切线的判定定理

合集下载

切线的证明方法

切线的证明方法

切线的证明方法如下:
1、用判定定理,这是证明切线最多见的方法,也就是如果直线和圆之间有交点,连接交点和圆心,得出半径,只要证明这条半径和这条直线是垂直的就行了。

2、当不确定直线和圆的交点个数或是交点所处的位置的时候,能够通过圆心作出直线的垂线,然后证明从圆心到直线的距离和圆的半径相等就行了。

在几何中,切线是指一条刚好碰触到曲线上某个点的直线。

当切线经过曲线上的某个点,也就是切点的时候,切线的方向和曲线上这个点的方向一样。

在平面几何里面,把和圆只有一个公共交点的直线称作圆的切线。

在高等数学中,对一个函数而言,假设函数的某个地方有导数,那么这里的导数就是经过这里的切线的斜率,这个点和斜率所构成的直线就是这个函数的一个切线。

切线的性质定理是:圆的切线垂直于经过这个切点的圆的半径,经过圆的半径的不是圆心的一端,而且垂直于这条半径的直线,就是这个圆的一条切线。

切线的判定定理是:一条直线如果和一个圆有交点,而且连接交点和圆心的直线和这条直线是垂直的关系,那么这条直线就是圆的切线。

2.3 圆的切线的性质及判定定理 课件(人教A选修4-1)

2.3 圆的切线的性质及判定定理 课件(人教A选修4-1)
1.切线的性质 (1)性质定理:圆的切线垂直于经 过 切点的半径. 如图,已知AB切⊙O于A点,则 OA ⊥AB.
(2)推论1:经过圆心且 垂直于切线 的直线必经过切点.
(3)推论2:经过切点且 垂直于切线 的直线必经过圆心.
2.圆的切线的判定方法 (1)定义:和圆只有一个公共点的直线是圆的切线.
利用圆的切线的性质来证明或进行有关的计算有时需
添加辅助线,其中连接圆心和切点的半径是常用辅助线, 从而可以构造直角三角形,利用直角三角形边角关系求解, 或利用勾股定理求解,或利用三角形相似求解等.
1. AB是圆O的直径,D为圆O上一点, 过D作圆O的切线交AB的延长线于点C,
若DA=DC,求证:AB=2BC.
∠BOD 是 BD 所对的圆心角,
∠BCD=45° , ∴∠BOD=90° . ∵∠ADB 是△BCD 的一个外角, ∴∠DBC=∠ADB-∠ACB =60° -45° =15° , ∴∠DOC=2∠DBC=30° , 从而∠BOC=120° , ∵OB=OC,∴∠OBC=∠OCB=30° .
在△OEC 中,因为∠EOC=∠ECO=30° , ∴OE=EC, 在△BOE 中,因为∠BOE=90° ,∠EBO=30° . ∴BE=2OE=2EC, CE CD 1 ∴BE=DA= , 2 ∴AB∥OD,∴∠ABO=90° , 故 AB 是△BCD 的外接圆的切线.
交⊙O于点E,PA=AO=OB=1. (1)求∠P的度数; (2)求D切点,∴OC⊥PC,△POC 为直角三角形. ∵OC=OA=1,PO=PA+AO=2, OC 1 ∴sin ∠P= PO= .∴∠P=30° . 2 (2)∵BD⊥PD,∴在 Rt△PBD 中, 由∠P=30° ,PB=PA+AO+OB=3, 3 得 BD= . 2 连接 AE.则∠AEB=90° ,∴AE∥PD. ∴∠EAB=∠P=30° ,∴BE=ABsin 30° =1, 1 ∴DE=BD-BE= . 2

切线的判定和性质

切线的判定和性质

(打印3份)圆----切线的性质和判定(11月12)A、知识点、方法归纳总结知能点1:切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。

切线的识别方法有三种:(1)和圆只有一个公共点的直线是圆的切线。

(2)和圆心的距离等于圆的半径的直线是圆的切线。

(3)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线辅助线的作法:证明一条直线是圆的切线的常用方法:当直线和圆有一个公共点时,把圆心和这个公共点连接起来,则得到半径,然后证明直线垂直于这条半径,记为“连半径,证垂直。

”知能点2:切线的性质定理:圆的切线垂直于过切点的半径。

辅助线的作法:有圆的切线时,常常连接圆心和切点得切线垂直半径。

记为“见切线,连半径,得垂直。

”中考考点点击:切线的判定和性质在中考中是重点内容,试题题型灵活多样,填空、选择、作图、解答题较多。

B、证明圆的切线方法及例题一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.例1 如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于D ,交AC 于E ,B 为切点的切线交OD 延长线于F.求证:EF 与⊙O 相切. 证明:连结OE ,AD. ∵AB 是⊙O 的直径, ∴AD ⊥BC. 又∵AB=BC , ∴∠3=∠4.∴BD=DE,∠1=∠2. 又∵OB=OE ,OF=OF , ∴△BOF ≌△EOF (SAS ). ∴∠OBF=∠OEF. ∵BF 与⊙O 相切, ∴OB ⊥BF. ∴∠OEF=900. ∴EF 与⊙O 相切.说明:此题是通过证明三角形全等证明垂直的例2 如图,AD 是∠BAC 的平分线,P 为BC 延长线上一点,且PA=PD.求证:PA 与⊙O 相切. 证明一:作直径AE ,连结EC. ∵AD 是∠BAC 的平分线,∴∠DAB=∠DAC. ∵PA=PD , ∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB , ∴∠1=∠B. 又∵∠B=∠E , ∴∠1=∠E∵AE 是⊙O 的直径, ∴AC ⊥EC ,∠E+∠EAC=900. ∴∠1+∠EAC=900.⌒ ⌒即OA ⊥PA.∴PA 与⊙O 相切.说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用. 变式练习: 如图,AB=AC ,AB 是⊙O 的直径,⊙O 交BC 于D ,DM ⊥AC 于M 求证:DM 与⊙O 相切.例3 如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,且∠CAB=300,BD=OB ,D 在AB 的延长线上.求证:DC 是⊙O 的切线 证明:连结OC 、BC. ∵OA=OC , ∴∠A=∠1=∠300. ∴∠BOC=∠A+∠1=600. 又∵OC=OB ,∴△OBC 是等边三角形. ∴∠CBO=600. OB=BC. ∵OB=BD , ∴BC=BD.∴∠CDO=300∴∠OCD=180°-300-600=900. ∴OC ⊥CD.∴DC 是⊙O 的切线.变式练习:如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.求证:CE与△CFG的外接圆相切.二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”例4 如图,AB=AC,D为BC中点,⊙D与AB切于E点.求证:AC与⊙D相切.证明一:连结DE,作DF⊥AC,F是垂足.∵AB是⊙D的切线,∴DE⊥AB.∵DF⊥AC,∴∠DEB=∠DFC=900.∵AB=AC,∴∠B=∠C.又∵BD=CD,∴△BDE≌△CDF(AAS)∴DF=DE.∴F在⊙D上.∴AC是⊙D的切线变式练习: 已知:如图,AC ,BD 与⊙O 切于A 、B ,且AC ∥BD ,若∠COD=900. 求证:CD 是⊙O 的切线.C 、作业部分1、如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO=CD ,则∠PCA=( )A .30° B .45° C .60° D .67.5°2、O ,并使较长边与O 相切于点C .假设角尺的较长边足够长,角尺的顶点B ,较短边8cm AB .若读得BC 长为cm a ,则用含a 的代数式表示r 为 .3、如图,已知AB 是⊙O 的一条直径,延长AB 至C 点,使得AC=3BC ,CD 与⊙O 相切,切点为D.若CD=3,则线段BC 的长度等于__________.4、如图,已知AB是⊙O的直径,锐角∠DAB的平分线AC交⊙O于点C,作CD⊥AD,垂足为D,直线CD与AB的延长线交于点E.(1)求证:直线CD为⊙O的切线;(2)当AB=2BE,且CE=3时,求AD的长.5如图,在Rt△ABC中,∠C=90°,O、D分别为AB、BC上的点.经过A、D两点的⊙O分别交AB、AC于点E、F,且D为弧EF的中点.求证:BC与⊙O相切;6、如图,已知AB 是⊙O 的直径,C 是AB 延长线上一点,BC =OB ,CE 是⊙O 的切线,切点为D ,过点A 作AE ⊥CE ,垂足为E ,求CD :DE 的值7、如图,AB 是半圆O 的直径,点C 是⊙O 上一点(不与A ,B 重合),连接AC ,BC ,过点O 作OD ∥AC 交BC 于点D ,在OD 的延长线上取一点E ,连接EB ,使∠OEB=∠ABC . ⑴求证:BE 是⊙O 的切线;⑵若OA=10,BC=16,求BE 的长.EB8、如图,⊙ O经过点B、D、E,BD是⊙ O的直径,∠C=90°,BE 平分∠ABC. (1)试说明直线AC是⊙ O的切线;(2)当AE=4,AD=2时,求⊙ O的半径及BC的长.9、如图,在⊙O中,AB为直径,AC为弦,过点C作CD⊥AB 与点D,将△ACD沿AC翻折,点D落在点E处,AE交⊙O于点F ,连接OC、(1)求证:CE是⊙O的切线。

圆的切线判定定理

圆的切线判定定理

圆的切线判定定理
圆的切线判定定理是一个用于判断一条直线是否为圆的切线的准则。

根据该定理,当一条直线与圆相切时,该直线与圆的切点之间的线段与圆的半径垂直。

具体来说,如果一条直线与圆相交,且通过与圆的切点,与圆的半径垂直相交,那么这条直线就是圆的切线。

换句话说,这条直线切到了圆的边界,只与圆相交于切点。

这个定理可以用一个简单的几何证明来解释。

假设有一个圆和一条直线,直线通过圆的切点,并且与圆的半径垂直相交。

我们可以证明这条直线是圆的切线,因为根据几何定理,直线与圆的边界只能相交于两个点,而这两个点中的一个就是切点。

因此,这条直线与圆的边界只有一个交点,这就是切点,所以这条直线是圆的切线。

总之,圆的切线判定定理告诉我们,当一条直线与圆相交,且通过切点与圆的半径垂直相交时,这条直线就是圆的切线。

关于圆的切线的各种定理

关于圆的切线的各种定理

切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线几何语言:∵l l ⊥⊥OA OA,,点A 在⊙O 上∴直线l 是⊙O 的切线(切线判定定理)切线的性质定理圆的切线垂直于经过切点的半径几何语言:∵OA 是⊙O 的半径,直线l 切⊙切⊙O O 于点A∴l l ⊥⊥OA OA(切线性质定理)(切线性质定理)推论1 1 经过圆心且垂直于切经过圆心且垂直于切线的直径必经过切点推论2 2 经过切点且垂经过切点且垂直于切线的直线必经过圆心切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角几何语言:∵直线PA PA、、PB 分别切⊙O 于A 、B 两点∴PA=PB PA=PB,∠,∠,∠APO=APO=APO=∠∠BPO BPO(切线长定理)(切线长定理)证明:连结OA OA、、OB∵直线PA PA、、PB 分别切⊙O 于A 、B 两点∴OA OA⊥⊥AP AP、、OB OB⊥⊥PB∴∠OAP=OAP=∠∠OBP=90OBP=90°°在△OPA和△OPB中:中:OAP=∠∠OBP∠OAP=OP=OPOA=OB=rHL))(HL∴△OPAOPB(OPA≌△≌△OPB∠BPOAPO=∠∴PA=PBPA=PB,∠,∠APO=弦切角概念顶点在圆上,一边和圆相交、另一边和圆相切的角叫做弦切角.它是继圆心角、圆周角之后第三种与圆有关的角.这种角必须满足三个条件:(1)顶点在圆上,即角的顶点是圆的一条切线的切点;所在的射线;(2)角的一边和圆相交,即角的一边是过切点的一条弦所在的射线;(3)角的另一边和圆相切,即角的另一边是切线上以切点为端点的一条射线。

它们是判断一个角是否为弦切角的标准,三者缺一不可准,三者缺一不可 (4)弦切角可以认为是圆周角的一个特例,即圆周角的一边绕顶点旋转到与圆相切时所成的角.正因为如此,弦切角具有与圆周角类似的性质.弦切角定理对的圆周角等于所夹的AC)对的圆周角等于所夹弦切角(即图中∠ACD)等于它所夹的弧(弧AC)所夹的弧的圆心角 [注,由于网上找得的图不是弧的读数的一半等于1/2所夹的弧的圆心角很完整,图中没有连结OC]几何语言:∵∠ACD所夹的是弧AC弦切角定理) ∴∠ACD=∠ABC=1/2∠COA=1/2弧AC的度数(弦切角定理)推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等,弧MN =MN =弧弧PQPQ ,弧,∠2所夹的是PQ几何语言:∵∠1所夹的是弧MNMN ,∠2∴∠1=∠2AD⊥EC证明:作AD⊥ECADC=90°∵∠ADC=90°ACD+∠CAD=90°∴∠ACD+∠CAD=90°∵ED与⊙O切于点CED∴OC⊥ED∴∠OCD=∠OCA+∠ACD=90°∴∠OCA=∠CAD OCA=∠CAD∵OC=OA=r OC=OA=r∴∠OCA=∠OAC OCA=∠OAC∴∠COA=180°COA=180°--∠OCA OCA--∠OAC=180°OAC=180°--2∠CAD 2∠CAD又∵∠ACD=90°ACD=90°--∠CAD ∠CAD∴∠ACDC=1/2∠COA ACDC=1/2∠COA∴∠ACD=∠ABC=1/2∠COA COA=1/2=1/2弧AC 的度数的度数切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

初中数学切线的性质和判定

初中数学切线的性质和判定

图29-3
线的性质和判定
解 析 (1)由切线的性质,即可得OA⊥PA,OB⊥PB,又由圆周角 定理,求得∠AOB的度数,继而求得∠APB的大小; (2)由切线长定理,可求得∠APO的度数,继而求得∠AOP的度数,易得 PO是AB的垂直平分线,然后利用三角函数的性质,求得AD与OD的长.
┃ 切线的性质和判定
切线的性质和判定
中考预测
如图 29-6,△ABC 内接于⊙O,∠B=60°,
CD 是⊙O 的直径,点 P 是 CD 延长线上的一点,
且 AP=AC.
(1)求证:PA 是⊙O 的切线;
(2)若 PD= 3,求⊙O 的直径.
图29-6
切线的性质和判定

(1)证明:连接 OA, ∵∠B=60°,
∴∠AOC=2∠B=120°.
切线的性质和判定
[方法点析] 解三角形内切圆问题,主要是切线长定理的运 用.解决此类问题,常转化到直角三角形中,利用勾股定理或 直角三角形的性质及三角函数等解决.
┃ 切线的性质和判定
回归教材
切线问题中必需的半径
教材母题
如图 29-5,设 AB 是⊙O 的直径,如 果圆上点 D 恰使∠ADC=∠B,那么直线 CD 与⊙O 相切吗?若相切,请给出证明.
∴S△AOB=12×AB×OD=12×10 3×5=25 3(cm2).
切线的性质和判定
[方法点析] (1)利用过圆外一点作圆的两条切线,这两条切 线的长相等,是解题的基本方法.(2)利用方程思想求切线长常 与勾股定理,切线长定理,圆的半径相等紧密相连.
切线的性质和判定
探究四 三角形的内切圆
命题角度: 1. 三角形的内切圆的定义; 2. 求三角形的内切圆的半径.

圆的切线判定定理


A C
D

F
B
即 d = r
挑战( ) 挑战(2)
如图,△AOB中,OA=OB=10,∠AOB=120°,以O为圆心, 如图, AOB中 OA=OB=10, AOB=120° 为圆心, 为半径的⊙ OA、OB相交 相交。 5为半径的⊙O与OA、OB相交。 求证:AB是 的切线。 求证:AB是⊙O的切线。 O
动手练一练 动手练一练
如图,AB是⊙O的直径,∠B=45°,AC=AB。 如图, 的直径, 45°
AC是⊙O的切线吗?为什么? 的切线吗?为什么?
解:AC是⊙O的切线 。理由如下: 理由如下: 45° 已知) ∵ AC=AB , ∠B=45°(已知) ∴∠C=∠B=45°(等边对等角) ∴∠C= 45° 等边对等角) 180° 又∵∠BAC+∠B+∠C = 180° ∵∠BAC+ BAC ∴∠ BAC = 180°-∠B-∠C=90° 180° 90° 直线AC⊥AB ∴ 直线AC⊥AB 又∵直线AC经过⊙O 上的A点 经过⊙ 上的A ∴直线AC是⊙O的切线 A C B
§24.2.2直线和圆的位置关系 24.2.2直线和圆的位置关系
-----切线的判定 -----切线的判定
用切线定义判定 切线
1)直线和圆有唯一公共点时,这条直线叫做 直线和圆有唯一公共点时, 这个唯一的公共点叫做( ( 圆的切线 ), 这个唯一的公共点叫做( 切点) 直线l与⊙O只有一个公共点 直线 与 只有一个公共点 直线l与⊙O相切. 相切. 直线 与 相切
挑战( ) 挑战(1)
如右图所示,已知OC平分∠AOB, 如右图所示,已知OC平分∠AOB,D是OC上任意一点,⊙D与OA相 OC平分 OC上任意一点, 上任意一点 OA相 切于点E 那么, 的切线吗?请说明理由。 切于点E。那么,OB是⊙D的切线吗?请说明理由。 理由如下: 解:OB是⊙D的切线 。理由如下: 连结DE,过D点作DF⊥OB,垂足为F。 连结DE, 点作DF⊥OB,垂足为F DE DF⊥OB ∵ OA 与⊙D 相切于点E 相切于点E ∴ OE⊥OA 又∵ OC平分∠AOB, DF⊥OB OC平分∠AOB, 平分 ∴ DF = DE DF⊥OB, 又∵ DF⊥OB, ∴ OB是⊙D的切线 。 O E

切线的判定和性质


根据直线与圆的位置关系,判定切线的方法有哪些? ①与圆只有一个交点; ②圆心到直线的距离等于半径
还有没有什么其它的方法?
新知学习 一、切线的判定定理
思考
如图,在 ⊙O 中,经过半径 OA 的外端点 A 作直线 l⊥OA,则圆心 O 到直线 l 的距离是多少?直线 l 和 ⊙O 有什么位置关系?
∵OA为⊙O的半径,且OA⊥l
证明:如图,过 D 作 DE⊥AC 于 E.
A
∵∠ABC = 90°,∴ DB⊥AB.
又∵ AD 平分∠BAC,DE⊥AC,
E
∴ DE = DB = r.
∴ AC 是⊙O 的切线.
B
D
C
二、切线的性质定理
思考
判定定理: ①OA 为 ⊙O 的半径
②BC⊥OA 于点 A
③BC 为 ⊙O 的切线
①+③→② ? 用上面的形式呈现这个
A D
OE = OD OE 是 ⊙O 的半径
B
O
C
AC 是 ⊙O 的切线
证明:如图,连接 OD,OA,过 O 作 OE⊥AC 于 E.
∵⊙O 与 AB 相切于 D,
∴OD⊥ AB.
交点不确定时,要作垂直,证半径
又∵△ABC 为等腰三角形,O 是 BC 的中点,
A
D
E
∴ AO 平分∠BAC.
∴ OD = OE. ∴ AC 是 ⊙O 的切线.
课堂小结
判定
1.定义法 2.数量关系法 3.判定定理
切线的判定 和性质
证切线时,常用辅助线作法: ①有公共点,连半径,证垂直; ②无公共点,作垂直,证半径.
切线的 性质
性质定理 有 1 个公共点 d=r

关于圆的切线的各种定理

切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线几何语言:∵l ⊥OA,点A在⊙O上∴直线l是⊙O的切线(切线判定定理)切线的性质定理圆的切线垂直于经过切点的半径几何语言:∵OA是⊙O的半径,直线l切⊙O于点A∴l ⊥OA(切线性质定理)推论1 经过圆心且垂直于切线的直径必经过切点推论2 经过切点且垂直于切线的直线必经过圆心切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角几何语言:∵直线PA、PB分别切⊙O于A、B两点∴PA=PB,∠APO=∠BPO(切线长定理)证明:连结OA、OB∵直线PA、PB分别切⊙O于A、B两点∴OA⊥AP、OB⊥PB∴∠OAP=∠OBP=90°在△OPA和△OPB中:∠OAP=∠OBPOP=OPOA=OB=r∴△OPA≌△OPB(HL)∴PA=PB,∠APO=∠BPO弦切角概念顶点在圆上,一边和圆相交、另一边和圆相切的角叫做弦切角.它是继圆心角、圆周角之后第三种与圆有关的角.这种角必须满足三个条件:(1)顶点在圆上,即角的顶点是圆的一条切线的切点;(2)角的一边和圆相交,即角的一边是过切点的一条弦所在的射线;(3)角的另一边和圆相切,即角的另一边是切线上以切点为端点的一条射线。

它们是判断一个角是否为弦切角的标准,三者缺一不可(4)弦切角可以认为是圆周角的一个特例,即圆周角的一边绕顶点旋转到与圆相切时所成的角.正因为如此,弦切角具有与圆周角类似的性质.弦切角定理弦切角(即图中∠ACD)等于它所夹的弧(弧AC)对的圆周角等于所夹的弧的读数的一半等于1/2所夹的弧的圆心角 [注,由于网上找得的图不是很完整,图中没有连结OC]几何语言:∵∠ACD所夹的是弧AC∴∠ACD=∠ABC=1/2∠COA=1/2弧AC的度数(弦切角定理)推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等几何语言:∵∠1所夹的是弧MN ,∠2所夹的是PQ ,弧MN =弧PQ∴∠1=∠2证明:作AD⊥EC∵∠ADC=90°∴∠ACD+∠CAD=90°∵ED与⊙O切于点C∴OC⊥ED∴∠OCD=∠OCA+∠ACD=90°∴∠OCA=∠CAD∵OC=OA=r∴∠OCA=∠OAC∴∠COA=180°-∠OCA-∠OAC=180°-2∠CAD又∵∠ACD=90°-∠CAD∴∠ACDC=1/2∠COA∴∠ACD=∠ABC=1/2∠COA=1/2弧AC的度数切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

切线的判定和性质定理_课件


提示:连接AO,DO,作 OE⊥AC 于点E.
E
总结:看到切线,就要连接切点和圆心,利用切线性质.
AB 是 ⊙O 的直径,AE 平分∠BAC 交 ⊙O 于点E,过点 E 作⊙O 的切线交AC 于点D,试判断△AED 的形状,并说明理 由提.示:连接OE.
答案:△AED是直角三角形. 总结:看到切线,就要连接切点和圆心,利用切线性质.
判断一条直线是圆的切线,你现在会有多少种方法? 有以下三种方法: 1.定义法:和圆有且只有一个公共点的直线是圆的切线. 2.数量法(d=r):圆心到直线的距离等于半径的直线是圆 的切线. 3.判定定理:经过半径外端且垂直于这条半径的直线是圆的 切线.
生活中的切线
1.当你在下雨天快速转
2.砂轮打磨零件时
知识回顾 直线和圆的位置关系
相交
图形
公共点个数 公共点名称 直线名称 距离d与半径r的关系
2个 交点 割线 d<r
相切
相离
1个 切点 切线 d=r
0个 —— —— d>r
思考
如图,在 ⊙O 中,经过半径 OA 的外端点 A 作直线 l⊥OA, 则圆心 O 到直线 l 的距离是多少?直线 l 和 ⊙O 有什么位置关 系?
圆的切线垂直于过切点的半径.
切线的性质定理 圆的切线垂直于过切点的半径.
几何表述: ∵ l 与 ⊙O 相切于点 A ∴ OA⊥l
切线的性质定理的证明
证明切线性质定理需要用到反证法:
假设OA与 l 不垂直,
过点O 作OM⊥l,垂足为M.
M
根据垂线段最短的性质,有OM<OA,
这说明圆心 O 到直线l的距离小于半径OA.
提示:连接OD,证明三角形全等.
补充题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档