电吸附除盐

合集下载

电吸附针对不同污废水的处理工艺

电吸附针对不同污废水的处理工艺

电吸附针对不同污废水的处理工艺电吸附针对不同污废水的处理工艺2010.2目录一、电吸附工艺分类 (5)1、电吸附工艺分类原则 (5)2、电吸附处理工艺 (5)3、电吸附进水要求 (5)4、电吸附分类 (6)(1)根据污染物不同对电吸附水源进行分类 (6)(2)根据行业不同对电吸附水源进行分类 (6)(3)、按污废水处理对象对电吸附水源进行分类 (6)(4)、按含主要污染物的性质对电吸附水源进行分类 (7)二、按行业划分对比双膜法与电吸附处理的工艺流程 (7)1钢铁综合废水处理 (8)(1)钢铁综合污水的水质特点 (11)(2)达标排放二级处理难点 (15)(3)双膜法预处理要求 (22)(4)电吸附处理要求 (23)2火电厂循环冷却水排污水处理 (24)(1)水质特点 (26)(2)达标排放二级处理难点 (27)(3)双膜法预处理要求 (38)(4)双膜法处理要点 (39)(5)电吸附预处理要求 (40)(6)电吸附处理要点 (41)3市政废水提质处理 (42)(1)水质特点 (44)(2)达标排放二级处理难点 (44)(3)双膜法预处理要求 (50)(4)双膜法处理要点 (50)(5)电吸附预处理要求 (52)(6)电吸附处理要点 (52)4、钢铁冷轧废水生化尾水 (54)(1)水质特点 (54)(2)排放标准 (54)(3)达标排放二级处理难点 (58)(4)双膜法预处理要求 (59)(5)双膜法处理要点 (59)(6)电吸附预处理要求 (61)(7)电吸附处理要点 (61)5石化炼油废水生化尾水 (63)(1)水质特点 (64)(2)达标排放二级处理难点 (64)(3)双膜法预处理要求 (71)6煤气化(化肥煤化工、焦化)生化尾水 (75)(1)水质特点 (77)(2)达标排放二级处理难点 (78)预处理部分 (88)生化处理部分 (90)(3)三级处理难点 (92)(4)双膜法处理要点 (93)(5)电吸附处理要点 (94)7造纸生化尾水 (97)(1)概述 (97)(2)水质特点 (99)(3)达标排放二级处理难点 (100)(4)双膜法预处理要求 (115)(5)双膜法处理要点 (116)(6)电吸附预处理要求 (119)(7)电吸附处理要点 (131)电吸附针对不同污废水的处理工艺一、电吸附工艺分类1、电吸附工艺分类原则电吸附脱盐处理是以污水或废水为水源,从原水中去除无机盐和部分有机物,使得产品水符合回用水的水质标准,回用于冷却循环水补水,工艺用水。

电吸附除盐技术在电厂循环冷却排污水处理中的应用

电吸附除盐技术在电厂循环冷却排污水处理中的应用

2020年05月电吸附除盐技术在电厂循环冷却排污水处理中的应用吕玲(上海环保工程成套有限公司,上海200070)摘要:简述了电厂循环冷却排污水的特性及处理方法;对电吸附除盐技术在循环冷却排污水处理中做了详细介绍。

经工艺调试后,电吸附系统目前已正常投入并运行稳定,处理后的水能够满足循环水补充水要求。

关键词:循环冷却排污水;电吸附;排污水处理Applicat ion Of Elect ric Adsorpt ion Desalinat ion Technology In Power Plant Circulat ing Cooling SewageTreat m entLV Ling(Shanghai Environment Protection Complete Engineering Co.,Ltd.,Shanghai,Jing'an area,200070)Abstract :The characteristics and treatment methods of circulating cooling wastewater in power plants are briefly described.The electric Adsorption Desalination Technology in circulating cooling wastewater treatment is introduced in detail.After the process debugging,the electro-adsorption system has been put into normal operation and runs stably,and the treated water can meet the requirements of circulat⁃ing water to supplement water.Key words :circulating cooling sewage discharge;Electric adsorption;Sewage treatment0引言火力发电厂既是用水大户,也是排水大户,循环冷却水[1]系统作为电厂最大用水系统,其排污水量亦为电厂最大对外排水量,最高可至上千吨(因机组容量、使用不同补充水源而不同)。

电吸附技术最新进展

电吸附技术最新进展

电吸附技术·认识篇电吸附除盐技术(Electrosorb Technology),简称(EST),又称电容性除盐技术,是20世纪90年代末开始兴起的一项新型水处理技术。

该技术利用通电电极表面带电的特性对水中离子进行静电吸附,从而实现水质的净化目的。

电吸附技术原理时间:2011-08-02 来源: 作者:水处理中的盐类大多是以离子(带正电或负电)的状态存在。

电吸附除盐技术的基本思想就是通过施加外加电压形成静电场,强制离子向带有相反电荷的电极处移动,使离子在双电层内富集,大大降低溶液本体浓度,从而实现对水溶液的除盐。

电吸附原理见图,原水从一端进入由两电极板相隔而成的空间,从另一端流出。

原水在阴、阳极之间流动时受到电场的作用,水中离子分别向带相反电荷的电极迁移,被该电极吸附并储存在双电层内。

随着电极吸附离子的增多,离子在电极表面富集浓缩,最终实现与水的分离,获得净化/淡化的产品水。

工作过程示意图在电吸附过程中,电量的储存/释放是通过离子的吸/脱附而不是化学反应来实现的,故而能快速充放电,而且由于在充放电时仅产生离子的吸/脱附,电极结构不会发生变化,所以其充放电次数在原理上没有限制。

当含有一定量盐类的原水经过由高功能电极材料组成的电吸附模块时,离子在直流电场的作用下被储存在电极表面的双电层中,直至电极达到饱和。

此时,将直流电源去掉,并将正负电极短接,由于直流电场的消失,储存在双电层中的离子又重新回到通道中,随水流排出,电极也由此得到再生。

由于电吸附过程主要利用电场力的作用将阴、阳离子分别吸附到不同的电极表面形成双电层,这会使同一极面上的难溶盐离子浓度积相对低得再生过程示意图多,可有效防止难溶盐结垢现象的发生。

其次,电吸附极板间水径流与极板呈切线方向,不利于水中析出难溶盐结晶在极板上的生长。

电吸附可以在浓水难溶盐过饱和状态下运行。

另外,在电吸附模块中,由于电吸附过程中阴、阳离子吸附不平衡,导致产生氢离子含量较多的出水,通过倒极的方式,略偏酸性的出水同样会使有微量结垢现象的垢体溶解掉。

反渗透、电渗析、电吸附技术比较

反渗透、电渗析、电吸附技术比较

反渗透、电渗析、电吸附技术比较 反渗透、电渗析、电吸附技术比较 一、原理比较 1、反渗透(RO)除盐原理 当纯水和盐水被理想半透膜隔开,理想半透膜只允许水通过而阻止盐通过,此时膜纯水侧的水会自发地通过半透膜流入盐水一侧,这种现象称为渗透,若在膜的盐水侧施加压力,那么水的自发流动将受到抑制而减慢,当施加的压力达到某一数值时,水通过膜的净流量等于零,这个压力称为渗透压力,当施加在膜盐水侧的压力大于渗透压力时,水的流向就会逆转,此时,盐水中的水将流入纯水侧,上述现象就是水的反渗透处理的基本原理。

2、电渗析除盐原理 电渗析是膜分离技术的一种,是利用离子交换膜对阴、阳离子的选择透过性能,在外加直流电场力的作用下,使阴、阳离子定向迁移透过选择性离子交换膜,从而使电介质离子自溶液中分离出来的过程。 除盐原理如图所示,电渗析器中交替排列着许多阳膜和阴膜,分隔成小水室。当原水进入这些小室时,在直流电场的作用下,溶液中的离子就作定向迁移。阳膜只允许阳离子通过而把阴离子截留下来;阴膜只允许阴离子通过而把阳离子截留下来。结果这些小室的一部分变成含离子很少的淡水室,出水称为淡水。而与淡水室相邻的小室则变成聚集大量离子的浓水室,出水称为浓水。从而使离子得到了分离和浓缩,水便得到了净化。

3、电吸附(EST)除盐原理 电吸附技术,又称电容性除盐技术,其基本原理是基于电化学中的双电层理论,利用带电电极表面的电化学特性来实现水中带电粒子的去除、有机物的分解等目的。 电吸附原理见图,原水从一端进入由两电极板相隔而成的空间,从另一端流出。原水在阴、阳极之间流动时受到电场的作用,水中带电粒子分别向电性相反的电极迁移,被该电极吸附并储存在双电层内。同时,随着电极吸附带电粒子的增多,带电粒子在电极表面富集浓缩,从而使水中的溶解盐类、胶体颗粒及其带电物质滞留在电极表面,最终实现盐与水的分离,获得净化/淡化的出水。 二、电吸附与反渗透、电渗析在污水回用领域的技术特点比较

ESTnew电吸附除盐

ESTnew电吸附除盐

z进水水质标准及可实现目标
名称 COD 浊度 固体悬浮物 油 电导率(含盐量)
得水率
能耗
单位 mg/L NTU mg/L mg/L uS/cm
限值 ≤100 ≤5 ≤5 ≤5 ≤5000
去除效果 30~80%
~95% 75~95% 0.5~2kWh/m3
z与常规脱盐技术的比较分析与技术优势
处理方法 项目 投资 运行成本 核心元件使用寿命 除盐率 产水率
电吸附
双膜法
电吸附除盐系统与双膜法除盐系统整体投资相当
≤1.5元/ m3
3-6元/ m3
≥5年
1~2年左右
~95%
>98%
75%-95%
65%-75%
预处理及进水条件
简单,COD≤100mg/L,油 ≤5mg/L,浊度≤5NTU
复杂,COD≤40mg/L、 油≤0.1mg/L、SDI≤3
二次污染
尾水COD不浓缩,排放不超标, COD浓缩4倍,浓水排放超
2010-11-10
z典型案例——电力
宁波明耀环保热电有限公司项目 设计水源:河道水或水库水 处理规模:10000m3/d 产水要求:得水率75% 产水用途:混床进水或印染染色用水 验收时间(连续运行并考核):2010年1月29日 电吸附工程运行效果:
序号 项目
单位
原水 出水要求
1
pH
2
SS
3
浊度
2010-11-10
z典ห้องสมุดไป่ตู้案例——冷轧废水
宝钢项目 投入运行时间:2009年5月 设计水源:碱性含油冷轧废水 处理水量:150m3/h 产水率:≥75%。 除盐率:62.5% 考核结果 (1)性能考核期间,电吸附系统平均进水电导率1335µS/cm,电吸附产水电导率 平均值为277µS/cm,去除率为79.3%;进水氯离子平均含量为275mg/l出水平均氯 离子含量为34.8 mg/l,去除率为87.3%;平均产水率为78.5%,吨水耗电量为 0.55kWh,完全满足生产回用要求。 (2)通过对模块进出水及浓水CODCr的测定表明,模块对CODCr有明显的降解作 用,且系统浓水CODCr不超标,可以实现达标排放。 (3)通过对模块进出水油含量的测定表明,模块对进水油含量指标要求很低, 且连续运行时,油不会在模块内实现累积,不影响系统正常运行,即电吸附系统 可抗油类污染。 (4)经计算在现有来水情况下,系统的吨水处理成本为0.46元。

1、电吸附技术介绍_无锡_(2)

1、电吸附技术介绍_无锡_(2)

与常规脱盐技术的比较分析与技术优势
项 目
溶 液
电吸附
溶 液
双膜法( ) 双膜法(RO)
除盐 原理
溶 剂 溶 质 溶 质 溶 剂
处为溶质 分离方法示意图
能耗 有两个盘子,每个盘子中各有90个白球和10个黑球, 如果要把白球和黑球分开,可有两种方法,一种是把 白球从盘子中拿出来,盘中只剩下黑球,另一种方法 是把黑球从盘中挑出来,使盘中剩下白球 两种方法的目标结果一样而所消耗的工夫是9:1
Vs
处理方法 项 目 可忽略 电耗 药剂费 温度影响
电吸附 0.5~2kwh/ m3
双膜法
1~2kwh/ m3
高,阻垢剂、还原剂等
大于4℃小于45℃,每降低 1℃膜通量下降2-3%
>0℃,不结冰即可
污赌导致通量衰减 无衰减
二次污染
7~15%/年
浓水COD不浓缩,排放不 需添加各种药剂,COD 超标,不增加新污染物 浓缩4倍,浓水排放超标, 增加新污染物
电吸附除盐技术
爱思特(北京)净化设备有限公司
EST Purification Equipment Co., Ltd.
历史
20世纪60年代,理论研究及实验室小型机; 2000年,爱思特报告了我国第一台工业化电吸附装 置,并在饮用水、工业用水深度处理方面应用。 2006年,世界首例千吨级EST工业废水再生工程在 齐鲁石化建成; 2007年,万吨级电吸附工业废水回用装置在太化投 入运行; 2009年,碱性含油冷轧废水电吸附除盐工程在上海 宝钢集团投入运营; 至此,电吸附技术在石油、化工、冶金、电力、造纸、 印染等行业展开应用,预示电吸附除盐技术大规模应 用的到来。
电吸附除盐原理
电吸附降解COD原理 原理 电吸附降解

碳气凝胶电极电吸附除盐工艺研究与应用的开题报告

碳气凝胶电极电吸附除盐工艺研究与应用的开题报告

碳气凝胶电极电吸附除盐工艺研究与应用的开题报告一、选题背景和意义伴随着全球经济的发展和人口的增加,水资源的日益紧缺已经成为了全球共同面临的挑战之一。

而海水淡化技术被公认为是缓解全球淡水资源短缺问题的重要途径。

然而,海水淡化技术所产生的盐水排放问题(即反渗透膜处理过程中的浓水)却成为了制约该技术推广应用的重要因素。

传统的盐水处理方法通常采用化学沉淀、电渗析、反渗透浓缩等方法,但这些方法都存在着处理成本高、能耗大、除盐效率低等诸多问题。

因此,研究开发一种低成本、高效能、环境友好、可持续发展的盐水处理工艺显得尤为重要。

碳气凝胶是一类由高表面积多孔碳构成的新型吸附材料,具有表面积大、孔径可调、化学惰性、良好的热稳定性及高导电性等特点,因此被广泛应用于电化学、催化、气体吸附、分离等领域。

近年来,针对盐水处理的需求,碳气凝胶材料的电吸附性能得到了广泛关注。

电吸附是利用电荷作用引导离子在电场中移动并在电极表面吸附的一种物理吸附过程,与传统物理吸附、化学吸附不同。

碳气凝胶电极在电吸附过程中,具有良好的除盐性能和低能耗特点,成为了一种潜在的、具有应用价值的盐水处理工艺。

二、研究目的和内容本研究旨在通过制备碳气凝胶电极并利用其电吸附性能,探索一种新型高效的盐水处理工艺,并研究其在实际应用中的可行性。

具体研究内容如下:1.制备碳气凝胶电极,并对其形貌、结构、孔径大小、比表面积等物理化学性质进行表征分析。

2.研究碳气凝胶电极的电吸附除盐性能,探究不同工艺参数对电吸附除盐效果的影响,并对电吸附除盐过程进行理论模拟。

3.开展碳气凝胶电极在废水处理和海水淡化中的应用研究,对工艺参数进行优化并对碳气凝胶电极的除盐效率、能耗、稳定性等关键指标进行评估。

4.探讨碳气凝胶电极的应用前景和发展趋势,为其在盐水处理领域的推广应用提供理论基础和技术支撑。

三、研究方法和技术路线本研究主要采用以下方法和技术进行研究:1.碳气凝胶材料的制备:采用常规溶胶-凝胶法,在超临界CO2条件下合成碳气凝胶材料。

电吸附技术与常规除盐技术的比较

电吸附技术与常规除盐技术的比较

电吸附技术与常规除盐技术的⽐较
图 电吸附除盐技术与膜技术的原理⽰意
电吸附除盐技术与反渗透法、电渗析法除盐在 污⽔回⽤⽅⾯的⽐较见表1。EST在性价⽐、运⾏
成 本和操作、维护等多⽅⾯均有优势。

表 电吸附与反渗透、电渗析技术⽐较
EST对进⽔⽔质要求较低,且具有产⽔量⾼、除 盐程度适中、操作维护简便以及能耗低、稳定
性好等 特点,是⼀种经济、有效的除盐⽅法。由于不需要添 加药剂.浓缩的排污⽔不存在⼆次
污染问题。

膜法除盐技术的关键因素是进⽔⽔质,只有当 进⽔⽔质稳定满⾜处理膜要求时,才能正常运
⾏。 膜处理时需要添加絮凝剂、杀菌剂、还原剂、阻垢剂、 酸、碱等.增加运⾏费⽤.同时造
成浓⽔的排放有⼀ 定的环境污染。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一种电吸附除盐电极模块的设计标签:生活2011-05-24 07:12 星期二电吸附模块由导电的平板材料制成,长宽高400×200×2mm,电极板间距6mm,外加水箱,水泵,流量计,进出口电导率仪器,压力计及管道制成。

电源电压应低于1.6v,在1.3-1.6v之间可调,电压太高会造成水的电解,会出现气泡,应该绝对避免,电源正负极可自动对换,电极可自动短接。

电极设计以增加水通过时间为目的。

生产时间360分钟,预排和再生时间共100分钟,为了连续生产,应该有两套相同的设备交替作业。

大流量对水质有影响,应该尽量采用小流量长流程,但过度的长流程没有必要,也不会对水质有好的影响。

出水电导率升高超过设定上限时,应停止这路设备的作业,转换到另一路设备进行作业,同时将该路设备电极短接,用原水将其冲洗排除浓水,然后根据出入口电导率停止反冲作业,并将电极极性互换。

电吸附技术电极的制备标签:生活2011-05-22 22:53 星期日吸附剂材料的选择和电极的制备成型过程是电吸附技术实际应用的关键。

为了能吸附大量带电粒子,吸附剂必须拥有足够大的比表面积,因此采用的吸附剂往往是多孔碳材料,如活性炭、活性碳纤维、碳气凝胶、碳纳米管等。

1活性炭电极活性炭是水处理中应用最为广泛的吸附剂,有活性炭粉末和活性炭颗粒两种产品形态,具有生产简单、成本低等优点。

Zou等将活性炭颗粒用环氧胶黏在一起,只露出颗粒的一面,作为工作电极。

实验中用KOH溶液和TiO2纳米粒子对活性炭颗粒做了改性处理,结果都提高了吸附容量。

Zou 等还用有序中孔活性炭做电极,研究表明:有序中孔活性炭和普通活性炭的比电容分别为133 F/g 和107 F/g;在1.2 V电压条件下,对质量浓度为20 mg/L的NaCI溶液的吸附容量分别为11.6 μmol/g和4.3 μmol/g。

Park等将活性炭粉末与聚四氟乙烯、碳黑以不同比例混合,用去离子水和无水乙醇作溶剂,将混合物搅拌l h使其均匀,然后滚压数次成为片状,加压放置后制成电极。

当活性炭粉末与聚四氟乙烯、碳黑的质量比为84:4:12时,通过循环伏安测试得到的电容和电吸附除盐率最高,均为市售碳布的2倍。

2碳气凝胶电极碳气凝胶具有高比表面积(400~1 100 m2/g)、低电阻、纳米级孔洞、高电容等特点,因为孔洞相连,容易控制孔径和密度,是理想的电极材料。

Ying等将市售的两种不同比表面积的碳气凝胶薄片压在钛板上作为工作电极,研究被吸附离子种类、浓度及所加电压对电吸附的影响。

王万兵等¨训用糠醛和酚醛树脂为原料,无水盐酸为催化剂,正丙醇为溶剂,85℃恒温水浴下老化5—7 d,并经过超临界石油醚干燥、碳化等步骤制得碳气凝胶。

将制得的碳气凝胶切割成不同厚度的薄片,用导电胶将切片黏于石墨纸上,即得碳气凝胶电极。

他用此电极研究了电压、NaCl浓度和电极厚度对电吸附的影响。

3活性碳纤维电极活性碳纤维有高比表面积和较大的吸附容量,并且活性碳纤维制品种类众多,有毛毡(无纺布)、纸片、蜂窝状物、织物、杂乱的短纤维和纤维束等形状,因为可以直接剪成合适的尺寸做电极片,使得活性碳纤维作为电吸附电极更简单方便,易于实现。

Han等用传统的三电极体系研究活性碳纤维电极的电吸附(活性碳纤维为中国鞍山活性碳纤维厂生产)。

实验先将活性碳纤维用质量分数为5%的HCl煮,经去离子水清洗后再用质量分数为5%的NaOH煮,最后用去离子水煮。

将处理后的(25±0.5)mg的活性碳纤维片连接一铂丝作为工作电极,对rr/一甲酚的电吸附行为进行研究,实验结果表明,电化学极化能有效提高吸附容量。

Ahn等和Oh等用活性碳纤维布(活性碳布)做电极处理NaCl溶液(活性碳布为日本Kuraray 公司生产)。

实验中用1 mol/L的KOH和HN03 溶液对活性碳布进行改J陛,在1.5 V的电压下处理电导率为2 000μs/cm和6 000μs/cm的NaCI溶液。

Allia等研究了用活性碳布做电极吸附水溶液中除草剂噻草平(活性碳布由法国ACTITEX提供)。

用去离子水冲洗和过硫酸铵氧化进行前处理后,剪成合适尺寸,贴在金片上即为工作电极。

实验结果表明,碳布的阳极极化明显提高了对噻草平的吸附率。

Ryoo等用Ti02溶胶对活性碳布进行改性研究(活性碳布为日本Kuraray公司生产)。

将活性碳布裁成5 cm×5 cm,使活性碳布在搅拌状态下与含TiO:溶胶的醇盐反应24 h,再用无水乙醇洗掉未反应的醇盐,烘干后压在同样大小的钛网上作为电极。

实验结果表明,活性碳布改性后物理吸附明显降低而电吸附明显提高。

4碳纳米管电极碳纳米管具有特殊的中空结构、大的比表面积、低电阻率和很高的稳定性,广泛应用于电池材料、储氢材料、平面显示器材料、化学传感器材料和超大容量电容器材料等领域。

Ozoemena等研究了固定在热解石墨片上的单壁纳米管电极对四氨基酞菁钻的优先电吸附。

实验将单壁纳米管长度变短,酸洗纯化后将石墨板制成一容器形状,将单壁纳米管固定在石墨上,用一铜丝相连作为工作电极。

研究发现,四氨基酞菁钴与单壁纳米管侧壁的强π-堆叠作用是优先吸附过程的主要原因。

Zhang等和Dai等制备了直径为40~60 nm的高质量、大长径比的多壁碳纳米管。

将经硝酸前处理的碳纳米管用球磨机粉碎,以酚醛树脂为胶黏剂、乌洛脱品为固化剂,通过热压法制成电极,然后在850℃的吸附效果提高很多。

Wang等也制备了直径为30 nm、长度为几微米的碳纳米管,并用HNO,浸泡以去除催化剂Ni粒子,再和聚四氟乙烯按质量比95:5混合,制成电极,将电极压在0.8 mm厚的Ti网做工作电极,在不同电电压下对不同初始浓度的NaCI溶液进行了吸附研究。

5复合电极Yang等制备了比表面积为900—1 700 m2/g、密度为0.05 g/cm3的碳气凝胶。

再将硅胶按不同比例加入到碳气凝胶中,通过黏贴滚压法即可制成电极。

该方法可简化生产程序,提高润湿性、机械强度和电吸附效率。

实验结果表明,加入50%硅胶的复合电极电容去离子过程表现出良好性能。

Zhang等和Dai等用活性炭和碳纳米管制备了复合电极片。

研究结果表明,含质量分数为10%碳纳米管的复合电极的除盐性能最好,并且很容易高效再生。

Gao等用碳纳米管和纳米纤维制备了复合薄膜电极(CNTs—CNFs)。

实验中用直流式磁控电镀法在0.3 ㎜厚的石墨基底上沉积一薄层Ni催化剂,再用低压低温热化学气相沉积法制备CNTs-CNFs薄膜电极。

该电极用0.5 mol/L的HCI浸泡去除催化剂Ni之后,用于研究不同阳离子的优先吸附特性。

电吸附除盐技术的优缺点标签:生活2011-05-22 21:50 星期日电吸附技术,是一种新型的技术,其核心是利用带电电极吸附异性带点离子的谁处理技术。

其设备的设计依据来源于实验。

目前此技术的不足之处,有以下几点。

1、系统除盐率不够高,一般为60%-75%,同时出除效率,一般来言对氯离子的去除率是最高的。

且,脱盐率受硬度的影响比较明显。

对高硬度的水处理效率降低。

2、再生时间长,浓水排放量大。

一般来言,系统再生时间为36-42min,后续过程影响比较严重。

3、内部电极板与水接触不容易实现均匀。

电吸附除盐技术:Electrosorb Technology,简写为:EST技术。

电吸附除盐的基本原理是利用原水在阴阳电极之间流动,通电时水中离子将分别向带相反电荷的电极迁移并被该电极吸附在电极表面所形成的双电层。

随着离子或带电粒子在电极表面富集浓缩,使通道水中的溶解盐类、胶体颗粒及其他带电物质的浓度大大降低,从而实现了水的除盐、去硬度及净化。

再生时短接电极,被吸附的离子又从电极表面释放,电极得到再生。

除盐率大概为70%,产水率75%,去除硬度65%,COD去除40%左右,硫酸根70%,氯离子70%。

性能上与RO存在差异,但是这种技术的前处理要求低,操作便利,常压运行,关键是投资和运行成本较低。

对于对硬度和盐度要求不高的用户是比较好的,起码前处理就可以省不少钱。

但是在出水水质方面肯定不如RO。

电吸附除盐,也只能用作除盐领域的预处理,其核心是电极材料,很多国家和公司都在研究,但是工程应用基本没有,因为材料价格太高,一般客户根本无法接受,当然也有此技术本身的局限性的原因。

要想此技术真正应用到工程上,恐怕还得一段路要走.针对各特定的应用场合可根据需要将模块作任意组合以实现处理目标,当需要处理水量大时,或需要连续供水时,则必须采用两个或以上的工作模块并联运行工作方式,一个模块在再生,另外的模块在工作,这种模块化并联运行设计组成的设备就可以不间断地供水和成倍的增加处理量。

运行试验表明EST模块并联运行时处理水量可成倍地增加,单位出水的耗电量保持不变。

而当处理水中含盐量杂质较多,而要求出水的纯净程度又较高时,单级EST模块处理往往难以保证其可靠性和经济性,如处理海水、地下苦咸水获取高纯水,此时就必须采用多级EST模块串联运行的方式。

试验表明上ST模块串联运行处理水单级单位耗电量几乎不变,而处理深度将会随串联节数递增。

电吸附技术在水处理中的应用标签:生活2011-05-22 21:38 星期日1、电吸附水处理的原理电吸附技术EST(Electro-Sorption Technology),也可称电容去离子技术CDI(Capacitive Deionization)。

它是利用带电电极表面吸附水中离子及带电粒子的现象,使水中溶解盐类及其它带电物质在电极的表面富集浓缩而实现水的净化/淡化的一种新型水处理技术。

电吸附水处理的原理EST技术是利用带电电极表面吸附水中离子或带电粒子的现象,使水中溶解的盐类及其它带电物质在电极表面富集浓缩而实现水的净化或淡化。

图1为电吸附水处理的原理示意图。

原水从一端进入由阴、阳电极形成的通道,最终从另一端流出。

原水在阴、阳电极之间流动时受到电场作用,水中离子或带电粒子将分别向带相反电荷的电极迁移,被该电极吸附,储存在电极表面所形成的双电层中。

随着离子/带电粒子在电极表面富集浓缩,使通道水中的溶解盐类、胶体颗粒及其它带电物质的浓度大大降低,从而实现了水的除盐及净化。

图1 电吸附水处理技术原理示意2、电吸附水处理技术(EST)的特性运行能耗低,水利用率高EST技术的能耗很低,其主要的能量消耗在于使离子发生迁移,而在电极上并没有明显的化学反应发生,如有必要还可以将所用的能量回收一部分过来,即将吸附饱和的模块上储存的电能再加到另一再生好的模块上,也即所谓的“秋千式”供电方式。

这与其它除盐技术相比可以大大地节约能源。

一个实验模块以50t/h流量、85%除盐率处理TDS为1000㎎/L的原水时,能耗仅约为60W。

相关文档
最新文档