也最大。
吸收式波长计的谐振腔只有一个输入端与能量传输线路衔接,调谐是从能量传输线路接收端指示器读数的降低看出。
本实验所用的是吸收式波长计:如图(5—1)所示。
此波长计由传输波导与圆柱形谐振腔构成。
连接处利用长方形孔作磁耦合,螺旋测微计(读数结构)在旋转时与腔内活塞同步。
利用波长表可以测量微波信号源的频率。
当构成波长计的空腔与传输的电磁波失谐时,它既不吸收微波功率,也基本不影响电磁波的传输。
这种当谐振腔内活塞移动到一定位置,腔的体积正好使腔谐振于待测信号的频率,就有一部分电磁波耦合到腔内并损耗在腔壁上,从而使通过波导的信号减弱,即旋转波长表的测微头,当波长表与被测频率谐振时,将出现吸收峰。
反映在检波指示器上是一跌落点,此时读出波长表测微头的读数,再从波长表频率对照表上查出对应的频率。
如图(5—2)为不同谐振腔波长计的谐振曲线。
图5—1 吸收式波长计图5—2 谐振腔波长计谐振曲线(a)为传输型谐振腔波长计谐振曲线 (b)为吸收型谐振腔波长计谐振曲线2.2 波导波长以及驻波比的测量:关于驻波比,定义为波导中驻波极大值点与驻波极小值点的电场之比。
微波技术实验报告

一、实验目的1. 了解微波技术的原理和基本概念;2. 掌握微波元件的基本特性及测量方法;3. 学习微波网络分析仪的使用方法;4. 培养实际操作能力和团队协作精神。
二、实验原理微波技术是研究频率在300MHz至300GHz范围内电磁波的产生、传播、辐射、调制和接收等问题的学科。
本实验主要涉及微波元件、微波网络分析仪等设备的使用,以及微波参数的测量。
1. 微波元件:微波元件是微波技术中的基本组成部分,主要包括传输线、谐振器、滤波器、衰减器、隔离器、定向耦合器等。
这些元件在微波系统中起到传输、选择、匹配、隔离等作用。
2. 微波网络分析仪:微波网络分析仪是一种用于测量微波网络性能的仪器,可以测量网络的S参数、衰减、相位等参数。
三、实验内容1. 微波元件特性测量(1)实验目的:掌握微波元件的特性测量方法,了解其基本参数。
(2)实验原理:利用微波网络分析仪测量微波元件的S参数,通过S参数计算出微波元件的反射系数、传输系数、驻波比等参数。
(3)实验步骤:a. 将待测微波元件接入微波网络分析仪;b. 调整微波网络分析仪的频率,进行扫频测量;c. 记录微波元件的S参数;d. 分析S参数,计算反射系数、传输系数、驻波比等参数。
2. 微波网络分析仪的使用(1)实验目的:掌握微波网络分析仪的基本操作,了解其功能。
(2)实验原理:微波网络分析仪通过测量微波网络的S参数,可以分析微波网络的性能。
(3)实验步骤:a. 打开微波网络分析仪,进行自检;b. 设置测量参数,如频率、扫描范围等;c. 连接待测微波网络,进行测量;d. 分析测量结果,了解微波网络的性能。
3. 微波系统调试(1)实验目的:了解微波系统的调试方法,掌握调试技巧。
(2)实验原理:通过调整微波系统中的元件参数,使系统达到最佳性能。
(3)实验步骤:a. 连接微波系统,设置初始参数;b. 进行系统测试,观察性能指标;c. 根据测试结果,调整元件参数;d. 重复测试和调整,直至系统性能满足要求。
北理工微波实验报告

北理工微波实验报告1. 引言微波技术是当今通信领域中非常重要的一项技术。
微波在通信、雷达、卫星导航等方面都有广泛应用。
本实验旨在通过实际操作,熟悉微波实验仪器的使用和微波实验的基本原理。
2. 实验目的- 了解微波实验仪器的组成和基本原理- 掌握微波实验仪器的操作方法- 学习微波实验中的重要参数的测量方法3. 实验装置和仪器本实验使用的实验装置和仪器主要包括:- 微波信号源- 微波导管- 微波频率计- 微波功率计- 微波衰减器- 波导短路器和电阻负载4. 实验步骤4.1 测量微波信号源频率稳定度使用微波频率计测量微波信号源输出频率,并记录。
4.2 测量不同功率时微波信号源输出频率固定微波信号源的频率,调整微波功率计上的衰减器,测量不同功率下的微波信号源输出频率。
4.3 测量不同频率时微波信号源输出功率固定微波功率,调节微波信号源频率,使用微波功率计测量不同频率下微波信号源的输出功率。
4.4 测量微波信号源的调制深度将调制信号接入微波信号源的调制输入端口,调整调制信号的幅度,并观察微波信号源的输出功率变化。
通过测量最大输出功率和最小输出功率的差值,计算调制深度。
4.5 测量微波信号源的谐波水平将微波信号源的输出信号接入频谱分析仪,测量不同谐波的振幅,并根据测量结果分析微波信号源的谐波水平。
5. 数据处理与分析5.1 微波信号源的频率稳定度根据频率计测量结果计算微波信号源的频率稳定度,并与厂家提供的规格进行比较。
5.2 微波信号源的调制深度根据测量结果计算微波信号源的调制深度,并与厂家提供的规格进行比较。
5.3 微波信号源的谐波水平根据频谱分析仪测量结果分析微波信号源的谐波水平,并与厂家提供的规格进行比较。
6. 结论通过本实验,我们对微波实验仪器的使用和微波实验的基本原理有了更深入的了解。
我们掌握了微波信号源频率稳定度、功率调制深度和谐波水平的测量方法,并通过数据处理与分析,了解了微波信号源的性能。
实验结果与厂家提供的规格相符,说明我们的测量结果是可靠的。
北航微波实验报告

一、实验目的1. 理解微波的基本特性及其在通信、雷达、遥感等领域的应用。
2. 掌握微波实验的基本操作和实验仪器的使用方法。
3. 通过实验验证微波的基本理论,加深对微波技术的理解。
二、实验仪器与设备1. 微波信号发生器2. 微波探测器3. 波导4. 信号分析仪5. 计算机及相关软件三、实验原理微波是指频率在300MHz至300GHz之间的电磁波,具有穿透能力强、传播速度快、频率高、波长短等特点。
微波技术在通信、雷达、遥感、医学等领域有着广泛的应用。
本实验主要验证以下微波基本理论:1. 微波在波导中的传播特性2. 微波与金属板的相互作用3. 微波探测原理四、实验内容与步骤1. 微波在波导中的传播特性(1)将微波信号发生器产生的微波信号送入波导,通过波导的输入端和输出端分别连接微波探测器。
(2)调整微波信号发生器的频率和输出功率,观察微波探测器接收到的信号强度。
(3)记录不同频率和功率下微波探测器的信号强度,分析微波在波导中的传播特性。
2. 微波与金属板的相互作用(1)将微波信号发生器产生的微波信号送入波导,在波导的输出端放置一块金属板。
(2)调整金属板的位置,观察微波探测器接收到的信号强度。
(3)记录不同位置下微波探测器的信号强度,分析微波与金属板的相互作用。
3. 微波探测原理(1)将微波信号发生器产生的微波信号送入波导,在波导的输出端连接微波探测器。
(2)调整微波信号发生器的频率和输出功率,观察微波探测器接收到的信号强度。
(3)分析微波探测原理,验证实验结果。
五、实验结果与分析1. 微波在波导中的传播特性实验结果表明,微波在波导中的传播速度与真空中的光速相近,传播损耗较小。
随着频率的增加,传播损耗逐渐增大。
2. 微波与金属板的相互作用实验结果表明,微波与金属板相互作用时,会发生反射、透射和吸收等现象。
金属板的位置对微波探测器的信号强度有显著影响。
3. 微波探测原理实验结果表明,微波探测器能够有效地检测微波信号,验证了微波探测原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
篇一:大学物理实验微波光学特性及布拉格衍射微波光学特性及布拉格衍射摘要:微波是一种特定波段的电磁波,其波长范围为1mm~1m。
它存在反射、折射、干涉、衍射和偏振等现象。
但因为它的波长、频率和能量具有特殊的量值,所以它所表现出的这些性质也具有特殊性。
用微波来仿真晶格衍射,发生明显衍射效应的晶格可以放大到宏观尺度(厘米量级)。
所以,本实验用一束3cm的微波代替x射线,观察微波照射到人工制作的晶体模型时的衍射现象,用来模拟发生在真实晶体上的布拉格衍射,并验证著名的布拉格公式。
该实验还利用了微波分光仪完成了微波的单缝衍射和微波迈克尔逊干涉实验。
该报告主要介绍了上述实验的原理,并进行了数据处理和误差分析,在最后还提出了一种实验仪器的改进方案。
关键字:微波光学特性布拉格衍射实验目的:1. 了解微波原理及微波分光的使用方法;2. 认识微波的光学性质,及基本测量方法。
实验仪器:体效应管微波发生器、微波分光计及其附件、微波发射天线、微波接收天线、检波器、微安表等。
实验原理微波波长从1m到0.1mm,其频率范围从300mhz~3000ghz,是无线电波中波长最短的电磁波。
微波波长介于一般无线电波与光波之间,因此微波有似光性,它不仅具有无线电波的性质,还具有光波的性质,即具有光的直射传播、反射、折射、衍射、干涉等现象。
由于微波的波长比光波的波长在量级上大10000倍左右,因此用微波进行波动实验将比光学方法更简便和直观。
微波是一种电磁波,它和其他电磁波如光波、x射线一样,在均匀介质中沿直线传播,都具有反射、折射、衍射、干涉和偏振等现象。
1、微波的反射实验微波的波长较一般电磁波短,相对于电磁波更具方向性,因此在传播过程中遇到障碍物,就会发生反射。
如当微波在传播过程中,碰到一金属板,则会发生反射,且同样遵循和光线一样的反射定律:即反射线在入射线与法线所决定的平面内,反射角等于入射角。
2、微波的单缝衍射实验当一平面微波入射到一宽度和微波波长可比拟的一狭缝时,在缝后就要发生如光波一般的衍射现象。
同样中央零级最强,也最宽,在中央的两侧衍射波强度将迅速减小。
根据光的单缝衍射公式推导可知,如为一维衍射,微波单缝衍射图样的强度分布规律也为:(1)式中是中央主极大中心的微波强度,为单缝的宽度,是微波的波长,为衍射角/常叫做单缝衍射因子,表征衍射场内任一点微波相对强度的大小。
一般可通过测量衍射屏上从中央向两边微波强度变化来验证公式(1)。
同时与光的单缝衍射一样,当(2)时,相应的角位置衍射度强度为零。
如测出衍射强度分布如图2则可依据第一级衍射最小值所对应的角度,利用公式(2),求出微波波长。
3、微波的双缝干涉实验当一平面波垂直入射到一金属板的两条狭缝上,狭缝就成为次级波波源。
由两缝发出的次级波是相干波,因此在金属板的背后面空间中,将产生干涉现象。
当然,波通过每个缝都有衍射现象。
因此实验将是衍射和干涉两者结合的结果。
为了只研究主要来自两缝中央衍射波相互干涉的结果,令双缝的缝宽例如:。
接近,。
当两缝之间的间隔b较大时,干涉强度受单缝衍射的影响小,当b较小时,干涉强度受单缝衍射影响大。
干涉加强的角度为:k=1,2,3?? (3)干涉减弱的角度为:k=1,2,3?? (4)4、微波的迈克尔逊干涉实验在微波前进的方向上放置一个与波传播方向成角的半透射半反射的分束板(如图3)。
将入射波分成一束向金属板a传播,另一束向金属板b传播。
由于a、b金属板的全反射作用,两列波再回到半透射半反射的分束板,回合后到达微波接收器处。
这两束微波同频率,在接收器处将发生干涉,干涉叠加的强度由两束波的程差(即位相差)决定。
当两波的相位差为时,干涉加强;当两波的相位差为时,则干涉最弱。
当a、b板中的一块板固定,另一块板可沿着微波传播方向前后移动,当微波接收信号从极小(或图 2 迈克尔逊干涉原理示意图极大)值到又一次极小(或极大)值,则反射板移动了λ/2距离。
由这个距离就可求得微波波长。
5、微波的偏振实验电磁波是横波,它的电场强度矢量e和波的传播方向垂直。
如果e始终在垂直于传播方向的平面内某一确定方向变化,这样的横电磁波叫线极化波,在光学中也叫偏振光。
如一线极化电磁波以能量强度发射,而由于接收器的方向性较强(只能吸收某一方向的线极化电磁波,相当于一光学偏振片,发射的微波电场强度矢量e如在方向,经接收方向为的接收器后(发射器与接收器类似起偏器和为p1和p2的夹角。
这就是光学中的马吕检偏器),其强度,其中斯(malus)定律,在微波测量中同样适用。
6.布拉格衍射如图所示,从间距为d的两个相邻晶面反射的两束波的程差为2dsinθ,θ为入射波与晶面的掠射角,显然,只有满足2dsinθ=kλ(k=1,2,3??)的θ才能形成干涉极大。
n ms图 5 布拉格衍射示意图布拉格定律:波长为λ的平面波入射到间距为d的晶面族上,掠射角为θ,当满足条件2dsin θ=kλ时形成衍射极大,衍射线在所考虑的晶面的反射线方向。
本实验使用入射方向固定、波长单一的微波和“单晶”模型,采用转动晶体模型和接收喇叭的方法来研究布拉格衍射。
实验内容将实验仪器放置在水平桌面上,调整底座四只脚使底盘保持水平。
调节保持发射喇叭、接收喇叭、接收臂、活动臂为直线对直状态,并且调节发射喇叭,接收喇叭的高度相同。
连接好x波段微波信号源、微波发生器间的专用导线,将微波发生器的功率调节旋钮逆时针调到底,即微波功率调至最小,通电并预热10分钟。
1.微波的反射将金属反射板安装在支座上,安装时板平面法线应与载物小平台0°位一致,并使固定臂指针、接收臂指针都指向90°,这意味着小平台零度方向即是金属反射板法线方向。
打开检波信号数字显示器的按钮开关。
接着顺时针转动小平台,使固定臂指针指在某一角度处,这角度读数就是入射角,然后顺时针转动活动臂在液晶显示器上找到一最大值,此时活动臂上的指针所指的小平台刻度就是反射角。
做此项实验,入射角最好取30°至65°之间,因为入射角太大接收喇叭有可能直接接收入射波,同时应注意系统的调整和周围环境的影响。
2.微波的单缝衍射按需要调整单缝衍射板的缝宽。
将单缝衍射板安置在支座上时,应使衍射板平面与载物圆台上指示线一致。
转动载物圆台使固定臂的指针在载物圆台的处,此时相当于微波从单缝衍射板法线方向入射。
这时让活动臂置小平台处,调整微波发生器的功率使液晶显示器显示一定值,然后在改变1~3度读取一次液晶显示器读数,并记录下来。
根据记录数据,画出单缝衍射强度与衍射角度的关系曲线。
并根据微波衍射强度一级极小角度和缝宽,计算微波波长和其百分误差(表中、是相对线的两侧,每于0刻度两边对应角度的电压值)。
3.微波的双缝干涉按需要调整双缝干涉板的缝宽。
将双缝缝干射板安置在支座上时,应使双缝板平面与载物圆台上指示线一致。
转动小平台使固定臂的指针在小平台的处。
此时相当于微波从双缝干涉板法线方向入射。
这时让活动臂置小平台处,调整信号使液晶显示器显示较大,然后在线的两侧,每改变1~3度读取一次液晶显示器的读数,并记录下来,然后就可以画出双缝干涉强度与角度的关系曲线。
并根据微波衍射强度一级极大角度和缝宽误差。
4.迈克尔逊干涉实验,计算微波波长和其百分篇二:201491017473867_2014年秋学期大学物理实验讲义++微波实验微波实验(讲义)微波和光波都是电磁波,都具有波动这一共同性,即能产生反射、折射、干涉和衍射等现象。
微波波长范围大约为1mm~1m。
由于波长短,微波具有直线传播和良好的反射特性,所以在通讯、雷达、导航等方面得到广泛应用。
微波可以穿透地球周围的电离层而不被反射,不同于短波的反射特性,所以广泛用于宇宙通讯、卫星通信等方面。
微波还具有量子特性,在微波波段,单个量子的能量约为10~10ev,刚好处于原子或分子发射或吸收的波长范围内。
人们可以借助这个特点去研究原子和分子结构。
由于微波的波长比光波的波长在量级上差一万倍左右,因此用微波设备作波动实验比光学实验要更直观、方便和安全,所需要设备制造也较容易。
-6-3【实验目的】(1)了解微波的特点,学习微波器件的使用。
(2)通过微波的单缝衍射和双缝干涉实验,加深对波动理论的理解。
【实验仪器】dh926b微波分光仪,dh1121b三厘米固态信号源。
【实验原理】1. 反射实验微波的反射也遵从光的反射定律,而光的反射定律是大家在中学就熟知的内容,这里从略。
2. 单缝衍射实验图 1 单缝衍射如图1,当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象。
在缝后面出现的衍射波强度并不是均匀的,中央最强,同时也最宽。
在中央的两侧衍射波强度迅速减小,直至出现衍射波强度的最小值,即一级极小,此时衍射角为φ?sin?1?,其中λ是波长,a是狭缝宽度。
两者?取同一长度单位,然后,随着衍射角增大,衍射波强度又逐渐增大,直至出现一级极大值,角度为:?3??φ?sin?1??? (1)?2??3. 双缝干涉实验图 2 双缝干涉如图2,当一平面波垂直入射到一金属板的两条狭线上,则每一条狭缝就是次级波波源。
由两缝发出的次级波是相干波,因此在金属板的背后面空间中,将产生干涉现象。
当然,光通过每个缝也有衍射现象。
因此实验将是衍射和干涉两者结合的结果。
为了只研究主要来自双缝的两束中央衍射波相互干涉的结果,令双缝的缝宽a接近λ,例如:λ=32mm。
a=40mm,这时单缝的一级极小接近53。
因此取较大的b,则干涉强度受缝衍射的影响小,当b较小时,干涉强度受单缝衍射影响大。
干涉加强的角度为:??sin?1?k?式中k=l、2、……。
干涉减弱的角度为:??sin?式中k=l、2、……。
4. 偏振实验?1???(2) a?b??????2k?1?? (3) 2a?b??平面电磁波是横波,它的电场强度矢量e和波长的传播方向垂直。
如果e在垂直于传播方向的平面内沿着一条固定的直线变化,这样的横电磁波叫线极化波。
在光学中也叫偏振波。
电磁场沿某一方向的能量有sin2?的关系。
这就是光学中的马吕斯(malμs)定律:i?i0cos2? (4)式中i为偏振光的强度,φ是i与i0间的夹角。
【实验内容和步骤】1.反射实验本实验以一块大的金属板作为障碍物来研究当电波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。
实验仪器布置如图3图3:反射试验仪器布置图(1)调节喇叭等位置。
两喇叭口面互相正对,它们各自的轴线应在一条直线上。
固定臂、活动臂指针分别指于工作平台的90刻度处。
将支座放在工作平台上,拉起平台上四个压紧螺钉旋转一个角度后放下,压紧支座。
(2)调节金属板初始位置。