真核表达系统
蛋白质表达系统介绍不同的蛋白质表达系统及其优缺点

蛋白质表达系统介绍不同的蛋白质表达系统及其优缺点蛋白质表达是生物学研究中一项重要的技术,它可以通过合成蛋白质来研究其结构和功能。
蛋白质表达系统是实现这一过程的关键工具,主要包括原核表达系统和真核表达系统两种。
本文将对这两种蛋白质表达系统进行介绍,并分析它们的优缺点。
一、原核表达系统原核表达系统是利用原核生物(如大肠杆菌)来表达外源蛋白质的系统。
该系统具有以下特点:1. 高表达水平:大肠杆菌是常用的原核表达宿主,具有高表达水平的优势。
通过利用原核细胞的强大蛋白质合成机器,可以获得高产量的外源蛋白质。
2. 易操作性:原核表达系统相对简单,操作步骤少,易于操作和控制。
不需要复杂的细胞培养条件,可以在常见培养基中进行表达。
3. 快速表达:从启动表达到获得蛋白质通常只需要数小时至数天,速度较快。
这使得原核表达系统在高通量表达和快速实验中具有优势。
然而,原核表达系统也存在一些缺点:1. 外源蛋白质折叠问题:由于原核细胞的机器无法正确折叠某些复杂蛋白质,这可能导致外源蛋白质的不正确折叠和失活。
2. 原核特异性翻译后修饰:原核细胞缺乏一些真核细胞所具有的翻译后修饰机制,这可能影响蛋白质的功能和稳定性。
3. 复杂蛋白质表达困难:对于复杂蛋白质(如膜蛋白),原核表达系统通常无法达到理想的表达水平和正确的折叠结构。
二、真核表达系统真核表达系统主要利用真核生物(如酵母、昆虫细胞和哺乳动物细胞)来表达外源蛋白质。
真核表达系统具有以下特点:1. 正确的折叠和修饰:真核细胞具有复杂的蛋白质折叠和修饰机制,能够产生正确折叠和修饰的蛋白质。
2. 适用于复杂蛋白质:真核表达系统适用于复杂蛋白质(如膜蛋白)的表达。
真核细胞提供了正确的环境和细胞器,能够较好地表达这类蛋白质。
3. 适用于大规模表达:真核细胞通常可以进行大规模培养和表达,适用于工业化生产。
然而,真核表达系统也存在一些缺点:1. 低表达水平:相对于原核表达系统,真核表达系统的表达水平较低,可能无法满足高产量蛋白质的需求。
重组蛋白真核表达系统构建流程

重组蛋白真核表达系统构建流程蛋白质是生物体内具有重要生物学功能的分子,它们由氨基酸组成,对细胞的结构和功能起着重要的调控作用。
在生物科学研究和生物制药工业中,重组蛋白质的生产和表达是一个重要的研究领域。
真核系统是重组蛋白质表达的一个重要平台,它具有许多优点,如能够实现复杂的蛋白修饰和折叠等。
因此,构建真核表达系统是生物科学研究和生物工程应用中的一个重要课题。
一、选取重组蛋白质的编码序列在构建真核表达系统之前,首先需要选取重组蛋白质的编码序列。
这一步骤通常是通过将目标蛋白质的编码基因进行克隆和序列分析来完成的。
在进行基因克隆过程中,需要选择适当的限制性内切酶和载体,构建一个含有目标基因的重组质粒。
同时,对目标基因的序列进行分析可以帮助确定转录和翻译起始位点、信号肽序列、保守结构域等信息,这些信息对于真核细胞的表达和翻译过程具有重要意义。
二、选择适当的真核表达宿主真核表达系统可以选择多种宿主来进行表达,包括哺乳动物细胞、昆虫细胞、酵母等。
在选择表达宿主时,需要考虑到宿主细胞的生长特性、表达能力、蛋白修饰能力等因素。
不同的宿主对于重组蛋白质的表达和折叠能力有所差异,因此需要根据目标蛋白质的性质和需求来选择合适的宿主。
通常来说,哺乳动物细胞系统是真核表达系统中最常用的宿主之一,它具有较高的蛋白修饰和折叠能力,适合用于表达复杂的蛋白质。
三、构建真核表达载体在选择了合适的宿主后,需要构建一个含有目标基因的真核表达载体。
真核表达载体通常包括启动子、转录终止子、筛选标记基因等功能元件。
通过将目标基因插入到表达载体中,可以实现对目标基因的调控和表达。
同时,表达载体还可以包括一些辅助元件,如信号肽、翻译起始位点、融合标签等,以提高重组蛋白质的表达水平和纯度。
四、转染或转化真核细胞在构建了真核表达载体后,需要将其转染或转化到真核细胞中。
转染是指将外源DNA通过化学方法导入到细胞内,而转化则是通过质粒介导的方式将外源DNA导入到细胞内。
分子生物学真核生物表达系统ppt课件

1
第一节 概述
在进行人的特定基因表达时,真核 细胞表达系统是首要的选择,尤其 是对于功能性膜蛋白、需要翻译后 修饰蛋白、分泌型蛋白和多蛋白复 合体中的蛋白组分等,这些蛋白质
往往只能在真核细胞表达系统中才 能获得有活性的表达产物。其原因
有:
12.02.2020
2
1、真核蛋白在原核宿主中不稳定
2、通过突变研究基因表达产物功能区 及关键位点
3、制备过量表达产物用于结构分析
12.02.2020
5
外源基因导入真核细胞的基本方法
病毒感染 化学法 转染
物理法
DEAE葡聚糖法 磷Байду номын сангаас钙共沉淀法 脂质体介导法 醋酸锂法 电穿孔法
显微注射法
12.02.2020
6
三、外源基因在真核细胞中表达的主 要方式
18
哺乳动物细胞表达载体中常用的多腺苷酸化区
Poly A区
BGH SV40 late
TK SV40 early Hep B
来
源
牛生长激素 猿猴病毒40晚期基因 单纯疱疹病毒腺激酶 猿猴病毒40早期基因
乙肝表面抗原
效率
3 2 1.5 1 1
12.02.2020
19
(3)选择标记
1)药物选择标记基因
a、APH或neor基因:新霉素、庆大霉
素及卡那霉素的结构类似物氨基糖苷G418可以干扰真核细胞核糖体的功能而 阻止蛋白质的合成。APH或neor基因编 码氨基糖苷磷酸转移酶,使G-418灭活。
转染细胞由于表达氨基糖苷磷酸转移酶, 因此可以在含G-418的培养基中生长。
12.02.2020
20
b、ADA基因:ADA基因编码腺苷酸 脱氨酶,Xyl-A经磷酸化转化为XylATP并结合到核酸分子中而导致细胞 死亡。ADA可以使之转变为肌苷衍生 物而解毒。
真核细胞表达系统(干货分享)

真核细胞表达系统自上世纪70年代基因工程技术诞生以来,基因表达技术已渗透到生命科学研究的各个领域。
并随着人类基因组计划实施的进行,在技术方法上得到了很大发展,时至今日已取得令人瞩目的成就。
随着人类基因组计划的完成,越来越多的基因被发现,其中多数基因功能不明。
利用表达系统在哺乳动物细胞内表达目的基因是研究基因功能及其相互作用的重要手段.在各种表达系统中,最早被采用进行研究的是原核表达系统,这也是目前掌握最为成熟的表达系统。
该项技术的主要方法是将已克隆入目的基因DNA片段的载体(一般为质粒)转化细菌(通常选用的是大肠杆菌),通过IPTG诱导并最终纯化获得所需的目的蛋白.其优点在于能够在较短时间内获得基因表达产物,而且所需的成本相对比较低廉.但与此同时原核表达系统还存在许多难以克服的缺点:如通常使用的表达系统无法对表达时间及表达水平进行调控,有些基因的持续表达可能会对宿主细胞产生毒害作用,过量表达可能导致非生理反应,目的蛋白常以包涵体形式表达,导致产物纯化困难;而且原核表达系统翻译后加工修饰体系不完善,表达产物的生物活性较低。
为克服上述不足,许多学者将原核基因调控系统引入真核基因调控领域,其优点是:①根据原核生物蛋白与靶DNA间作用的高度特异性设计,而靶DNA与真核基因调控序列基本无同源性,故不存在基因的非特异性激活或抑制;...文档交流仅供参考...②能诱导基因高效表达,可达105倍,为其他系统所不及;③能严格调控基因表达,即不仅可控制基因表达的“开关",还可人为地调控基因表达量。
因此,利用真核表达系统来表达目的蛋白越来越受到重视。
目前,基因工程研究中常用的真核表达系统有酵母表达系统、昆虫细胞表达系统和哺乳动物细胞表达系统....文档交流仅供参考...1、酵母表达系统最早应用于基因工程的酵母是酿酒酵母,后来人们又相继开发了裂殖酵母、克鲁维酸酵母、甲醇酵母等,其中,甲醇酵母表达系统是目前应用最广泛的酵母表达系统。
真核细胞表达系统 (自动保存的)

4000字。
技术方法类(包括分析方法类)释文提纲:(1)定义及概述(不设标题)(2)技术或方法原理(及发展历史)(3)应用及注意事项意见:基本符合百科全书的要求。
真核细胞表达系统(Eukaryotic expression system)运用基因工程技术手段,在体外将外源基因分子插入病毒、质粒等载体分子,形成新的遗传物质组合,并导入真核细胞中实现外源基因蛋白表达的技术系统。
按照宿主细胞类型,真核细胞表达系统包括酵母表达系统、丝状真菌表达系统、昆虫细胞表达系统和哺乳动物细胞表达系统。
真核细胞表达系统是重组蛋白表达的有利工具,在基础科学及医药领域发挥了重要作用。
技术或方法原理(及发展历史)酵母表达系统酵母是低等的单细胞真核模式生物,已完成基因组测序,遗传背景清晰,具有生长繁殖快,成本低,易于实现高密度培养和大规模发酵的优点。
目前发展成熟的酵母表达系统主要包括酿酒酵母表达系统和毕赤酵母表达系统。
酿酒酵母在食品工业领域的使用已有数千年历史,被美国FDA确认为安全性生物。
1981年,Hitzeman等将成功将人干扰素基因导入酿酒酵母细胞,揭开了酿酒酵母表达系统的研究和应用历史,迄今已有多种外源蛋白在酿酒酵母中获得表达。
然而酿酒酵母表达系统存在缺乏强启动子,质粒易丢失,分泌效率低,且富含高甘露糖型超糖基化等不足,导致表达产物存在过度糖基化的局限性,而逐渐被巴斯德毕赤酵母等甲醇营养型酵母表达系统所取代。
巴斯德毕赤酵母来源于野生型石油酵母NRRL-Y11430,为子囊菌类单倍体酵母,富含甲醇代谢必须的醇氧化酶、过氧化氢酶、二羟丙酮合成酶的过氧化物酶系,能在以甲醇为唯一碳源的简单培养基上快速生长,属于甲醇营养型酵母的一种。
基因工程常用的毕赤酵母菌株主要包括GS115(Mut+His—)、X-33(Mut+His+)、KM71(Muts His—)、SMD1168(his4 pep4)等。
目前毕赤酵母表达系统的启动子有醇氧化酶AOX1启动子(Ellis et al., 1985)及三磷酸甘油醛脱氢酶GAP启动子,外源基因通过同源重组整合到酵母染色体基因组上,外源蛋白表达水平受甲醇或葡萄糖的严格调控。
生物制药技术中的表达系统研究

生物制药技术中的表达系统研究生物制药技术一直是医药行业的热门领域,在制药过程中,表达系统的研究是非常重要的一部分。
表达系统是生物制药技术中利用细胞合成目标蛋白的关键工具。
目前,表达系统主要被用于制造重要的药物和生物制剂。
1. 表达系统的概念和分类表达系统是通过改变细胞或微生物的基因,使其能够合成一个目标蛋白质的过程。
表达系统主要有两大类:原核表达系统和真核表达系统。
前者是指以细菌、酵母菌、噬菌体等微生物作为表达的载体的表达系统,后者是指以哺乳动物、昆虫、真菌等真核细胞作为表达载体的表达系统。
其中,细菌表达系统应用最为广泛。
2. 细菌表达系统的研究现状目前,大肠杆菌是最常用的细菌表达系统。
因为其简单易操作、高效、低成本、质量稳定等显著优势。
大肠杆菌表达系统的原理主要是:将细胞质中的基因组 DNA 转化为 RNA,然后将 mRNA翻译成蛋白质。
研究表明,大肠杆菌表达系统可以实现许多不同的表达目的,如疫苗生产、技术嵌入、工业酶生产等。
此外,大肠杆菌表达系统在改进和增强中也有很大的发展空间。
目前,研究人员正在进行大肠杆菌表达系统的优化,以提高表达效率并改善产品质量。
例如尝试提高细胞中目标蛋白质的产量,新的表达载体的设计和改进等。
3. 真核表达系统的研究进展在真核表达系统中,以哺乳动物作为载体的表达系统应用最为广泛。
目前,最常用的哺乳动物表达系统是CHO细胞。
CHO细胞是一类美国老鼠卵巢细胞,其表达性能优越,具有较高的表达效率和高质量的表达产物。
除此之外,人类胚胎肾细胞(HEK)是另一种被广泛应用的真核表达载体。
这种类型的表达系统能够产生大量的蛋白质,并且可快速扩展,更加适合于大规模的制剂生产。
总的来说,生物制药技术中的表达系统的研究对于医疗行业的发展起着非常重要的作用。
通过对表达系统的研究,我们能够使得生产更加高效、快速、有效。
另外,还可以提高医药制品的质量和稳定性,为医疗卫生行业提供更高质量的药品和治疗方案。
真核生物表达系统汇总

2020年8月10日星期一
16
哺乳动物细胞表达载体中常用的多腺苷酸化区
Poly A区
BGH SV40 late
TK SV40 early Hep B
来
源
牛生长激素 猿猴病毒40晚期基因 单纯疱疹病毒腺激酶 猿猴病毒40早期基因
乙肝表面抗原
效率
3 2 1.5 1 1
2020年8月10日星期一
17
(3)选择标记
18
b、ADA基因:ADA基因编码腺苷酸 脱氨酶,Xyl-A经磷酸化转化为XylATP并结合到核酸分子中而导致细胞 死亡。ADA可以使之转变为肌苷衍生 物而解毒。
c、博来霉素抗性基因:
d、HPH基因:该基因编码潮霉素B磷 酸转移酶
1、瞬时表达:转染的DNA未与宿主 染色体整合,不能随宿主基因组的复 制而扩增,只能在细胞内维持2~3天 2、稳定表达:转染的DNA与宿主染 色体整合,能随宿主基因组的复制转 录和翻译,并被稳定遗传。
2020年8月10日星期一
7
五、外源基因在真核细胞中表达产物 的鉴定和纯化
mRNA的鉴定
蛋白产物鉴定
1)药物选择标记基因
a、APH或neor基因:新霉素、庆大霉
素及卡那霉素的结构类似物氨基糖苷G418可以干扰真核细胞核糖体的功能而 阻止蛋白质的合成。APH或neor基因编 码氨基糖苷磷酸转移酶,使G-418灭活。
转染细胞由于表达氨基糖苷磷酸转移酶, 因此可以在含G-418的培养基中生长。
2020年8月10日星期一
2020年8月10日星期一
1
第一节 概述
在进行人的特定基因表达时,真核 细胞表达系统是首要的选择,尤其 是对于功能性膜蛋白、需要翻译后 修饰蛋白、分泌型蛋白和多蛋白复 合体中的蛋白组分等,这些蛋白质
真核表达系统

可编辑课件PPT
25
真核表达载体
➢质粒:真核表达元件、真核抗性 ➢病毒载体:改建后
➢ SV40病毒 ➢ 腺病毒 ➢ 反转录病毒 ➢ 痘苗病毒
可编辑课件PPT
26
病毒基因组的结构特点
➢ 病毒基因组大小相差较大,与细菌或真核细胞相比,病毒 的基因组很小
➢ 病毒基因组可以由DNA组成,也可以由RNA组成
TATA box TATAAAA
TBP 30,000 ~ 10bp
GC box GGGCGG
SP-1 105,000 ~ 20bp
CAAT box GGCCAATCT CTF/NF1 60,000 ~ 22bp
Octamer ATTTGCAT
Oct-1 76,000 ~ 20bp
Oct-2 53,000 ~ 23bp
11
启动子
➢ 真核启动子:RNA聚合酶(Ⅱ)结合并起动转录的 DNA序列
➢ 一般包括转录起始点及其上游约100-200bp序列,包 含有若干具有独立功能的DNA序列元件,每个元件 约长7-30bp
➢ 核心启动子元件:RNA聚合酶起始转录所必需的最 小DNA序列,包括转录起始点及其上游-25/-30bp处 的TATA盒。单独起作用时只能确定转录起始位点和 产生基础水平的转录
➢ 与其序列的正反方向无关
➢ 要有启动子才能发挥作用。但增强子对启动子没 有严格的专一性,同一增强子可以影响不同类型 启动子的转录
➢ 增强子的作用机理虽然还不明确,但与其他顺式 调控元件一样,必须与特定的蛋白质因子结合后 才能发挥增强转录的作用
➢ 增强子一般具有组织或细胞特异性,许多增强子 只在某些细胞或组织中表现活性,是由这些细胞 或组织中具有特异性蛋白质因子所决定的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
充足的营养和氧源,加抗氧化剂,抗细胞凋亡基因
4. 提高表达蛋白糖基化水平
Thank You
可以保证质粒载体平均肥培到子细胞,稳定性强 拷贝数低
二、酵母表达系统
酵母人工染色体
染色体自主复制序列 着丝粒 端粒
装载片段大 稳定性差
二、酵母表达系统
在酵母中高效表达外源基因的策略
选择合适的受体细胞 提高表达载体在细胞中的拷贝数 选择强启动子 提高翻译产物的稳定性
外源基因的原核表达系统
生物与食品工程学院
外源基因的原核表达系统
一、真核细胞表达体系的特点
二、酵母表达系统
三、昆虫表达系统
四、哺乳动物细胞表达系统
一、真核细胞表达体系的特点
优点: 1. 具有翻译后加工修饰系统
二硫键、糖基化、磷酸化、
2. 可以识别内含子
3. 蛋白质折叠
氨基酸序列
哺乳动物细胞基因表达系统元件
1. 启动子
由核心启动子和上游启动子组成
2. 终止信号和 poly ( A ) 3. 剪切信号 4. 选择标记基因
四、哺乳动物细胞表达系统
提高哺乳动物基因表达效率的措施
1. 改进表达载体
启动子
2. 宿主细胞的特性 3. 抑制细胞凋亡,延长细胞周期
具有三级结构的蛋白质
一、真核细胞表达体系的特点
缺点:
1. 外源基因导入效率偏低
2. 无法有效控制外源基因整合位置和拷贝数
3. 可用的筛选标记基因少
二、酵母表达系统
自主复制型质粒载体
以cccDNA(供价、闭合、环状)的形式存在 含有酵母基因组复制起始区 含有大肠杆菌自主复制基因
三、昆虫表达系统
昆虫表达体系的特点
允许插入较大的外源基因 能有效地进行翻译后加工 昆虫病毒具有严格的细胞专一型,安全
三、昆虫表达系统
三、昆虫表达系统
三、昆虫表达系统
四、哺乳动物细胞表达系统
哺乳动物细胞基因表达类型
1. 包含原核复制子的质粒型载体
不能在哺乳动物细胞中复制,需要整合到染色体
转化率高 拷贝数高 不能均匀分配到子代细胞
二、酵母表达系统
整合型质粒载体
通过同源重组整合到酵母染色体,并随染色体一起 复制
不含有复制起始区 含有整合介导区
转化子稳定 拷贝数低
二、酵母表达系统
着丝粒质粒载体
在自主复制型质粒载体上添加着丝粒 不含有复制起始区 含有整合介导区
2. 带真核病毒调控序列元件的质粒表达载体
能有效地调节外源基因在哺乳动物细胞中的表达
四、哺乳动物细胞表达系统
哺乳动物细胞基因表达系统元件
1. 启动子
由核心启动子和上游启动子组成
2. 终止信号和 poly ( A ) 3. 剪切信号 4. 选择标记基因
四、哺乳动物细胞表达系统