SSR二次雷达课件
S模式二次雷达的简单介绍

通信导航监视/CNS S 模式二次雷达的简单介绍Brief introduction to Mode S secondary radar华北空管局高树萍编译2007 年具有S 模式的苏庄一/二次雷达站和百花山单脉冲二次雷达站在民航华北空管局落成,标志着S 模式二次雷达在我国首家使用。
作为S 模式二次雷达站的建设者之一,尤其对S 模式感兴趣。
S 模式二次雷达系统精度高、抗干扰能力强、信息量大,它能实现两个以上雷达站之间的通信,其有为飞机对询问轮流做出应答。
二、S模式的特点S 模式地址唯一。
在S 模式二次雷达中,基于飞机地址唯一可选择性,S 模式询问含有56 位及112位信息串,其中包括24 位的飞机代码位;除了24 位地址位还有32和88 位信息位,任何装有S 模式的飞机都能由波束内的其它飞机分时,信号范围内的所有飞机应答没有重叠,应答录取则不会发生错误。
一机一码,减少或消除了同步干扰,同时防止询问信号串扰其它飞机,提高了检测能力。
(3)S 模式询问消除了来自天线波束范围内其它目标的应答信号,因此大大降低了干扰、应答机占据以及由于反射引起的虚假应ATC 提供数据链以及为VHF 语音通信提供备份的能力,可以应用在ADS-B 和TCAS 防撞等系统中,是二次雷达的发展方向。
一、S模式的定义S 模式即选址模式。
S=Select 选择,是有选择性地询问识别目标。
地面管制雷达站通过轮呼别询问。
因为对每一架装有S 模式的飞机,都分配给一个全世界独一无二的地址,该地址称为技术地址。
全世界有16 777 216 个技术地址可用,并且已由国际民航组织(ICA O)进行标准化。
每次S 模式询问都包含目标飞机的地址,被寻呼的飞机是回答询问的唯一飞机。
答。
(4)S 模式询问较高的飞机数据完整性,得益于S 模式唯一的地址和较安全的数据传输。
当传输期间编码被破坏时,S 模式有更好的编码维修能力。
(5)S 模式询问选择性询问减少了询问次数从而减少了干扰,最(ROLL-CLL)有选择地询问,在地面询问和机载应答装置之间具备双向交换数据功能,这就是说S 模式二次雷达站有能力选择性地寻呼其覆盖范围内的飞机。
二次雷达原理

二次雷达原理
雷达是一种利用电磁波进行探测和测距的设备。
二次雷达是通过接收被测物体反射回来的电磁波来获取目标信息的一种雷达系统。
二次雷达的工作原理是利用电磁波在空间中的传播特性。
当发射机发射出一束电磁波时,它会遇到被测物体并被反射回来。
接收机接收到反射回来的电磁波并进行处理,就可以得到被测物体的相关信息。
二次雷达主要依靠电磁波与被测物体的相互作用来获取目标信息。
当电磁波遇到被测物体时,一部分电磁波会被吸收、散射或者传播。
被吸收的电磁波会转化为被测物体的能量,而被散射的电磁波则会沿不同的方向重新传播。
通过测量被散射电磁波的特性,可以得到被测物体的一些特征信息,比如目标的位置、形状和反射系数等。
在二次雷达系统中,发射机和接收机是分开的,它们通过天线进行信号的传输和接收。
发射机产生一束高频电磁波并通过天线辐射出去,而接收机则用另一个天线接收反射回来的电磁波。
接收机会对接收到的信号进行放大、滤波和解调等处理,从而得到目标的信息。
总的来说,二次雷达是一种利用电磁波与目标物体相互作用来进行探测和测距的系统。
通过测量被测物体反射回来的电磁波的特性,可以获取目标的相关信息。
这种技术在军事、气象、航空等领域有着广泛的应用。
ALENIA雷达讲义

第一章SSR原理1.1航路二次雷达SSR原理基本概念:雷达的原意为无线电检测和测距,他起到对目标定位的作用。
以脉冲雷达为例,通过天线发射射频脉冲。
当射频信号遇到目标以后,其中的一部分能量向雷达站方向反射,通过天线进入接收机。
经过雷达的接收系统放大、检测等处理后,可以发现目标的存在,并可以提取其他的参数信息。
测距是基于光速不变的原理。
由于回波信号往返雷达和目标之间,他将滞后于所发射的探测脉冲时间为Tr。
以探测脉冲作为时间基准,目标和雷达站之间的斜距R为:R = C * Tr / 2由上式可见,对目标的测距(系指斜距)和测时是一致的。
测角,对于监视雷达而言系指方位角 ,亦即偏离正北方向的角度。
一般由扫描天线的主波束的指向所确定,在航管雷达系统中常把工作于上述状态下的雷达称之为一次监视雷达(PSR)。
目前一次雷达主要有三大类:A.航路的监视一次雷达,作用距离在300-500公里B.机场的监视一次雷达,作用距离在100-150公里C.着陆雷达(在跑道附近)。
其信号是提供给塔台调度员的,在塔台显示器上观看飞机下滑的全过程,提供信号仰角7度(上下10度)PSR的优缺点:优点:只要有目标存在就可以发现它(不管敌我)缺点:⑴辐射功率很大(要足够大)R与P的关系:R↔功率的四次方根造价要高得多,设备庞大。
⑵易受干扰(障碍物,气象)⑶不能对目标识别当两个目标很近时也无法区别。
⑷要得到目标的高度也很困难。
二次雷达设备——第1页二次监视雷达(SSR)和一次监视雷达的区别在于工作方式不同。
一次监视雷达可以靠目标对雷达发射的电磁波(射频脉冲)反射,主动发现目标并确定其位置,而二次监视雷达不能靠接收目标反射的自身发射的探测脉冲工作。
他是同地面站(通常称询问机)通过天线的方向性波束发射频率为1030兆赫的一组询问编码(射频脉冲)。
当天线的波束指向装有应答机的飞机的方向时,应答机检测这组询问编码信号,判断编码信号的内容,然后由应答机用1090兆赫的频率发射一组约定的回答编码(射频)脉冲。
二次监视雷达原理

1、电磁频谱资源
代号
频率范围
波长
HF VHF UHF
L S C X (I) Ku K Ka V W mm
3 - 30 30 - 300 300 - 1000
1 -2 2 -4 4 -8 8 - 12 12 - 18 18 - 27 27- 40 40 - 75 75 - 110 110 - 300
L:
波束窄,噪声低,空中警戒及监视雷达的首选。
S:
波束窄,受雨杂波的影响大,气象雷达和监视雷达。
C:
S和X的折中,对空警戒和精密跟踪。
X:
带宽宽,可产生窄脉冲,设备尺寸适中,高分辨雷达。
Ku、 K、Ka:波束窄带宽大,雨杂波及大气衰减大,作用距离短的
场合,如机场SMR。
毫米波: 波束窄带宽宽,大气衰减大,空间及作用距离不大的场合
R2ctr 15m00.1k5m
民航内蒙古空中交通管理局
1、常规雷达
二 雷达原理
发射脉冲
回波
tr
tr
t 噪声
t
雷达测距
民航内蒙古空中交通管理局
二 雷达原理
1、常规雷达
目标角位置的测量 目标角位置指方位角, 在雷达技术中测量这个角位置基本上
都是利用天线的方向性来实现的。 雷达天线将电磁能量汇集在窄波束内, 当天线波束轴对准目
民航内蒙古空中交通管理局
一 概述
3、雷达视线
雷达信号传播受影响
常规使用的信号传播是直线的。 雷达信号会受到阻挡和遮蔽。 还会受到来自飞机和地面反射信号的干扰。
水平视线 杂波和遮蔽
民航内蒙古空中交通管理局
3、雷达视线
一 概述
天线高度
雷达水平最大视线距离
二次雷达原理

二次雷达原理二次雷达是一种利用二次辐射原理进行目标探测的雷达系统。
它与常见的一次雷达相比,具有更高的分辨率和更好的抗干扰能力,因此在军事、航空航天、地质勘探等领域得到了广泛的应用。
下面我们将详细介绍二次雷达的原理和工作方式。
首先,二次雷达的工作原理是基于目标对电磁波的反射和辐射。
当雷达系统向目标发射脉冲电磁波时,目标会对电磁波进行反射。
一次雷达是通过接收目标反射的一次辐射来实现目标探测,而二次雷达则是利用目标对电磁波的反射和辐射来实现目标探测。
具体来说,当目标反射电磁波时,会产生二次辐射,这种二次辐射包含了目标的特征信息,通过接收和分析目标的二次辐射,就可以实现对目标的探测和识别。
其次,二次雷达的工作方式包括发射、接收和信号处理三个步骤。
首先,雷达系统向目标发射脉冲电磁波,然后接收目标反射和辐射的信号。
接收到的信号经过放大、滤波等处理后,送入信号处理系统进行分析和处理。
信号处理系统会提取目标的二次辐射特征,并将其与数据库中的目标特征进行比对,从而实现对目标的识别和跟踪。
最后,二次雷达具有许多优点。
首先,由于二次辐射包含了目标的特征信息,因此二次雷达具有更高的分辨率和更好的抗干扰能力。
其次,二次雷达可以实现对隐身目标的探测和识别,对于军事领域具有重要意义。
此外,二次雷达还可以应用于地质勘探、环境监测等领域,为人类社会的发展做出贡献。
总之,二次雷达是一种利用二次辐射原理进行目标探测的雷达系统,具有更高的分辨率和更好的抗干扰能力。
它的工作原理是基于目标对电磁波的反射和辐射,工作方式包括发射、接收和信号处理三个步骤。
二次雷达在军事、航空航天、地质勘探等领域具有广泛的应用前景,对于人类社会的发展具有重要意义。
初探S模式二次雷达的基本原理

初探S模式二次雷达的基本原理1. 引言1.1 背景介绍S模式雷达是一种常用的雷达系统,广泛应用于军事、民航和气象等领域。
在雷达技术领域,S波段通常指2-4 GHz的频段,因此S模式雷达也被称为S波段雷达。
S模式雷达的基本原理是利用雷达系统发射的微波信号与目标物体散射的回波信号之间的时差和频率差来实现目标探测和跟踪。
1.2 研究意义S模式雷达的研究还可以促进相关技术的发展和应用。
雷达技术通常与信号处理、电子技术、通信技术等多个领域相互关联,通过研究S 模式雷达的工作原理和应用领域,可以促进相关技术的进步和创新,推动雷达技术与其他领域的融合与发展。
【字数:253】1.3 研究目的研究目的是通过对S模式雷达基本原理的深入探讨,进一步了解其在雷达领域的作用和意义,为未来雷达技术的发展提供参考和借鉴。
研究目的还包括探讨S模式雷达在不同应用领域中的优势和局限性,希望能够找到更多适用于S模式雷达的改进和创新方向。
通过本次研究,我们希望能够为雷达技术的发展和完善做出一定的贡献,推动雷达技术在各个领域的应用和推广,为社会的进步和发展做出积极贡献。
2. 正文2.1 S模式雷达概述S模式雷达(S-band radar)是一种采用S波段频率工作的雷达系统,主要用于监测航空器、船只和地面目标。
S波段频率位于C波段和X波段之间,具有较高的频率和较长的波长,在雷达应用中有着重要的地位。
S模式雷达具有较高的分辨率和灵敏度,能够准确地探测目标并提供详细的信息。
其工作原理是通过发射电磁波,接收目标反射回来的信号,并根据信号的延迟时间和频率差异来确定目标的距离、速度和方向。
S模式雷达广泛应用于航空交通管制、气象观测、军事侦察等领域。
S模式雷达相比于其他雷达系统具有更高的精度和灵敏度,能够在复杂环境下工作,提供更加可靠的监测和识别能力。
其优势在于可以有效地应对各种威胁和干扰,保证目标的安全和可靠性。
随着雷达技术的不断发展和进步,S模式雷达的应用范围和性能也会不断提升,未来其在航空、航海、军事和科研领域将发挥越来越重要的作用。
二次雷达原理

二次雷达原理二次雷达是一种基于二次辐射原理的雷达技术,它利用目标本身反射的一次辐射信号,通过接收和再发射的方式来实现目标探测和测距。
相比传统的一次雷达技术,二次雷达在目标探测精度和抗干扰能力上有着显著的优势,因此在军事、民用航空等领域有着广泛的应用。
二次雷达的工作原理可以简单地分为三个步骤,接收、处理和发送。
首先,当目标物体被一次辐射信号照射后,会反射出一个回波信号。
接收器接收到这个回波信号后,将其转换成电信号并进行处理,得到目标物体的距离、速度等信息。
最后,发送器根据处理后的信息,再发射出相应的二次辐射信号,实现对目标物体的探测和跟踪。
二次雷达的关键技术之一是信号处理技术。
在接收到回波信号后,需要对其进行滤波、解调、解码等处理,以提取出目标物体的特征信息。
同时,为了提高探测精度和抗干扰能力,还需要对接收到的信号进行多通道处理和数字信号处理,以消除干扰和提取出目标信号。
这些信号处理技术的应用,使得二次雷达在复杂环境下仍能有效地实现目标探测和跟踪。
另外,二次雷达的发射技术也是其关键之一。
发射器需要根据接收到的目标信息,实时地调整发射信号的频率、功率和相位等参数,以确保发射的二次辐射信号能够准确地照射到目标物体,并且能够在回波信号中被有效地提取出来。
这就要求发射器具有较高的调制和调频能力,能够快速地响应接收到的目标信息,并实现信号的实时调整和发射。
总的来说,二次雷达是一种基于二次辐射原理的雷达技术,其核心在于接收、处理和发送。
通过信号处理技术和发射技术的不断创新和提高,二次雷达在目标探测精度和抗干扰能力上有着显著的优势,将会在未来的军事、民用航空等领域有着更广泛的应用前景。
ATC空中交通管制应答机ppt课件

(1)地面二次雷达所产生的询问信号有三个射
频脉冲组成, 其中P1与P3脉冲由方向性的天线辐 射,旁瓣抑制脉冲P2则由无方向性的天线辐射。
(2)控制P1,P3脉冲与P2脉冲的辐射功率比例,使 得在方向性天线主瓣范围内的飞机所接收到的P1、 P3 脉冲幅度高于P2脉冲。
(3)在机载应答机接收电路中设置有旁瓣抑
二次雷达SSR
美国称其为空中交通管制雷达信标系统,简 称航管雷达信标系统(ATCRBS) 工作方式:由地面二次雷达——询问器与机 载应答器配合,采用问答方式工作。 两次有源辐射:二次雷达系统必须经过两次 有源辐射(询问与应答各一次),才能实现 其功能。
提供信息:飞机识别码、气压高度和一些紧
急告警信息,如飞机发生紧急故障、无线电通讯
机载应答机系统
7.2.1 机载应答机系统
机载应答机系统由应答机、控制盒及天线三个 组件组成的。 民用飞机通常装备两套相同的应答机,以保证 对询问信号的可靠应答。 二套应答机共用一个控制盒,由控制盒上的系 统选择电门决定由哪一套应答机产生应答信号。
一、应答机
应答机安装在电子舱内。应答机面板上通常设置有故障 指示器及自检按钮。 故障指示器是用以表明收发组或天线系统是否存在或发 生过故障。 其中的天线故障显示器(ANT)在排除故障后,可按压 复位按钮(RESET)使故障指示器复位。 自检按钮(SELF TEST)用以在电子舱内对应答机进行 自检。自检正常时,控制盒上的绿色信号灯亮。
三、控制盒
机载应答机使用一部控制盒来控制两部应答机的工 作。在现代飞机上,应答机控制盒还同时用于控制 防撞系统(TCAS)的工作。
7.2.2 应答机的性能与技术参数
一方面要求应答机能对有效的询问信号进行正常 的应答,产生参数符合要求的应答脉冲信号; 另一方面,还要求应答机能够抑制旁瓣触发,抑 制各种噪声和干扰信号的触发,以尽可能避免产 生虚假应答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
查表数值 100英尺
上例循环码偶数位, 所以,010代表2, 即200英尺
循环码奇偶性 C1 0 0 偶数 0 1 1 1 奇数
C2 C4 十进制数
0 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 1 2 3 4 0 1 2 3 4
1 1 0 1 0 1 0 0
二次雷达(SSR)
control channel
Looking to their amplitudes, P1 & P3 are much greater than P2 the transponder is triggered
channel main lobe
二次雷达(SSR)
电子信息工程学院
询问旁瓣抑制技术
aircraft in a sidelobe Looking to their amplitudes, P1& P3 are less than P2 the transponder is NOT triggered aircraft in axis of main lobe
P1 P2
P3 P1 P2 P3
交叉电平 3 0.3dB 差 波束
和 波束
min
二次雷达(SSR) 电子信息工程学院
天线系统
实际水平波束
SUM 9dB down SUM = CONTROL CONTROL
B 4
D 4
F 2
S P I
二次雷达(SSR)
电子信息工程学院
应答信号
X:备用位 S模式定义:逻辑0,高度码单位为英尺 逻辑1,高度码单位为公尺 目前恒为逻辑0
20.3S 1.45S 0.45S 4.35S
F 1
C 1
A 1
C 2
A 2
C 4
A 4
X
B 1
D 1
B 2
D 2
B 4
二次雷达(SSR)
电子信息工程学院
应答信号
标准循环码
标准循环码 模2和
0 0 0 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 32 8
2
0 1 0
8421二进制码
十进制码 累加 500
42 500 21000
二次雷达(SSR)
电子信息工程学院
应答信号
五周期码
依照循环码奇偶性查表
方位角
二次雷达(SSR)
电子信息工程学院
单脉冲测角原理
测角结构图
目标
天线瞄准轴
波程差
二次雷达(SSR)
电子信息工程学院
单脉冲测角技术
测角示意图
等相位面 波前 波程差l
1
瞄准轴方向
d 2
2
d sin
二次雷达(SSR)
电子信息工程学院
单脉冲测角技术
B 2
D 2
B 4
D 4
F 2
S P I
二次雷达(SSR)
电子信息工程学院
应答信号
响应模式A询问是回答识别码 识别码的码序: A,B,C,D
F 1
C 1
A 1
C 2
A 2
C 4
A 4
X
B 1
D 1
B 2
D 2
B 4
D 4
F 2
7 7 7 7
A
二次雷达(SSR)
B
C
电子信息工程学院
D
应答信号
信号单程工作 具有通信的特征
二次雷达(SSR)
电子信息工程学院
SSR历史发展
第一代,二战时期,敌我识别系统(IFF)。 第二代,1950s,ATCRBS,人工解码。
第三代,1950s,SSR,信标译码系统。
第四代,1960s,计算机技术引入,自动化。
第五代,1990s,单脉冲技术、Mode S、自动 化系统。
电子信息工程学院
询问旁瓣抑制技术
绕环现象 由于雷达站附近的目标 受到旁瓣询问,于是 出现断续的回答。 呈现“绕环现象” 这些回答是同步回答, 距离相同
B C
A
二次雷达(SSR)
电子信息工程学院
询问旁瓣抑制技术
增加一个控制波束,控制波束的波瓣应覆盖询问波束的旁 瓣,控制波束辐射P2脉冲
差信号的幅度大小与偏离瞄准轴的大小有关。
二次雷达(SSR)
电子信息工程学院
单脉冲测角技术
偏离瞄准轴方向
2 1
1
2
矢量2 矢量1
矢量2 矢量1
1
21ຫໍສະໝຸດ 2和差信号的相位关系与偏离瞄准轴的方向有关。
二次雷达(SSR) 电子信息工程学院
2 s Xs
二次雷达(SSR) 电子信息工程学院
询问信号
P1-P3:模式询问脉冲 询问波束(主瓣)辐射 P2: 旁瓣抑制脉冲(控制脉冲) 控制波束辐射
询问 (1030 MHz)
P1 P2 P3
Mode A
8s
Mode C
P1 P2
P3
21s
ICAO规定民用航管二次雷达只采用模式A和模式C交替询问。
二次雷达(SSR)
中国民航大学电子信息工程学院
2017/8/12
内容提要
空管监视技术 SSR历史发展 SSR基本原理 SSR特有问题
Mode S SSR
二次雷达(SSR)
电子信息工程学院
空管监视技术
CNS/ATM 新一代航行系统 C: Communication N: Navigation S: Surveillance 通信 导航 监视
响应模式C询问回答高度码 码序
D1 D 2 D 4 A1 A2 A4 B1 B 2 B 4
C1 C 2 C 4 五进制码
标准循环码
二次雷达(SSR)
电子信息工程学院
应答信号
D,A,B共九位是标准循环码, 按500英尺递增 C三位是五周期循环码, 按100英尺递增 D1代表高度码的最高位。 由于民航飞行器目前达不到这个高度 D1位恒为0 高度码最低位代表-1200英尺
二次雷达(SSR) 电子信息工程学院
应答信号
机载应答机检测到询问信息并返回一个射频调制脉冲作为 应答信号(Replies) 应答信号格式除了F1和F2包括X位由13个脉冲(位)组成
20.3S 1.45S 0.45S 4.35S
F 1
C 1
A 1
C 2
A 2
C 4
A 4
X
B 1
D 1
电子信息工程学院
空管监视技术
监视技术比较
二次雷达(SSR)
电子信息工程学院
空管监视技术
监视政策规划
二次雷达(SSR)
电子信息工程学院
二次雷达
SSR,Secondary Surveillance Radar
SSR使得管制 员可以可靠地 识别屏幕上的 飞机。
二次雷达(SSR)
电子信息工程学院
电子信息工程学院
应答信号
如下高度码代表海拔高度20000英尺
F1
A1 C 2 A2
A4
B1
B2
B4
F2
二次雷达(SSR)
电子信息工程学院
询问旁瓣抑制技术
天线旁瓣的存在造成 天线旁瓣可能对飞机实现有效询问 天线旁瓣可能接收到飞行的应答 Remark:产生较大的定位误差
天线轴
旁瓣
主瓣
二次雷达(SSR)
S P I
二次雷达(SSR)
电子信息工程学院
应答信号
A,B,C,D:信息脉冲 表明一个回答的数据。 模式A和模式C的含义不同。 有严格的位置关系(N*1.45微秒)
20.3S 1.45S 0.45S 4.35S
F 1
C 1
A 1
C 2
A 2
C 4
A 4
X
B 1
D 1
B 2
D 2
电子信息工程学院
信号格式
发送和接收的是脉冲编码信号。
询问信号 应答信号
P1 P2
P3
询问
距离 应答
F1 Code F2
二次雷达(SSR)
电子信息工程学院
询问信号
地面询问机产生一个调制信息的射频脉冲发射给飞机,这 个信号被称为 询问信号(Interrogation)
三脉冲询问体制
P1 P2 P3
二次雷达(SSR) 电子信息工程学院
单脉冲测角技术
和-差信号
环形电桥采用微带线技术,工作频率设为1060MHz.
Σ
/4 /4
R
/4
L
Δ
3/4 二次雷达(SSR) 电子信息工程学院
天线系统
水平方向图 询问波束: • 和波束——发射P1-P3,接收回答。 • 差波束——接收回答产生单脉冲信息。 控制波束: 发射P2 接收回答 ISLS RSLS
二次雷达(SSR) 电子信息工程学院
空管监视技术
二次雷达(SSR)
电子信息工程学院
空管监视技术
二次雷达(SSR)
电子信息工程学院
空管监视技术
二次雷达(SSR)
电子信息工程学院
空管监视技术
二次雷达(SSR)
电子信息工程学院
空管监视技术
二次雷达(SSR)
电子信息工程学院
空管监视技术
二次雷达(SSR)
单脉冲测角技术
OBA信息
波束中心 1 目标A 目标B
2