IEEE 1588精确时间同步协议的应用方案

合集下载

1588时间同步解决方案介绍

1588时间同步解决方案介绍

1588时间同步解决方案介绍5、1588时间同步解决方案TD-SCDMA时间同步现状l TD-SCDMA组网对时间同步要求较高ü TD-SCDMA/TD-LTE 均属于TDD时分双工系统,在相同的频率上发送上/ 下行数据,需要基站间同步,以避免时隙间和上/下行帧之间的干扰。

ü TD基站时间同步精度要求为± 1.5μs。

l TD-SCDMA基站目前使用GPS作为唯一的授时时间源制式 GSM WCDMA CDMA2000 TD-SCDMA FDD-LTE TD-LTE 频率同步50ppb 50ppb 50ppb 50ppb 50ppb 50ppb 时间同步None None 小于3μs 小于1.5μs None 小于1.5μs各种无线通信系统的同步性能指标要求TD-SCDMA基站的时间同步需求TD-SCDMA无线组网要求同频相邻基站空口同步、时隙对齐,任意两个基站之间帧头最大偏差不超过3μs,否则会产生:时隙干扰:前一个时隙的信号落在下一个时隙中,破坏了这两个时隙内的正交码的正交性,使这两个时隙内的基站或终端都无法正常解调。

上下行时隙干扰:一个基站发射的信号直接对另一个基站的接收造成强大的干扰,严重影响第二个基站的正常接收。

码频率TDD/TDMACDMA 1.6MHz本振源 PRC/LPR (铯钟) G.811时钟铷原子钟准确度±2×10-12 ±1×10-11 ±5×10-11变化±1us 需用时间 115多天 17分钟 3.4分钟675μs 75μs160μs 675μs75μs675μstime本地时钟和频率同步网守时能力无法满足TD需求,需要有时间同步机制依赖GPS存在的问题l 安全问题– GPS系统存在安全隐患。

– GPS故障率: GPS部分已成为除射频模块外的第二高故障率设备,约占总故障数的15%左右。

IEEE_1588协议

IEEE_1588协议

IEEE_1588协议IEEE1588协议,也称为精密时钟同步协议,是一个用于实时系统中精确同步时钟的网络协议。

它的目标是提供亚微秒级的时钟同步精度,以满足高精度和高同步性能的实时应用需求。

IEEE1588协议主要用于工业自动化、电力系统、通信系统等领域,能够实现在分布式系统中所有时钟设备之间的同步。

IEEE 1588协议的原理是基于主从模式,其中一个设备是主时钟(Master Clock),该设备通过发送同步消息来广播时间信息,其他设备则是从时钟(Slave Clock),它们通过接收同步消息来校正自身的时钟。

主从模式可以实现网络中所有设备的时间同步,但是主时钟设备需要提供高精准的参考时钟。

IEEE1588协议的消息格式如下:1. Sync消息(同步消息):主时钟设备通过此消息广播时间信息,从时钟设备通过解析此消息来校正自身的时钟。

2. Delay_Req消息(延迟请求消息):从时钟设备通过向主时钟设备发送此消息来计算时钟矫正的延迟。

3. Follow_Up消息(跟随消息):主时钟设备通过此消息回复Delay_Req消息,包含时钟矫正延迟的信息。

4. Delay_Resp消息(延迟响应消息):主时钟设备通过此消息回复Delay_Req消息,包含时钟矫正延迟的信息。

5. PDelay_Req消息(精确延迟请求消息):用于测量主从时钟之间的延迟。

6. PDelay_Resp消息(精确延迟响应消息):用于回复PDelay_Req消息,包含主从时钟之间的延迟信息。

7. Announce消息(通告消息):用于通知网络中的设备主时钟的更改。

IEEE 1588协议的核心算法是时钟同步算法,该算法通过计算往返时延(Round-Trip Delay)来实现时钟同步。

往返时延包括主时钟设备发送Sync消息到从时钟设备接收到Follow_Up消息的时间,以及从时钟设备收到Delay_Resp消息到主时钟设备接收到的时间。

IEEE 1588精密时钟同步协议测试技术

IEEE 1588精密时钟同步协议测试技术

IEEE 1588精密时钟同步协议测试技术关键字:基站数字示波器光纤测试仪光谱仪自动化测试基于以太网的时分复用通道仿真技术(TDM over Ethernet)作为一种过渡技术,具有一定的以太网时钟同步概念,可以部分解决现有终端设备用于以太网的无缝连接问题。

IEEE 1588标准则特别适合于以太网,可以在一个地域分散的IP网络中实现微秒级高精度的时钟同步。

本文重点介绍IEEE 1588技术及其测试实现。

1引言以太网技术由于其开放性好、价格低廉和使用方便等特点,已经广泛应用于电信级别的网络中,以太网的数据传输速度也从早期的10M提高到100M,GE,10GE。

40GE,100GE正式产品也将于200 9年推出。

以太网技术是“即插即用”的,也就是将以太网终端接到IP网络上就可以随时使用其提供的业务。

但是,只有“同步的”的IP网络才是一个真正的电信级网络,才能够为IP网络传送各种实时业务与数据业务的多重播放业务提供保障。

目前,电信级网络对时间同步要求十分严格,对于一个全国范围的IP网络来说,骨干网络时延一般要求控制在50ms之内,现行的互联网网络时间协议NTP(Network Time Prot ocol),简单网络时间协议SNTP(Simple Network Time Protocol)等不能达到所要求的同步精度或收敛速度。

基于以太网的时分复用通道仿真技术(TDM over Ethernet)作为一种过渡技术,具有一定的以太网时钟同步概念,可以部分解决现有终端设备用于以太网的无缝连接问题。

IEEE 1588标准则特别适合于以太网,可以在一个地域分散的IP网络中实现微秒级高精度的时钟同步。

本文重点介绍IEEE 1588技术及其测试实现。

2 IEEE 1588PTP介绍IEEE 1588PTP协议借鉴了NTP技术,具有容易配置、快速收敛以及对网络带宽和资源消耗少等特点。

IEEE1588标准的全称是“网络测量和控制系统的精密时钟同步协议标准(IEEE 1588 Precision Clo ck Synchronization Protocol)”,简称PTP(Precision Timing Protocol),它的主要原理是通过一个同步信号周期性的对网络中所有节点的时钟进行校正同步,可以使基于以太网的分布式系统达到精确同步,IEEE 1588PTP时钟同步技术也可以应用于任何组播网络中。

IEEE1588的高精度时间同步算法的分析与实现

IEEE1588的高精度时间同步算法的分析与实现

IEEE1588的高精度时间同步算法的分析与实现IEEE1588,也被称为精确时间协议(PTP),是一种用于网络中实现高精度时间同步的协议。

它在各种工业应用和通信系统中被广泛采用,因为它可以提供微秒级甚至亚微秒级的精度,满足了许多应用的实时性要求。

首先,IEEE 1588协议需要在网络中选择一个主时钟(Master Clock),作为时间同步的源头。

主时钟拥有最高的时间精度,并将其时间信息通过数据包广播给其他时钟节点。

其他节点被称为从时钟(Slave Clock),它们通过接收到的时间数据来调整自身的时钟,并与主时钟保持同步。

在主时钟启动时,它会周期性地发送特殊的数据包,称为同步事件(Sync Event)。

这些数据包包含了主时钟的当前时间戳,从时钟接收到这些数据包后,会记录接收时间戳。

当从时钟收到一定数量的同步事件后,它会计算出与主时钟的相对时间差,并根据这个时间差来调整自身的时钟。

为了确保时间同步的准确性,IEEE 1588采用了两个重要的概念,即时钟同步和时间戳校准。

时钟同步通过周期性的同步事件来实现,从而减小网络延迟带来的时间误差。

而时间戳校准则通过周期性地发送延迟请求(Delay Request)和延迟响应(Delay Response)数据包来估计网络延迟,并相应地调整时间戳。

在实际的实现中,IEEE1588通常使用硬件支持或软件实现的方式。

硬件支持一般通过专用的电路芯片或FPGA来实现,它们能够提供更高的时间精度和更低的延迟。

而软件实现则是在通用的计算机上运行,通过操作系统和网络协议栈来实现时间同步功能。

在软件实现中,IEEE1588通常依赖于操作系统的时钟服务和网络协议栈。

操作系统的时钟服务提供了计算机系统的时间信息,并提供了时间戳的功能。

网络协议栈则负责封装和发送数据包,并处理收到的数据包以提取时间戳信息。

在实现中,需要考虑以下几个关键问题:1.时间同步精度:在实现中,需要根据具体应用的要求选择合适的时钟源和自适应算法,以达到所需的精度。

(完整word)IEEE1588V2时钟同步方案

(完整word)IEEE1588V2时钟同步方案

IEEE1588V2 PTP时钟同步方案介绍一实现原理1。

1 PTP系统概述PTP为Precise Time Protocol的简称,遵循IEEE 1588协议标准,1588协议是解决IP传输的基站之间同步问题的协议。

以前的NODEB基站从GPS获取同步信号1PPS和时间信息TOD,为保证时间同步,每个NODEB 都需要一个GPS。

而1588协议提出通过PTP消息进行时钟信息的传递,NODEB接受到同样的时钟信息作为本NODEB的同步时间信息,从而实现整个系统时钟的同步。

如1。

1,PTP系统的同步时钟系统。

同一个通路上(Path A, Path B , Path C和PathD)获取相同的时钟信息,这样只需要边界时钟(NODEB13和NODEB14;NODEB13和NODEB15;)实现同步即可以实现系统时钟的同步。

图1。

1 PTP同步时钟系统示意图在PTP系统中分为主/从两种时钟提取的方式.当本NODEB为主时钟方式,需要有GPS,通过GPS获取TOD 时间消息和1PPS同步信号。

然后将TOD消息和1PPS封装在UDP数据包中通过以太网连路进行传输。

当本NODEB 为从时钟方式,需要从以太网接受的数据中,解析出该UDP数据包,获取时间信息和同步信息.另外PTP系统之间的时间信息是通过MAC地址进行寻址传输的。

NodeB支持主从两种模式,选用SEMTECH的ACS9510时钟芯片,PTP系统的实现方式如图1.2.图1.2 PTP 系统的实现方式1。

2 PTP 时钟提取模块框图BBU1324A 设备支持IEEE1588 PTP HOST&SLAVE 的功能, BBU1327A 设备支持IEEE1588 PTP SLAVE,都采用SEMTECH 的ACS9510.ACS9510支持IEEE1588 V2.0协议,PTP 时钟提取模块的功能框图如图1。

3.SFPSFP88E1145NP前面板PHYPHYACS9510MPC8280SPIOCXO/TCXO1PPS TODCOPPERRGMIIMII2M SDRAMBBU1324A IEEE1588模块框图UARTRGMIIRGMIISGMIISGMII图1。

IEEE1588高精度同步算法的研究和实现

IEEE1588高精度同步算法的研究和实现

IEEE1588高精度同步算法的研究和实现
IEEE1588高精度同步算法的研究和实现
随着网络技术的发展,分布式控制系统中对时间同步的要求越来越高.为了满足某些领域中微秒级时间同步的要求,本文对IEEE1588高精度时间同步进行了研究,对该算法实现高精度同步的方法进行了阐述,同时对实际系统中存在的问题进行了剖析,根据分析结果,采用系统晶振补偿和OffsetTime滤波的方法对系统进行了完善,并进行了实验.实验结果表明,通过晶振补偿和OffsetTime滤波很大程度上提高了同步精度,达到了高精度同步系统的要求.
作者:桂本烜刘锦华 GUI Ben-xuan LIU Jin-hua 作者单位:桂本烜,GUI Ben-xuan(浙江大学先进控制研究所,杭州,310027) 刘锦华,LIU Jin-hua(中石油辽河油田分公司,辽宁,盘锦,124010) 刊名:电光与控制ISTIC PKU英文刊名:ELECTRONICS OPTICS & CONTROL 年,卷(期):2006 13(5) 分类号:V271.4 TN914 关键词:IEEE1588 时间同步线路延时时间偏差时钟补偿。

IEEE 1588 PTP对时系统原理以应用

IEEE 1588 PTP对时系统原理以应用

IEEE1588 PTP对时系统原理及特点随着网络技术的快速发展,以太网的定时同步精度也在不断入提高,为了适应网络技术的变化,人们开发出了NTP网络时间协议来提高各网络设备的定时同步功能,但在一些对时间精度要求很高的行业中,NTP还是不能满足各设备之间的定时同步精度。

而IEEE 1588 PTP 对时系统,可以解决一些高精度设备所需要的时间信息,并实现时间同步。

IEEE 1588标准被称为“网络测量和控制系统的精密时钟同步协议标准”或简称为“PTP”。

IEEE 1588标准是通过一个同步信号周期性对网络中所有节点的时钟进行校正同步,并使以太网的分布式系统实现精确时间同步,IEEE 1588 PTP对时系统可以应用于任何组播网络中。

IEEE 1588将整个网络内的时钟分为两种,普通时钟和边界时钟,只有一个PTP通信端口的时钟是普通时钟,有一个以上PTP通信端口的时钟是边界时钟,每个PTP端口提供独立的PTP通信。

其中边界时钟通常用在确定性较差的网络设备,如交换机和路由器上。

从通信关系上又把时钟分为主时钟和从时钟,任何时钟都能作为主时钟和从时钟,并且保证从时钟与主时钟时间同步。

IEEE 1588 PTP对时系统可以实现主时钟和从时钟功能,在系统的同步过程中,IEEE 1588 PTP对时系统提供时间同步及时间信息,SYN2403型PTP精密从时钟接收SYN2401型PTP精密主时钟发来的时间戳信息,系统根据此信息计算出主从线路时间延迟及主从时间差,并利用该时间差调整本地时间,从而使设备时间保持与主设备时间一致的频率和相位,实现频率同步和时间同步。

PTP与其他网络同步协议如SNTP和NTP相比,主要区别PTP针对更安全和更稳定的网络环境设计,占用网络和计算机资源更少。

SYN2401型PTP精密主时钟目前的版本是IEEE1588-2008,PTP V2,主要应用于本地化、网络化的系统,内部组件相对稳定。

1588PTP网络时钟服务器(时间同步)技术应用方案

1588PTP网络时钟服务器(时间同步)技术应用方案

1588PTP⽹络时钟服务器(时间同步)技术应⽤⽅案1588PTP⽹络时钟服务器(时间同步)技术应⽤⽅案1588PTP⽹络时钟服务器(时间同步)技术应⽤⽅案京准电⼦科技官微——ahjzsz1. 概述1.1. PTP起源伴随着⽹络技术的不断增加和发展,尤其是以太⽹在测量和控制系统中应⽤越来越⼴泛,计算机和⽹络业界也在致⼒于解决以太⽹的定时同步能⼒不⾜的问题,以减少采⽤其它技术,例如IRIG-B等带来的额外布线开销。

于是开发出⼀种软件⽅式的⽹络时间协议(NTP),来提⾼各⽹络设备之间的定时同步能⼒。

1992年NTP版本的同步准确度可以达到200µs,但是仍然不能满⾜测量仪器和⼯业控制所需的准确度。

为了解决这个问题,同时还要满⾜其它⽅⾯需求。

⽹络精密时钟同步委员会于2001年中获得IEEE仪器和测量委员会美国标准技术研究所(NIST)的⽀持,该委员会起草的规范在2002年底获得IEEE标准委员会通过,作为IEEE1588标准。

该标准定义的就是PTP协议(Precision Time Protocol)。

1.2. PTP应⽤环境PTP适合⽤于⽀持单播,组播消息的分布式⽹络通信系统,例如Ethernet。

同时提供单播消息的⽀持。

协议⽀持多种传输协议,例如UPD/IPv4,UDP/IPv6,Layer-2 Ethernet,DeviceNet。

协议采⽤短帧数据传输以减少对⽹络资源使⽤,算法简单,对⽹络资源使⽤少,对计算性能要求低,适合于在低端设备上应⽤。

1.3. PTP⽬标⽆需时钟专线传输时钟同步信号,利⽤现有的数据⽹络传输时钟同步消息。

降低组建时间同步系统的费⽤。

在提供和GPS相同的精度情况下,不需要为每个设备安装GPS那样昂贵的组件,只需要⼀个⾼精度的本地时钟和提供⾼精度时钟戳的部件,成本相对较低。

采⽤硬件与软件结合设计,并对各种影响同步精度的部分进⾏有效矫正,以提供亚微妙级的同步精度。

独⽴于具体的⽹络技术,可采⽤多种传输协议。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力自 动 化 系 统 通 常 是 以 太 网 交 换 机 组 网! TVVV!(66协议顺应 了 报 文 同 步 的 发 展 趋 势!不 但 借鉴了 WSQ 和 0WSQ 技 术#3$!通 过 迭 代 消 除 了 往 返 的 路 径 延 时!而 且 利 用 以 太 网 媒 体 访 问 控 制 '/&@(层打时间 戳 技 术'见 图 !(!消 除 了 设 备 响 应 时 间 同 步 报 文 的 不 确 定 延 时 !因 此 !很 大 程 度 地 提 高 了时间 同 步 精 度"TVVV!(66 协 议 占 用 很 少 的 资 源!无论是 @Q? 资源 还 是 网 络 资 源 都 非 常 少!非 常 便于各种时钟接收设备的兼容"TVVV!(66 协议 还 是一个自适应的系 统!能 够 自 己 管 理 系 统 内 的 时 钟 节点!很大地减少人工参与 " #!$
关 键 词 TVVV!(66'电 力 系 统 '最 佳 主 时 钟 '本 地 时 钟 同 步 '网 络 延 时 不 确 定
中 图 分 类 号 电力自动化系统中占有 重要地位!某些电力 系 统 业 务 甚 至 要 求 时 间 同 步 误 差 小 于!9'例 如 线 路 行 波 故 障 测 距 )雷 电 定 位 等 (! 因此!精确时间同步 是 电 力 自 动 化 系 统 非 常 关 心 的 研究课题"TVVV0H-!(66S/ *5##5-网络 测 量 和 控 制系 统 的 精 确 时 钟 同 步 协 议.'简 称 TVVV!(66 协 议(已于5##5年发 布#!$"5##' 年!TV@ 也 发 布 了 相 应的TV@,!(66标准"TVVV!(66协议又 称精确 时 间协议'QSQ(!利 用 以 太 网 或 其 他 支 持 多 播 技 术 的 网 络 使 终 端 设 备 同 步 !最 高 精 度 可 以 达 到 亚 微 秒 级 " 同时!TVVV!(66协议对资源要求非常低!易于 高中 低端设备之 间 的 兼 容" 但 是!TVVV!(66 协 议 为 了 保 证 高 精 度 !需 要 硬 件 支 持 !这 对 于 兼 容 性 很 高 的 以 太 网 来 说 !制 约 了TVVV!(66 协 议 的 应 用 与 发 展 "
目前电力系统中的时间同步系统主要采用3种 方式,利用全球定位系统'EQ0(同 步!就是 在时 钟
收 稿 日 期 %5##48#!8!3'修 回 日 期 %5##48#'8#4& 国家电网 公 司 科 技 项 目 !0EfX(5##$)!##3#'江 苏 省 软 件 和 集成电路业专项经费资助项目!X0#,',#'南 京 大 学 计 算 机 软 件新技术国家重点实验室项目*高精度网络时间同步 技 术 及 其 应 用 的 研 究 +!5##6 年 6 月 "5#!# 年 6 月 #&
第 33 卷!第 !3 期 5##4 年 $ 月 !# 日
+;I"33!W;"!3 XBIP!#!5##4
GMMM=7FF精确时间同步协议的应用方案
于 鹏 飞!喻 ! 强!邓 ! 辉!鲍 兴 川!马 媛 媛!郭 经 红!5
'!"国网电力科学研究院&南京南瑞集团公司!江苏省南京市 5!###3+ 5"南京大学计算机软件新技术国家重点实验室!江苏省南京市 5!###3(
* 44 *
5##4!33'!3(
!
图=!N:C 层打时间戳示意图 "#$%=!O);(30*#).2*#3(@*03<#, N:C/0L('
!GMMM=7FF 协 议 的 核 心 算 法
TVVV!(66协 议 的 核 心 算 法 包 括 最 佳 主 时 钟 'e/@(算法和本地时钟同步'\@0(算法 " #!$

;:@5
<:/!
=:/' 5
<:@'
'5(
将延时 代入式'!(可以得出:;MM9GH!进而 可 以 对 从 时
钟进行调节"
可以看出!\@0算法 的 假 设 前 提 是 报 文 往 返 的 路径延时相等!或者 说 网 络 的 往 返 传 输 延 时 是 对 称
的 !但 在 实 际 的 以 太 网 中 这 是 不 可 能 绝 对 满 足 的 "
:;MM9GH ;:@5 <:/! <
'!(
式 中 , 为 线 路 延 时 "
3(从时钟在:@'时刻向 主 时 钟 发 送 NGICP.GU报
文"
'(在:@(时刻!从时钟收到 主 时 钟 发 送 的 与 同 一 回合的 NGICP.GU报 文 相 对 应 的 NGICP.GU报 文!其 包含了 主 时 钟 收 到 NGICP.GU 的 时 刻:/'!其 延 时 为,
同步 接 收 设 备 加 载 EQ0 模 块+ 编 码 同 步!例 如 T.TE8e 格式时间码等!就是将时钟 源的 时间 信息 经 过编码!利用专用的 传 输 媒 体 将 其 传 送 至 各 个 时 钟 信息 的 接 收 端#5$+ 报 文 同 步!例 如 网 络 时 间 协 议 'WSQ()简单网络时间协 议'0WSQ(!就 是 将 时 钟 源 的时间信息以以太网包的形式传送至各个时钟信息 的接收端"
工 程 应 用 于 鹏 飞 等 !.../011 精 确 时 间 同 步 协 议 的 应 用 方 案
的!" 核但 只 能 用 于 #$%&'( 公 司 提 供 的 现 场 可 编 程门阵列)"*#中这些 芯 片 的 出 现 只 能 解 决 设 备 端 的 硬 件 支 持 问 题 但 可 能 使 成 本 大 增 而 且 解 决 不了交换机等以太网连接设备的硬件支持问题直 到 +,,- 年 初 美 国 国 家 半 导 体 公 司 推 出 了 市 场 上 首 款具备!.../011 协 议 需 要 的 硬 件 支 持 功 能 的 以 太网收发器 2"1345,0交 换 机 等 以 太 网 连 接 设 备 的硬件支持问题才有可能得到解决
图5中, !(从时钟在:@5时刻收到主 时 钟 发 送 的 0P<1广 播报文" 5(在:@3时刻!从时钟收到 主 时 钟 发 送 的 携 带 同 * !## *
一回合 0P<1报 文 发 送 时 间:/! 的 >;II;R?L 报 文!
从 时 钟 与 主 时 钟 的 时 间 偏 移:;MM9GH为 ,
本文 首 先 针 对 TVVV!(66 协 议 的 以 太 网 应 用 对协议进行了分析!介绍了TVVV!(66 协议 的 优 点 和核心 算法!然 后针对TVVV!(66 协议的 不足 提 出 了相应的解决方案!并 且 搭 建 测 试 平 台 在 实 验 室 局 域网中进行了测试"
!GMMM=7FF 协 议 的 革 新
5(厂站 中 应 用 TVVV!(66 协 议 的 设 备 必 须 有 以太 网 /&@ 层 打 时 间 戳 的 硬 件 支 持!然 而 这 种 硬 件 支 持 的 实 现 是 比 较 复 杂 的!这 也 制 约 了 TVVV !(66 协 议 的 应 用 与 发 展"TVVV!(66 协 议 发 布 之 初 !协 议 的 应 用 主 要 在 专 用 的 测 控 网 络 !例 如 控 制 器 局域网'@&W(!因 为 类 似 于 @&W 的 串 行 专 用 网 络 提供 TVVV!(66 协 议 需 要 的 硬 件 支 持 较 为 容 易" 而在以太网中提供 这 种 硬 件 支 持 则 较 为 复 杂!直 到 5##'年国际局 域 网 '\&W(扩 展 仪 器 '\]T(联 盟 推 出的 新 一 代 能 够 支 持TVVV!(66 协 议 的 \]T总 线 技术标准#'$!而这 时 的TVVV!(66 协 议 应 用 仍 局 限 于专用网"随后市场上出现了具有以太网 /&@ 层 打 时 间 戳 功 能 的 芯 片!例 如,飞 思 卡 尔 的 以 /Q@63,#为代表的 系 列 芯 片 和T<HGI的 以T]Q'(] 为代表的系列芯片 等!它 们 都 与 @Q? 集 成 在 一 起+ &IHGJC公司提供具有以太网 /&@ 层打 时 间 戳 功 能
以上几种方式都存在缺陷"第!种方式虽然标 称 精 度 可 以 达 到!9!但 受 环 境 天 气 的 影 响 较 大 !很 难时刻保持很高的精度"第5种方式要占用专门的 传输通道!传 输 距 离 有 限!传 输 距 离 越 长 则 精 度 越 差"第3种报文同步方式是目前时间同步系统的发 展 趋 势 !不 存 在 前 5 种 方 式 的 局 限 !但 是 由 于 以 太 网 传输过程中存在延 时 的 不 确 定 性 '例 如 交 换 机 交 换 延时)设备响应时间 同 步 报 文 延 时 等(!精 度 不 能 满 足电力系统所 有 的 业 务 需 求!据 调 研!目 前 的 WSQ 和 0WSQ 在 局 域 网 中 可 以 达 到 ! 29的 精 度!在 广 域网中只能达到几十毫秒的精度"
摘要阐述了TVVV!(66协议比以往时 间 同 步 方 式 如 网 络 时 间 协 议 !WSQ#的 优 点$分 析 了TVVV !(66协议的5个核心算法"""最 佳 主 时 钟 !e/@#算 法 和 本 地 时 钟 同 步 !\@0#算 法$提 出 了 解 决 TVVV!(66 协 议 在 实 际 应 用 中 不 能 满 足 其 假 设 前 提 的 解 决 方 法$在 实 验 室 环 境 中 利 用 &./45## 平台实现了TVVV!(66 协 议 并 进 行 了 测 试$结 果 表 明 其 明 显 优 于 WSQ& 该 研 究 工 作 对 于 TVVV !(66 协 议 在 电 力 系 统 中 的 实 际 应 用 具 有 重 要 意 义 &
相关文档
最新文档