模拟退火算法的教程
模拟退火算法介绍

解析模拟退火算法一.爬山算法(Hill Climbing)介绍模拟退火前,先介绍爬山算法。
爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解。
爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜索到全局最优解。
如图1所示:假设C点为当前解,爬山算法搜索到A点这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不能得到更优的解。
二.模拟退火(SA,Simulated Annealing)思想爬山法是完完全全的贪心法,每次都鼠目寸光的选择一个当前最优解,因此只能搜索到局部的最优值。
模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。
模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。
以图1为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。
也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。
模拟退火算法描述:若J(Y(i+1))>=J(Y(i))(即移动后得到更优解),则总是接受该移动若J(Y(i+1))<J(Y(i))(即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。
根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:P(dE)=exp(dE/(kT))其中k是一个常数,exp表示自然指数,且dE<0。
这条公式说白了就是:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。
又由于dE总是小于0(否则就不叫退火了),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。
随着温度T的降低,P(dE)会逐渐降低。
模拟退火算法及应用

一、概论1.1 问题概述在自然科学以及大多数科学当中和社会生活里经常出现最大或最小的问题,我们从小学开始学习大小比较,一直到高中大学时的最优解问题,都是一种名为最优化问题.最优化问题在大多是领域中都有重要的地位,例如管理科学、计算机科学、图像处理等等需要大量数据的学科中都存在着需要解决的组合优化问题。
用我们比较容易理解的说法就是已知一组固定的函数,令这组函数所对应的函数到达最大或最小值.而我们所想到的最简单的方法便是穷举法,然而这种方式存在这大量的数据计算穷举的缺点。
优化组合问题中的NP问题是一个很麻烦的问题,它解得规模会随着问题的规模增大而增大,求解所需的时间也会随问题的规模增大而成指数级增长,而当规模过大时就会因为时间的限制而失去了可行性。
旅行商问题(TSP)是优化组合问题中最为著名的一个问题,它的特点是容易描述却难于求解.这是一个经典的图论问题,假设有n个城市,用表示.城市之间距离为,i,j=1,2,3,···,n,假设所有城市之间两两连通,要求从一个城市出发,把所有城市都走一遍,而TSP问题就是恰好所有城市都走一遍,而所走路径形成回路且路径最短.将这个问题对应在一个n个顶点的完全图上,假设图为对称图,则要从个可能的解当中找到最小的解,需要的对比则要进行次,当的数值增大时,那么需要的次数也会随之以几何数倍增长,例如每秒运算一亿次的计算机,当需要的时间也只是0.0018秒,当需要的时间却是17年,可当时所需的时间却猛增到年,这个结果是我们所不想看到的。
优化组合问题的目标函数是从组合优化问题的可行解集当中求出最优解。
组合优化问题有三个基本要素:变量,约束和目标函数,在求解过程中选定的基本参数成为标量,对于变量的取值的所有限制称之为约束,表示可行的方案的标准的函数称之为目标函数。
随着问题种类的不同以及问题规模的扩大,要找到一种能够已有限代价来求解最优化问题的通用方法一直都是一个难题,建立用最大的可能性求解全局解一直是一个重要问题。
matlab带约束模拟退火算法

【文章】matlab带约束模拟退火算法深入探讨和分析matlab带约束模拟退火算法在现代科学和工程领域,优化问题是十分常见的。
而其中,约束优化问题更是一种常见的形式。
为了解决这类问题,人们经过长时间的探索,提出了许多方法,其中模拟退火算法便是一种被广泛应用的优化算法之一。
而在matlab中,带约束的模拟退火算法更是得到了丰富的实现和应用。
本文将从简单到复杂,由浅入深地介绍matlab带约束模拟退火算法,以帮助读者更好地理解和掌握这一优化方法。
1. 什么是模拟退火算法?模拟退火算法是一种基于模拟退火过程的全局优化算法。
它模拟了金属在高温下退火时的物理过程,通过不断降低系统的温度来寻找全局最优解。
在matlab中,模拟退火算法通常通过设置初始温度、终止温度、温度下降率等参数来实现。
2. 为什么需要约束?在实际问题中,许多优化问题都存在着一定的约束条件。
比如工程设计中的材料强度、生产计划中的资源限制等。
如何在求解优化问题时满足这些约束条件便成为了一个重要的问题。
3. matlab带约束模拟退火算法是如何工作的?在matlab中,带约束的模拟退火算法通过引入罚函数、拉格朗日乘子等方法来处理约束条件。
它不仅要寻找全局最优解,还要确保解满足一定的约束条件。
这就需要在温度下降的过程中,不断调整解的位置,以在搜索最优解的同时满足约束条件。
4. 代码实现及应用在matlab中,带约束的模拟退火算法通常通过调用现成的优化工具箱来实现。
我们可以通过设置目标函数、约束条件等参数,来对不同的优化问题进行求解。
可以用该算法来求解工程设计中的优化问题、生产计划中的调度优化问题等。
总结回顾通过本文的介绍,我们对matlab带约束模拟退火算法有了一个较为全面的了解。
我们知道了模拟退火算法是如何工作的,以及在matlab中如何处理带约束的优化问题。
在实际应用中,我们可以根据具体的问题,合理地设置参数和约束条件,来求解复杂的优化问题。
模拟退火算法详解讲解共54页文档

谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟4、 唯 书 籍 不 朽。——乔 特
模拟退火算法详解讲解
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴
模拟退火算法

Keynote:尤志强
背景
模拟退火算法是Kirkpatrick提出,应组合优化问题而产生的,主要解决的是NP-hard问题。 优化问题可以分为:函数优化问题和组合优化问题两大类
1、函数优化问题: 可以描述为:令S为上的有界子集(即变量的定义域),f:S—>R为n维实值函数,所谓函数f在S域上全局最 小化就是寻求点XminS使得f(Xmin)在S域上全局最小,即X S:f(Xmin)<=f(X)
pr exp[(E j Ei ) / kt]
大于[0,1)区间内的随机数则仍旧接受新状态j为当前状态,若不成立则保留i为当前状态,其中k为 Boltzmann常数。 这种重要性采样过程在高温下可接受与当前状态能量差较大的新状态,而在低温下基本只接受与当 前能量差较小的新状态,而且当温度趋于零时,就不能接受比当前状态能量高的新状态。
背景
计算复杂度
由于某些优化算法所需的计算时间和存储空间难以承受,因此算法可解的问题在实践中不 一定可解。如TSP问题,可能的路径有n!,暴力求解显然是不行的。所以只有了解了研究 问题的复杂性,才能有针对性地设计算法,进而提高优化效率。
算法的时间和空间复杂性对计算机求解非常重要。问题的时间复杂性是指求解该问题的所 有算法中时间复杂性最小的算法的时间复杂性,同理,空间复杂性也有类似定义。这样, 按照计算复杂性理论研究问题求解的难易程度,可把问题分为P类、NP类和NP完全类。
背景
4、基于系统动态演化算法
将优化过程转化为系统动态的演化过程,基于系统动态的演化来实现优化,如神经网络和混沌 搜索等。
5、混合型算法 上述算法从结果或者操作上相混合而产生的各类算法
matlab模拟退火法

模拟退火算法是一种基于物理中退火过程的优化算法,适用于解决全局优化问题。
以下是一个基本的MATLAB模拟退火算法实现示例:
matlab
function SA()
% 参数设置
T = 1000; % 初始温度
alpha = 0.95; % 降温系数
x = rand(1,10); % 初始解
f = @(x) sum(x.^2 - 10*cos(2*pi*x) + 10); % 目标函数
while T > 1e-5
% 随机生成新解
x_new = x + randn(1,10);
% 计算新解的函数值
f_new = f(x_new);
% 计算接受概率
p = exp(-(f_new - f(x))/T);
% 以概率p接受新解,否则拒绝
if rand() < p
x = x_new;
f = f_new;
end
% 降温
T = T*alpha;
end
% 输出最优解和最优值
fprintf('最优解:%f\n', x);
fprintf('最优值:%f\n', f);
end
这个示例中,我们定义了一个目标函数f,它是一个简单的多峰函数。
我们使用一个随机生成的初始解作为初始解x,然后在一个循环中不断生成新的解,并计算其函数值。
我们根据接受概率决定是否接受新解,如果新解更好,则接受;否则,我们以一定的概率接受新解。
在每次迭代中,我们都会降低温度T,直到达到预设的终止条件。
最后,我们输出最优解和最优值。
模拟退火算法流程图的总结

模拟退火算法流程图的总结下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!1. 初始化:设定初始温度 $T$。
随机生成初始解 $x_0$。
模拟退火算法

模拟退火算法模拟退火是一种通用概率算法,目的是在固定时间内在一个大的搜寻空间内寻求给定函数的全局最优解。
它通常被用于离散的搜索空间中,例如,旅行商问题。
特别地,对于确定的问题,模拟退火算法一般是优于穷举法。
这是由于我们一般只需得到一个可接受的最优解,而不是精确的最优解。
退火一词来源于冶金学。
退火(见图1)是将材料加热后再经特定速率冷却,目的是增大晶粒的体积,并且减少晶格中的缺陷。
材料中的原子原来会停留在使内能有局部最小值的位置,加热使能量变大,原子会离开原来位置,而随机在其他位置中移动。
退火冷却时速度较慢,使得原子有较多可能可以找到内能比原先更低的位置。
因此,我们将热力学的理论应用到统计学上,将搜寻空间内每一点想象成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。
而模拟退火算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。
模拟退火原理最早是 S. Kirkpatrick, C. D. Gelatt 和 M. P. Vecchi 在1983年所创造的。
而 V . Černý 在1985年也独立发明了此算法。
1. 问题描述数学上的最优化问题一般描述为如下形式:()()minimize()g 0,1,2,,subject to 0,1,2,,i i f x x i m h x i p≤=⎧⎪⎨==⎪⎩ 其中,():R n f x R →称作问题的目标函数,()g 0i x ≤称作问题的不等式约束条件,()0i h x =称作问题的等式约束条件。
寻求上述问题的最优解的过程就类似于从热动力系统的任意一个初始状态向内能最小的状态转移的过程,即退火过程。
2. 模拟退火算法基本思想模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有图1 物理退火原理图序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
exp(-(E(rt)-E(r))/t)>random(0,1), 则令r=rt.
Step2.2 不满足内循环停止条件时1,. 达重到复终S止t温ep度2.1
Step3 外循环
2. 达到迭代次数 3. 最优值连续若干步
Step3.1 降温t = decrease(t)
保持不变
Step3.2 如不满足外循环停止条件,则转Step2;否则算 法结束
6 模拟退火算法关键参数和操作的设计
状态产生函数
❖ 原则 产生的候选解应遍布全部解空间
❖ 方法 在当前状态的邻域结构内以一定概率方式(均匀分 布、正态分布、指数分布等)产生
❖ 6 模拟退火算法关键参数和操作的设计
状态接受函数 ❖ 原则
(1)在固定温度下,接受使目标函数下降的候选解的 概率要大于使目标函数上升的候选解概率; (2)随温度的下降,接受使目标函数上升的解的概率 要逐渐减小; (3)当温度趋于零时,只能接受目标函数下降的解。 ❖ 方法 具体形式对算法影响不大 一般采用min[1,exp(-∆C/t)]
3模拟退火算法的原理
❖ 根据Metropolis准则,粒子在温度T时趋于平衡的概率为 exp(-ΔE/(kT)),其中E为温度T时的内能,ΔE为其改变量,k 为Boltzmann常数。用固体退火模拟组合优化问题,将内能 E模拟为目标函数值f,温度T演化成控制参数t,即得到解组 合优化问题的模拟退火算法:由初始解i和控制参数初值t开 始,对当前解重复“产生新解→计算目标函数差→接受或舍 弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得 近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随 机搜索过程。
可知: >0
<1
(1)在同一个温度,分子停留在能量小状态的概率
大于停留在能量大状态的概率
(2)温度越高,不同能量状态对应的概率相差越小;
温度足够高时,各状态对应概率基本相同。
(3)随着温度的下降,能量最低状态对应概率越来
越大;温度趋于0时,其状态趋于1
模拟退火算法基本思想:在一定温度下,搜索从一个状态
Repeat 产生新状态sj=Genete(s); if min{1,exp[-(C(sj)-C(s))/tk]}>=randrom[0,1] s=sj;
Until 抽样稳定准则满足; 退温tk+1=update(tk)并令k=k+1; Until 算法终止准则满足; 输出算法搜索结果。
5 模拟退火算法的具体步骤
三函数两准则 初始温度
5 模拟退火算法的具体步骤
❖ 模拟退火算法的步骤
Step1 设定初始温度t = tmax, 任选初始解r = r0
Step2 内循环
1. 目标函数均值稳定 2. 连续若干步的目标
Step2.1 从r的邻域中随机选一值个变解化r较t,小计算r和rt对应目标
函 数值, 如rt对应目标函数值3较. 固小定,的抽则样令步r数= rt; 否则若
❖ 模拟退火算法的优点 质量高; 初值鲁棒性强; 简单、通用、易实现。
❖ 模拟退火算法的缺点 由于要求较高的初始温度、较慢的降温速率、较低 的终止温度,以及各温度下足够多次的抽样,因此 优化过程较长。
7 模拟退火算法的改进
改进内容
❖ 改进的可行方案 (1)设计合适的状态产生函数; (2)设计高效的退火历程; (3)避免状态的迂回搜索; (4)采用并行搜索结构; (5)避免陷入局部极小,改进对温度的控制方式; (6)选择合适的初始状态; (7)设计合适的算法终止准则。
模拟退火算法与初始值无关,算法求得的解与初始解状态S(是 算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理 论上被证明是一种以概率l 收敛于全局最优解的全局优化算法; 模拟退火算法具有并行性。
5 模拟退火算法的具体步骤
❖ 基本步骤
给定初温t=t0,随机产生初始状态s=s0,令k=0; Repeat
随机地变化到另一个状态;随着温度的不断下降直到最低温度, 搜索过程以概率1停留在最优解
2物理退火过程的数学表示
能量最低状态
非能量最低状态
若|D|为状态空间D中状态的个数,D0是具有最低能
量的状态集合:
当温度很高时,每个状态概率基本相同,接近平均
值1/|D|;
状态空间存在超过两个不同能量时,具有最低能量
kB 0为Boltzman常 n 数。Z(T)为概率分布的标准子 kBT
2物理退火过程的数学表示 在同一个温度T,选定两个能量E1<E2,有
P { E E 1 } P { E E 2 } Z ( 1 T )e x k E B p T 1 1 e x E 2 k p B T E 1
全局最优解,即在局部最优解能概率性地跳出并最终趋于全 局最优。 ❖模拟退火算法是通过赋予搜索过程一种时变且最 终趋于零的概率突跳性,从而可有效避免陷入局部 极小并最终趋于全局最优的串行结构的优化算法。
❖模拟退火算法是一种通用的优化算法,理论上算 法具有概率的全局优化性能,目前已在工程中得到了 广泛应用。
❖ 6 模拟退火算法关键参数和操作的设计
初温
❖ 收敛性分析 通过理论分析可以得到初温的解析式,但解决实际 问题时难以得到精确的参数; 初温应充分大;
❖ 实验表明 初温越大,获得高质量解的机率越大,但花费较多 的计算时间;
❖ 6 模拟退火算法关键参数和操作的设计
初温
❖ 方法 (1)均匀抽样一组状态,以各状态目标值得方差 为初温; (2)随机产生一组状态,确定两两状态间的最大 目标值差,根据差值,利用一定的函数确定初温; (3)利用经验公式。
❖ 退火过程由冷却进度表(Cooling Schedule)控制,包括控制 参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止 条件S。
2物理退火过程的数学表示
在温度T,分子停留在状态r满足Boltzmann概率分布
P{E
E(r)}
1 Z(T)
exp
E(r) kBT
E表示分子能量的一机 个变 随量, E(r)表示状态 r的能量,
❖ 退火过程由冷却进度表(Cooling Schedule)控制,包括控制 参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止 条件S。
4模拟退火算法的模型与特点
❖ 1模拟退火算法可以分解为解空间、目标函数和初始解三部 分。
❖ 2模拟退火的基本步骤: ❖ (1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代
模拟退火算法
Simulated Annealing Algorithm
信息与计算科学
卿铭
1 模拟退火算法的思想
模拟退火算法来源于固体退火原理,将固体加温至 充分高,再让其徐徐冷却;加温时,固体内部粒子 随温升变为无序状,内能增大,而徐徐冷却时粒子 渐趋有序,在每个温度都达到平衡态,最后在常温 时达到某种稳定状态,基态,内能减为最小。
每个温度下只产生一个或少量候选解 ❖ 时齐算法——常用的Metropolis抽样稳定准则
(1)检验目标函数的均值是否稳定;
(2)连续若干步的目标值变化较小;
(3)按一定的步数抽样。
模拟退火算法对应了一个马尔可夫链,新状态接受概率仅依赖于新状态和当 前状态,并由温度加以控制。
若固定每一温度,算法均计算马氏链的变化直至平稳分布,然后下降温度, 则称为时齐算法;
状态的概率超出平均值1/|D| ;
当温度趋于0时,分子停留在最低能量状态的概率 趋于1。
2物理退火过程的数学表示 ❖ Metropolis准则(1953)——以概率接受新状态
固体在恒定温度下达到热平衡的过程可以用Monte Carlo 方法(计算机随机模拟方法)加以模拟,虽然该方法简单, 但必须大量采样才能得到比较精确的结果,计算量很大。 ❖ Metropolis准则(1953)——以概率接受新状态
的起点),每个T值的迭代次数L。 ❖ (2) 对k=1,……,L做第(3)至第6步: ❖ (3) 产生新解S′ ❖ (4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数 ❖ (5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-
Δt′/kT)接受S′作为新的当前解. ❖ (6) 如果满足终止条件则输出当前解作为最优解,结束程序。 ❖ 终止条件通常取为连续若干个新解都没有被接受时终止算法。 ❖ (7) T逐渐减少,且T->0,然后转第2步。
若无需各温度下算法均达到平稳分布,但温度需按一定速率下降,则称为非 时齐算法。
❖ 6 模拟退火算法关键参数和操作的设计
外循环终止准则
❖ 常用方法 (1)设置终止温度的阈值; (2)设置外循环迭代次数; (3)算法搜索到的最优值连续若干步保持不变; (4)概率分析方法。
7 模拟退火算法的改进
模拟退火算法的优缺点
若在温度T,当前状态i → 新状态j 若Ej<Ei,则接受 j 为当前状态; 否则,若概率 p=exp[-(Ej-Ei)/kBT] 大于[0,1)区间的随机数, 则仍接受状态 j 为当前状态;若不成立则保留状态 i 为当前
状态。
1
p
2物理退火过程的数学表示
❖ Metropolis准则(1953)——以概率接受新状态 p=exp[-(Ej-Ei)/kBT] 在高温下,可接受与当前状态能量差较大的新状态; 在低温下,只接受与当前状态能量差较小的新状态。
1 模拟退火算法的思想
❖ 物理退火过程
加温过程——增强粒子的热运动,消除系统原先可能存在 的非均匀态; 等温过程——对于与环境换热而温度不变的封闭系统,系 统状态的自发变化总是朝自由能减少的方向进行,当自由 能达到最小时,系统达到平衡态; 冷却过程——使粒子热运动减弱并渐趋有序,系统能量逐 渐下降,从而得到低能的晶体结构。
❖ 影响优化结果的主要因素