高分辨率分光系统G连续光源原子吸收光谱法

合集下载

原子吸收光谱法

原子吸收光谱法
但是石墨炉原子化法的分析速度较慢,分析成本高 ,精密度差,基体干扰比较大。
低温原子化法:低温原子化法也称为化学原子化法 ,包括冷原子化法和氢化物发生法。
一般冷原子化法与氢化物发生法可以使用同一装置 。
冷原子化法:直接测量Hg 氢化物发生法:氢化物发生器生成金属或类金属元
素氢化物,进入原子化器。
第四节 干扰及其消除方法
物理干扰:由于溶液的物理性质(如粘度、表面张力、密度和蒸 气压等)的变化引起的试液抽吸过程、雾化过程和蒸发过程的比 例不同。消除物理干扰的主要方法是配制与被测试样相似组成的 标准溶液,或采用标准加入法。
电离干扰:在高温下,原子电离成离子,而使基态原子数目减少 ,导致测定结果偏低,此种干扰称电离干扰。消除办法是向试液 中加入过量比待测元素电离电位低的其他元素(通常为碱金属元 素)。例如,测钙时可加入过量的KCl溶液消除电离干扰。钙的 电离电位为6.1eV,钾的电离电位为4.3eV。由于K电离使钙离子 得到电子而生成原子。
{ C2H2:空气
> ¼ 富燃火焰 ≈¼ 中性火焰 化学计量火焰
< ¼ 贫燃火焰
根据燃气和助燃气的种类不同常用的有以下火焰:
乙炔-空气火焰; 氢-空气火焰; 乙炔-氧化亚氮火焰。
① Al,Ti,Ta,Zr等易形成难解离氧化物,不宜使用
② As 193.64,197.20nm;Se 196.09nm 不易使用 乙炔—空气火焰 是原子吸收测定中最常用的火焰,该火焰 燃烧稳定,重现性好,温度较高,可达23000C ,对大多数元
化学干扰:被测元素与共存组分发生化学反应,生成更稳定的 化合物,影响被测元素的原子化。由于PO43-的存在,钙与其形 成了磷酸钙、焦磷酸钙等化合物,这些化合物其键能很高,在 火焰中不易分解产生钙原子,结果偏低。消除方法:加入干扰 抑制剂的方法,如加入锶盐后Sr与PO43-反应生成比磷酸钙更加 稳定的化合物,从而释放出钙原子,消除了磷酸根离子对钙的 干扰。

原子吸收光谱

原子吸收光谱
*A. Walsh, “Application of atomic absorption spectrometry to analytical chemistry”, Spectrochim. Acta, 1955, 7, 108
8
第三阶段 电热原子吸收光谱仪器的产生 1959年,苏联里沃夫发表了电热原子化技术的第一篇论 文。电热原子吸收光谱法的绝对灵敏度可达到10-12-10-14g, 使原子吸收光谱法向前发展了一步。近年来,塞曼效应和自 吸效应扣除背景技术的发展,使在很高的的背景下亦可顺利 地实现原子吸收测定。
(3) 压力变宽(Pressure effect) 又称为碰撞(Collisional broadening)变宽。它是由于碰撞使激发 态寿命变短所致。外加压力越大,浓度越大,变宽越显著。可分为
a) Lorentz 变宽:待测原子与其它原子之间的碰撞。变宽在10-3nm。
劳伦兹变宽用Δν表示,可表达为 :
单色光谱线很窄才有明显吸收! 若 103 nm 则 I / I 0 1, A 0 无法分析
23
对于分子的紫外-可见吸收光谱的测量,入射光是由单 色器色散的光束中用狭缝截取一段波长宽度为0.xnm至1.xnm 的光,这样宽度的光对于宽度为几十nm甚至上百nm的分子带 状光谱来说,是近乎单色了,它们对吸收的测量几乎没有影 响,当然入射光的单色性更差时,就会引起吸收定律的偏离。 而对于原子吸收光谱是宽度很窄的线状光谱来说,如果 还是采用类似分子吸收的方法测量,入射光的波长宽度将比 吸收光的宽度大得许多,原子吸收的光能量只作入射光总能 量的极小部分。这样测量误差所引起的对分析结果影响就很 大。这种关系如下图所示。
33
若吸收线轮廓单纯取决于多普勒变宽,则:

原子吸收光谱法原理示意图

原子吸收光谱法原理示意图

原子吸收光谱法原理1、光的简短历史人们可以追溯到17世纪,当时艾萨克-牛顿爵士发现,当白光通过玻璃棱镜时,会分解成其组成的光谱颜色[1]。

从这项工作中,他提出了光的体质理论(光由粒子组成的事实),而不是只具有波的性质,这为近两个世纪后的一些发现打开了大门。

英国化学家沃拉斯顿是第一个观察到太阳光谱中的暗线的人,这些暗线后来被称为弗劳恩霍夫线。

1832年,布鲁斯特得出结论,大气层中的原子蒸气吸收了来自太阳的一些辐射,从而探测到了这些线。

本生和基尔霍夫很快证明,每种化学元素在加热到炽热时都有一种特有的颜色或光谱(例如,钠(Na)的黄色;钾(K)的紫色)。

他们能够在实验室中重现在太阳光谱中观察到的黑线,从而能够通过发射光谱识别日冕中的吸收原子。

艾伦-沃尔什[2],一位出生于兰开夏郡的物理学家,在20世纪50年代初的某个周日早晨,在他的花园里工作时,一个能解决巨大分析化学难题的想法突然出现在他的脑海中:如何通过光谱学精确测量金属元素的小浓度。

光谱学的正常程序是汽化一个元素并测量其发射光谱,但这种技术有缺陷,产生的结果不准确。

沃尔什决定测量吸收,而不是发射。

到了星期一早上的茶点,他表明这是可以做到的。

他又花了几年时间说服制造商使用原子吸收光谱法(AAS)来检测金属,但他最终成功了。

今天,大多数分析实验室都会拥有至少一台原子吸收分光光度计。

2、什么是原子吸收光谱?AAS是一种分析技术,用于确定样品中金属原子/离子的浓度。

金属占地球化学元素的75%左右。

在某些情况下,材料中的金属含量是可取的,但金属也可能是污染物(毒物)。

因此,测量金属含量在许多不同的应用中是至关重要的,我们将在本文的后面探讨。

现在只需要说,它在质量控制、毒理学和环境测试中找到了用途,仅举几例。

3、原子吸收光谱法的原理是什么?AAS的基本原理可以表述如下。

首先,所有的原子或离子都能吸收特定的、独特波长的光。

例如,当一个含有铜(Cu)和镍(Ni)的样品暴露在铜的特征波长的光下时,那么只有铜原子或离子会吸收这种光。

原子吸收分光光度法原子吸收分光光度法

原子吸收分光光度法原子吸收分光光度法

原子吸收分光光度法-原子吸收分光光度法原子吸收光谱法原子吸收光谱法1.原子吸收光谱法的基本原理原子吸收光谱仪器的基本结构光源—发射待测元素的谱线;原子化器—产生待测元素的原子蒸气,有火焰、无火焰原子化器和氢化物原子化装置;分光系统—分出待测元素谱线;检测系统—将光信号转换为电信号、放大、检测、显示。

原子吸收光谱法的基本原理原子吸收光谱法是原子对特征光吸收的一种相对测量方法。

它的基本原理是:以一束特定的入射光强I0,投射至待测元素的基态原子蒸气,则此测元素的基态原子蒸气对入射的特征光产生吸收,未被吸收的部分透射过去。

待测元素浓度C越大,光的吸收量越多,其透射光强I越弱。

C、I0和I三者之间存在一定的关系。

假定频率为υ,强度为I0的光束透过厚度为ι的原子蒸气层后,光被吸收一部分,透过的光的强度I可用下式表示:I = I0e-kvlA =logI0/I=kvιloge采用锐线光源时,可用峰值吸收系数k0 代替吸收系数kv,A =logI0/I= k0ι;峰值吸收系数k0与待测元素原子浓度N呈线性关系,A =KNι;在给定原子化条件下,ι是定值;当原子化条件一定时,气态原子浓度N正比于溶液中待测元素浓度C,A = KC已知待测元素的标准溶液与试样的吸光度,就可求出试样中待测元素的含量。

2.特点灵敏度高:火焰法一般为μg/mL—ng/mL级,无焰法绝对灵敏度在10-10-10-14g之间。

干扰小:同化学分析法和发射光谱法比较,其谱线干扰小且易抑制。

分析速度快:干扰小、易于克服,因此,在复杂试样分析中,制备一份溶液,不经化学分离就能直接测定多元素。

精密度好、准确度高:光源的稳定性直接影响原子吸收仪器测量的精密度,不同元素的光源稳定性是不同的,因而精密度也不同。

一般:单光束的精密度为%,双光束更高一些;相对误差可控制在%的范围内,性能良好的相对误差降至%。

3.分析条件的选择原子化器和原子化法的选择:根据待测元素的含量及性质进行选择;有火焰、无火焰原子化器和氢化物原子化装置。

高分辨连续光源石墨炉原子吸收光谱法测定食品中铅、镉和铬含量

高分辨连续光源石墨炉原子吸收光谱法测定食品中铅、镉和铬含量
风尾 鱼 、 鱼 、 鱼 和黑 棒 鲈 鱼 中 铅 、 、 、 和 砷 的 含 量 鲭 鲱 镉 铜 汞
进行 了研究 , 结果表 明,不同种类 鱼中重金属 含量有 显著的 差异 , 、 、 和铜 的平均 含量 均远 低 于欧盟 相关 标 准 。 铅 镉 汞 Srd 等口 使用 GF t y ] a AAS法和 I P MS法对牡蛎 中的镉进行 C- 了研究 , 通过测定海 水、藻类 和牡蛎组 织 中的镉 含量 ,发现 牡蛎 的镉 污染 主要来 自海水的直接污染 ,而通过 食物链产生 的污染量仅 占 1 。 e ek 等【 l Grmbc a 1对市售咖啡 中的铅 、 、 。 镉 镍、 铜和铬 等 l 种金属元素的含量进行 了测定 , 果表 明咖 4 结 啡 中的部分金属含量呈现 明显 的相关性 , 为分辨咖啡 品种 这 提供 了依据 。Qi n等_] 1 利用 A ,IP AE 1 AS C - S和 A S法测定 F 了牛奶中的微量元 素 , 果表 明,国产牛奶 中铅 、镉和铬 的 结 含量虽符合国家 标准 的 限定值 ,但 却 高于 日本 牛奶 中 的含
中, 原子 吸收光谱法具有灵敏度高 、分析精 度好 、选择性高 、
测定元素种类 多等 优点 ,作 为 微量金 属元 素测定 的首 选 方 法, 近年来被广泛 用于食 品 中重金 属 的检测 。如 用 A AS法 测定 了新疆大蒜 中的铅 、铬 、镉等九 种元素 的含量 ,测定结
高分辨连续光源原子吸收光谱仪 ( ihrslt ncni— hg eoui o t o n uI suc tmi a srt ns eto tr L o reao c bo pi pcrmee,HR C S 使 m o - SAA ) 用 高强度短弧氙灯作为连续光源 , 有无需 预热 、 需空心 具 元

原子吸收光谱法

原子吸收光谱法

影响吸收谱线轮廓的主要因素
• 自然变宽N:与原子发生能级跃迁时激发态原 子的寿命有关, N一般情况下约10-5 nm。 • 多普勒变宽(热变宽)D: 由原子在空间作 无规热运动引致的, D约为10-3 nm。
D 7.16 10 0
7
T Ar
• 碰撞变宽(压力变宽) C 洛伦兹变宽L :由待测原子与其他共存元素
• 富燃火焰(还原火焰)
燃助比大于化学计量数, 如燃助比为
1:3的乙炔-空气。 此类火焰中有大量燃气未燃烧完全, 而含有较多的C-、CH-基等。因此火焰 温度较低, 且具有还原性, 适于有些易 形成难离解氧化物的元素的测定。
• 贫燃火焰(氧化火焰)
燃助比小于化学计量数, 如燃助比为 1:6的乙炔-空气。 此类火焰氧化性强, 温度较低, 适于 易离解、易电离的元素的测定, 如碱 金属。
• 石墨管
长约50mm,内径5mm, 管中央有一小孔,用以放臵试 样。
K0 2 D ln 2 e
2

mc
fN 0
• 吸收线半宽度: 一般在0.01~0.1Å • 发射线半宽度: 一般在0.005~0.02
Å
实际测量(测量吸光度)
• 根据光吸收定律
A lg T lg I I0 A为 吸 光 度 ; T 为 透 光 率 ; I 为 透 射 光 强 度 ; I 0为 入 射 光 强 度 ; K 为 吸 收 系 数 ; l为 蒸 气 厚 度 将 K 用 K 0代 替 , 可 得 A lg e 又 K0 2 D
仪器组成系统
• • • • 光源 原子化系统 单色器 检测系统和数据处理与控制系统
光源
• 要求 (1)能发射待测元素的共振线; (2)能发射锐线; (3)辐射光强度大、稳定性好且谱线背景小; (4) 操作方便、经久耐用。 • 原子吸收分光光度计的光源通常是空心阴 极灯。

原子吸收光谱法基本原理

原子吸收光谱法基本原理

原子吸收光谱法模块1 原子吸收光谱法基本原理仪器结构:光源;检测系统;分光系统;原子化系统一、 原子吸收法定义原子吸收法是一种利用元素的基态原子对特征辐射线的吸收程度进行定量的分析方法。

测定对象:金属元素及少数非金属元素。

二、原子吸收光谱的产生当有光辐射通过自由原子蒸气,且入射光辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子就要从辐射场中吸收能量,产生吸收,电子由基态跃迁到激发态,同时伴随着原子吸收光谱的产生。

原子吸收光谱是原子由基态向激发态跃迁产生的原子线状光谱。

分光法:分子或离子的吸收为带状吸收。

原子法:基态原子为线状吸收。

三、原子吸收光谱几个重要概念共振吸收线:当电子吸收一定能量从基态跃迁到第一激发态时所产生的吸收谱线,称为共振吸收线,简称共振线。

共振发射线:当电子从第一激发态跃回基态时,则发射出同样频率的光辐射,其对应的谱线称为共振发射线,也简称共振线。

分析线:用于原子吸收分析的特征波长的辐射称为分析线,由于共振线的分析灵敏度高,光强大常作分析线使用。

(亦称为特征谱线)四、原子吸收线的形状(光谱的轮廊 )原子对光的吸收是一系列不连续的线,即原子吸收光谱。

原子吸收光谱线并不是严格几何意义上的线,而是具有一定的宽度。

νI ν0I 频率为ν0的入射光和透过光的强度νK 原子蒸气对频率ν0的入射光的吸收系数 L 原子蒸气的宽度吸收线轮廓——描绘吸收率随频率或波长变化的曲线。

发射线轮廓——描绘发射辐射强度随频率或波长变化的曲线。

原子吸收光谱的轮廓以原子吸收谱线的中心频率和半宽度来表征。

中心频率:曲线极大值对应的频率υ0 峰值吸收系数:中心频率所对应的吸收系数吸收线的半宽度:指在中心频率处,最大吸收系数一半处,吸收光谱线轮廓上A 、B 两点之间的频率差。

吸收曲线的半宽度△υ的数量级约为0.001~0.01nm五、影响原子吸收谱线变宽的原因(1)自然变宽ΔνN不同谱线有不同的自然宽度,在多数情况下,自然宽度约相当于10-5nm 数量级。

原子吸收光谱法

原子吸收光谱法
n0 n
半宽度受原子性质和 外界因素的影响
原子吸收光谱轮廓图
基本原理
Basic principle
谱线变宽因素
自然宽度
Doppler变宽
压力变宽 自吸效应 场致变宽
基本原理
Basic principle 自然宽度(△nN) :无外界因素影响时谱线具有的宽度,与激
发态原子的平均寿命有关,平均寿命越长,谱线宽度越窄。根据量子力 学的测不准原理,粒子能级能量和跃迁时刻不可能同时测准,其能量的 不确定度△E和其跃迁时刻的不确定度△t间有如下关系
其中Kv为吸收系数
基本原理
Basic principle
• 吸收线轮廓
In I0
中心频率n0最大吸收系数 所对应的频率或波长,由 原子能级决定
不同元素原子吸收不同频率的 光,由图可见,在频率为v0处
透过光强度最小,也就是吸收
最大。原子群从基态跃迁到激
发态所吸收的谱线并不是绝对
单色,而是具有一定的宽度,
第七章 原子吸收分光光度法
Atomic Absorption Spectrometry
( AAS)
专业:环境工程 姓名:韩朝丽
原子吸收光谱法
Atomic Absorption Spectrometry
概 述 基本原理
本章内容
仪 器
干扰及其 消除办法
分析应用
原子吸收光谱法概述
Atomic Absorption Spectrometry
原子吸收光谱法——仪器
(Atomic Absorption Spectrometry)
原子吸收分 光光度计
光源
原子化系统
光学系统
检测系统
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D O I :10.11973/l h j yGh x 201810006㊀高分辨率分光系统G连续光源原子吸收光谱法测定铀铌铅矿重选流程样品中铅的含量张宏丽1,2,3,姚明星1,2,3,肖㊀芳1,2,3,倪文山1,2,3,高小飞1,2,3∗(1.中国地质科学院郑州矿产综合利用研究所,郑州450006;2.国家非金属矿资源综合利用工程技术研究中心,郑州450006;3.国土资源部多金属矿评价与综合利用重点实验室,郑州450006)摘㊀要:采用盐酸(15m L )G硝酸(5m L )G氢氟酸(10m L )G高氯酸(2m L )体系溶解铀铌铅矿样品(0.0300~0.2000g ),盐酸(1+9)溶液作为分散介质,选择P b283.306n m 作为分析谱线,提出了高分辨率分光系统G连续光源原子吸收光谱法(H R GC SA A S)测定铀铌铅矿重选流程样品中铅的方法.结果表明:检出限(3s )为0.021m g L -1.按标准加入法对铀铌铅矿样品中的铅进行回收试验,回收率为97.8%~103%,测定值的相对标准偏差(n =9)均小于5.0%,满足国家地质矿产行业标准D Z /T0130-2006的要求.关键词:高分辨率分光系统;连续光源原子吸收光谱法;铀铌铅矿;铅;重选样品中图分类号:O 657.31㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1001G4020(2018)10G1149G04㊀㊀矿物组成复杂㊁种类繁多,矿石是矿物的集合体,为准确测定矿石中某一元素的含量,需针对不同的矿物组成㊁不同的元素含量水平,采用不同的分析方法进行测定.矿石中铅一般赋存于方铅矿㊁白铅矿和铅钒中.常规的消解方法有酸溶和碱熔两种,其中酸溶更为常用.但对组分特殊的矿物,则需对溶矿方法进行改进,如含重晶石的银铅矿中铅的测定需采用碱熔方法,同时加入一定量的氯化钡以消除硫酸钡对铅测定的干扰,进而实现矿石中铅的准确测定[1].陕西华阳川铀铌铅多金属超大型矿床具有矿量大㊁矿种多㊁易开采等特点[2].矿石中主要共存组分为铀㊁铌㊁铅㊁钡㊁锶㊁稀土元素等,其中铅主要赋存于方铅矿和白铅矿中.依据标准G B /T 14353.2-2010,该类铅矿石可采用王水(硝酸和盐酸按体积比1ʒ3混合)分解,在5%(质量分数)硝酸溶液下进行测定.但因陕西华阳川铀矿中富含铌元素,该元素收稿日期:2017G10G22基金项目:中国地质调查局地质调查项目(D D 20160070;㊀121201017000160901)作者简介:张宏丽,助理研究员,主要从事污染物化学分析测定㊀及无机元素分析测试方法的研究∗通信联系人.g _x _f _d @163.c o m在硝酸介质中易发生水解,会对溶液中的铅造成共沉淀干扰.因此,需对已有溶样方法进行改进,以实现对铀铌铅矿物中铅的准确测定.目前测定铅的方法主要为容量法[3]㊁原子吸收光谱法(A A S )[4]和电感耦合等离子体原子发射光谱法(I C P GA E S)[5]等.容量法主要用于分析铅的质量分数在10.0%左右的样品,A A S 与I C P GA E S 主要用于分析低质量分数(0.0x %~10.0%)铅的样品.其中A A S 具有设备性价比高㊁稳定性好㊁准确度高和操作简单等优点.相比于普通空心阴极灯作光源的原子吸收光谱仪,高分辨率分光系统G连续光源原子吸收光谱仪(H R GC SA A S )的高聚焦氙灯实现了光谱的连续发射,色散率和分辨率高,降低了共存元素的光谱干扰,二极管阵列检测器实现了全谱测定,现已被用于水质[6]㊁土壤[7]㊁食品[8]㊁金属制品[9G10]的检测等方面.本工作针对陕西华阳川铀铌铅矿物,采用盐酸G硝酸G氢氟酸G高氯酸溶解样品,讨论了溶样酸用量㊁分散介质㊁分散介质酸度对测定结果的影响及其他干扰元素的干扰情况,建立了一种高分辨率分光系统G连续光源原子吸收光谱法(H R GC SA A S )测定铀铌铅矿重选流程样品中铅的分析方法.94111㊀试验部分1.1㊀仪器与试剂C O N T R A A700型高分辨率分光系统G连续光源原子吸收光谱仪.铅标准储备溶液:1000m gL -1.铅标准溶液:100m gL -1,由铅标准储备溶液稀释而成.酒石酸溶液:200m gL -1.盐酸㊁硝酸㊁氢氟酸㊁高氯酸㊁酒石酸均为分析纯;试验用水均为去离子水.1.2㊀仪器工作条件分析谱线P b283.306n m ;积分模式为平均值,读数时间为3s ;有效像素点为5个;全钛燃烧头,100mm ;乙炔G空气火焰;燃气流量65L h -1;标准校正模式.1.3㊀试验方法将待测矿石样品在105~110ħ烘干,称取0.0300~0.2000g 置于100m L 聚四氟乙烯烧杯中,用少量水润湿.加入15m L 盐酸,盖上表面皿后置于电热板上加热至沸腾,5m i n 左右后取下;稍冷后加入5m L 硝酸,置于电热板上加热至沸腾,5m i n 左右后取下;稍冷后用水清洗表面皿和杯壁,加入10m L 氢氟酸和2m L 高氯酸,置于电热板上加热至高氯酸冒白烟,2m i n 后取下冷却至室温;加入2m L 酒石酸溶液后,用少量水清洗表面皿及烧杯四壁,加入20m L 盐酸(1+1)溶液,继续置于电热板上加热至微沸,取下冷却至室温,用水定容至100m L ,摇匀,按仪器工作条件测定.随同样品分析处理空白溶液.2㊀结果与讨论2.1㊀样品分散介质的选择铀铌铅矿重选后的精矿㊁中矿和尾矿中矿物组成主要有铌钛铁矿㊁铌钛铀矿㊁方铅矿㊁磁铁矿㊁钾长石㊁钠长石㊁石英㊁方解石和重晶石.试验结果表明,采用盐酸G硝酸G氢氟酸G高氯酸即可溶解样品[11].溶解样品过程中先加盐酸,使样品中的硫形成硫化氢挥发后再加入硝酸,避免了盐酸和硝酸同时加入时形成王水,将硫化铅氧化成硫酸铅沉淀;加入氢氟酸分解样品中的硅酸盐矿物,高氯酸发烟使样品中的硅和过量的氢氟酸完全挥发.溶液中含有共存的铌,在硝酸介质中容易水解,并对铅造成共沉淀干扰[12],因此试验采用盐酸(1+9)溶液作为分散介质.2.2㊀分析谱线和像素点针对光谱法吸光度最佳范围在0.2~1.0内的特点,试验以常用的P b283.306n m 作为分析谱线[13],测定1,3,5个像素点条件下标准溶液系列的吸光度,结果见表1.表1㊀在不同像素点下标准溶液系列的吸光度T a b .1㊀A b s o r b a n c e o f s e r i e s o f s t a n d a r d s o l u t i o n s a td i f fe r e n t p i x e l po i n t s 样品1像素点3像素点5像素点标准零点(0.00m gL -1)000标准溶液1(2.00m g L -1)0.030.070.10标准溶液2(5.00m g L -1)0.070.180.24标准溶液3(10.0m g L -1)0.120.330.44标准溶液4(15.0m g L -1)0.170.450.61标准溶液5(20.0m gL -1)0.220.580.78㊀㊀由表1可知:选择5个像素点作为测定取值点可满足上述要求.试验选择分析谱线P b283.306n m 和5个像素点,并采用自动扣背景模式进行测定.2.3㊀共存元素的干扰试验中存在的干扰主要为背景吸收及共存元素的光谱干扰.通过选择H R GC SA A S 的自动扣除背景模式,消除了测定过程中的背景吸收.由图1显示,铅测定的分析谱线没有受到邻近谱线的光谱干扰.图1㊀铅的吸收光谱F i g .1㊀A b s o r p t i o ns pe c t r u mof P b 2.4㊀标准曲线及检出限移取铅标准溶液0,2.00,5.00,10.00,15.00,20.00m L 分别置于一组100m L 容量瓶中,以盐酸(1+9)溶液作为分散介质,定容,摇匀.此标准溶液系列中铅的质量浓度分别为0,2.00,5.00,10.00,15.00,20.00m gL -1,按仪器工作条件进行测定,0511并绘制标准曲线.铅的测定范围为20.00m g L -1以内,回归方程为y =-4.9ˑ10-4x 2+4.872ˑ10-2x +4.340ˑ10-3,相关系数为0.9996.连续测定11份空白溶液,得出标准偏差s ,以3倍的标准偏差计算方法的检出限(3s ),铅的检出限为0.021m g L -1.陕西华阳川铀矿原矿中铅的质量分数在0.36%左右,经过重选后得到的流程样品中铅的质量分数在0.1%~6.0%之间.通过调节样品的称样量,保持最终待测溶液中铅的质量分数在18.0m g L -1以内,包含在标准曲线测定范围内.2.5㊀精密度和回收试验按试验方法对实际铀铌铅矿原矿㊁精矿㊁中矿和尾矿重选流程样品中铅进行测定,每个样品平行测定9次,测定值及其相对标准偏差(R S D )见表2,并对样品进行加标回收试验,回收率结果见表2.表2㊀精密度和回收试验结果(n =9)T a b .2㊀R e s u l t s o f t e s t s f o r p r e c i s i o n a n d r e c o v e r y(n =9)样品测定值w /%本底值ρ/(m gL -1)加标量ρ/(m gL -1)测定总量ρ/(m gL -1)回收率/%R S D/%尾矿0.121.255.006.311014.6原矿0.343.255.008.1798.44.4中矿1.239.0710.0018.9398.61.2精矿3.5516.7720.0036.3297.81.3精矿4.5712.6620.0033.311031.0㊀㊀由表2可知:铅的加标回收率为97.8%~103%,表明对于铀铌铅矿重选流程样品中铅的测定,该方法满足国家地质矿产行业标准D Z /T0130-2006要求[14](待测元素质量分数大于1.0ˑ10-4时,加标回收率为95%~105%).本工作采用高分辨率分光系统G连续光源原子吸收光谱法测定铀铌铅矿重选流程样品中铅的含量.该方法操作简单㊁测定结果准确,用于实际样品分析,结果满意.参考文献:[1]㊀罗磊,付胜波,肖洁,等.电感耦合等离子体发射光谱法测定含重晶石的银铅矿中的铅[J ].岩矿测试,2014,33(2):203G207.[2]㊀惠小超,何升.陕西华阳川铀㊁铌㊁铅多金属矿石工艺矿物学研究[J ].金属矿山,2016,45(5):85G90.[3]㊀袁永海,尹昌慧,唐沈,等.E D T A 滴定法测定铅矿石中铅含量时铋的干扰及消除[J ].理化检验G化学分册,2016,52(12):1397G1399.[4]㊀胡晓静,曾泽,黄大亮.石墨炉原子吸收光谱法测定磷矿石中微量铅[J ].理化检验G化学分册,2006,42(5):383G384.[5]㊀张世龙,吴周丁,刘小玲,等.电感耦合等离子体原子发射光谱法测定多金属矿石中铁㊁铜㊁铅㊁锌㊁砷㊁锑㊁钼和镉的含量[J ].理化检验G化学分册,2015,51(7):930G933.[6]㊀彭淑香,张丽君,杨光冠,等.分散液相微萃取G连续光源G石墨炉原子吸收光谱法测定水样中痕量钴[J ].苏州科技学院学报(工程技术版),2015,28(4):12G17.[7]㊀叶少媚,李云松,杨秋菊,等.全自动石墨消解G连续光源原子吸收光谱法顺序测定土壤中9种金属元素[J ].现代农业科技,2016(10):161G162.[8]㊀胡玥,丁玉竹,高旭东,等.微波消解G高分辨连续光源原子吸收光谱法测定锁阳和韭菜籽中的重金属元素含量[J ].分析测试技术与仪器,2016,22(2):90G95.[9]㊀朱国忠,徐艳燕,庞燕,等.连续光源火焰原子吸收光谱法同时测定氢氧化钴中的镍铜锰铁钙镁钠镉[J ].湿法冶金,2017,36(4):346G349.[10]㊀朱国忠,徐艳燕,庞燕.连续光源火焰原子吸收光谱法测定氧化镍中钴铜锌铁钙镁[J ].冶金分析,2017,37(3):48G52.[11]㊀倪文山,姚明星,高小飞,等.电感耦合等离子体质谱法测定铀铌铅矿重选流程样品中铀[J ].冶金分析,2017,37(5):25G29.[12]㊀岩石矿物分析编写组.岩石矿物分析[M ].3版.北京:地质出版社,1991:624G625.[13]㊀任婷,赵丽娇,曹珺,等.高分辨连续光源石墨炉原子吸收光谱法测定食品中铅㊁镉和铬含量[J ].光谱学与光谱分析,2012,32(9):2566G2571.[14]㊀D Z /T0130-2006㊀地质矿产实验室测试质量管理规范[S ].1511D e t e r m i n a t i o no fL e a d i nG r a v i t y S e p a r a t i o nP r o c e s s S a m p l e s f r o m UGN bGP bP o l y m e t a l l i cO r e b y H i g hR e s o l u t i o nO p t i c a lM o n o c h r o m a t i c S y s t e mGC o n t i n u u mS o u r c eA t o m i cA b s o r p t i o nS p e c t r o m e t r yZ H A N G H o n g l i1,2,3,Y A O M i n g x i n g1,2,3,X I A OF a n g1,2,3,N IW e n s h a n1,2,3,G A OX i a o f e i1,2,3∗(1.Z h e n g z h o uI n s t i t u t e o f M u l t i p u r p o s eU t i l i z a t i o no f M i n e r a lR e s o u r c e s,C A G S,Z h e n g z h o u450006,C h i n a;2.C h i n aN a t i o n a lE n g i n e e r i n g R e s e a r c hC e n t e r f o rU t i l i z a t i o no f I n d u s t r i a lM i n e r a l s,Z h e n g z h o u450006,C h i n a;3.K e y L a b o r a t o r y o f E v a l u a t i o na n d M u l t i p u r p o s eU t i l i z a t i o no f P o l y m e t a l l i cO r e s,M i n i s t r y o f L a n da n dR e s o u r c e s,Z h e n g z h o u450006,C h i n a)A b s t r a c t:A m e t h o do fh i g hr e s o l u t i o no p t i c a lm o n o c h r o m a t i cs y s t e mGc o n t i n u u m s o u r c ea t o m i ca b s o r p t i o n s p e c t r o m e t r y(H RGC SA A S)w a s p r o p o s e d f o r t h e d e t e r m i n a t i o no f l e a d(P b)i n g r a v i t y s e p a r a t i o n p r o c e s s s a m p l e s o fUGN bGP b p o l y m e t a l l i co r e,w i t hP b283.306n m a s t h ea n a l y t i c a l l i n e.T h es a m p l e(0.0300-0.2000g)w a s d i s s o l v e db y a s y s t e mo fH C l(15m L)GHN O3(5m L)GH F(10m L)GH C l O4(2m L)a n dd i s p e r s e d i n10%(φ)H C l s o l u t i o n.A s s h o w nb y t h er e s u l t s,t h ed e t e c t i o n l i m i t(3s)w a s0.021m g L-1.T e s t f o r r e c o v e r y w a sm a d eb y s t a n d a r da d d i t i o nm e t h o d f o rP b i ns a m p l e so fUGN bGP b p o l y m e t a l l i co r e,g i v i n g r e s u l t s i nt h er a n g eo f97.8%-103%,w i t hR S D s(n=9)a l l l e s s t h a n5.0%,a n d t h i s r e s u l t s f u l f i l e d t h e r e q u i r e m e n t o f t h en a t i o n a l s t a n d a r d f o r g e o l o g y a n dm i n e r a l i n d u s t r y(D Z/T0130-2006).K e y w o r d s:h i g h r e s o l u t i o n o p t i c a l m o n o c h r o m a t i c s y s t e m;c o n t i n u u m s o u r c e a t o m i c a b s o r p t i o n s p e c t r o m e t r y;UGN bGP b p o l y m e t a l l i c o r e;l e a d;g r a v i t y s e p a r a t i o n p r o c e s s s a m p l e2511。

相关文档
最新文档