模拟退火算法

合集下载

模拟退火算法

模拟退火算法
模拟退火算法 (Simulated Annealing)
Keynote:尤志强
背景
模拟退火算法是Kirkpatrick提出,应组合优化问题而产生的,主要解决的是NP-hard问题。 优化问题可以分为:函数优化问题和组合优化问题两大类
1、函数优化问题: 可以描述为:令S为上的有界子集(即变量的定义域),f:S—>R为n维实值函数,所谓函数f在S域上全局最 小化就是寻求点XminS使得f(Xmin)在S域上全局最小,即X S:f(Xmin)<=f(X)
pr exp[(E j Ei ) / kt]
大于[0,1)区间内的随机数则仍旧接受新状态j为当前状态,若不成立则保留i为当前状态,其中k为 Boltzmann常数。 这种重要性采样过程在高温下可接受与当前状态能量差较大的新状态,而在低温下基本只接受与当 前能量差较小的新状态,而且当温度趋于零时,就不能接受比当前状态能量高的新状态。
背景
计算复杂度
由于某些优化算法所需的计算时间和存储空间难以承受,因此算法可解的问题在实践中不 一定可解。如TSP问题,可能的路径有n!,暴力求解显然是不行的。所以只有了解了研究 问题的复杂性,才能有针对性地设计算法,进而提高优化效率。
算法的时间和空间复杂性对计算机求解非常重要。问题的时间复杂性是指求解该问题的所 有算法中时间复杂性最小的算法的时间复杂性,同理,空间复杂性也有类似定义。这样, 按照计算复杂性理论研究问题求解的难易程度,可把问题分为P类、NP类和NP完全类。
背景
4、基于系统动态演化算法
将优化过程转化为系统动态的演化过程,基于系统动态的演化来实现优化,如神经网络和混沌 搜索等。
5、混合型算法 上述算法从结果或者操作上相混合而产生的各类算法

模拟退火算法

模拟退火算法

模拟退⽕算法模拟退⽕(SA)物理过程由以下三个部分组成1.加温过程问题的初始解2.等温过程对应算法的Metropolis抽样的过程3.冷却过程控制参数的下降默认的模拟退⽕是⼀个求最⼩值的过程,其中Metropolis准则是SA算法收敛于全局最优解的关键所在,Metropolis准则以⼀定的概率接受恶化解,这样就使算法跳离局部最优的陷进1.模拟退⽕算法求解⼀元函数最值问题使⽤simulannealbnd - Simulated annealing algorithm⼯具箱求y=sin(10*pi*x)./x;在[1,2]的最值下图是⽤画图法求出最值的x=1:0.01:2;y=sin(10*pi*x)./x;figurehold onplot(x,y,'linewidth',1.5);ylim([-1.5,1.5]);xlabel('x');ylabel('y');title('y=sin(10*\pi*x)/x');[maxVal,maxIndex]=max(y);plot(x(maxIndex),maxVal,'r*');text(x(maxIndex),maxVal,{['x:' num2str(x(maxIndex))],['y:' num2str(maxVal)]});[minVal,minIndex]=min(y);plot(x(minIndex),minVal,'ro');text(x(minIndex),minVal,{['x:' num2str(x(minIndex))],['y:' num2str(minVal)]});hold off;⽤模拟退⽕⼯具箱来找最值求最⼩值function fitness=fitnessfun(x)fitness=sin(10*pi*x)./x;end求最⼤值function fitness=fitnessfun(x)fitness=-sin(10*pi*x)./x;endOptimization running.Objective function value: -0.9527670052175917Maximum number of iterations exceeded: increase options.MaxIterations.⽤⼯具箱求得的最⼤值为0.95276700521759172.⼆元函数优化[x,y]=meshgrid(-5:0.1:5,-5:0.1:5);z=x.^2+y.^2-10*cos(2*pi*x)-10*cos(2*pi*y)+20;figuremesh(x,y,z);hold onxlabel('x');ylabel('y');zlabel('z');title('z=x^2+y^2-10*cos(2*\pi*x)-10*cos(2*\pi*y)+20');maxVal=max(z(:));[maxIndexX,maxIndexY]=find(z==maxVal);%返回z==maxVal时,x和y的索引for i=1:length(maxIndexX)plot3(x(maxIndexX(i),maxIndexY(i)),y(maxIndexX(i),maxIndexY(i)),maxVal,'r*');text(x(maxIndexX(i),maxIndexY(i)),y(maxIndexX(i),maxIndexY(i)),maxVal,{['x:' num2str(x(maxIndexX(i)))] ['y:' num2str(y(maxIndexY(i)))] ['z:' num2str(maxVal)] }); endhold off;function fitness=fitnessfun(x)fitness=-(x(1).^2+x(2).^2-10*cos(2*pi*x(1))-10*cos(2*pi*x(2))+20);endOptimization running.Objective function value: -80.50038894455415Maximum number of iterations exceeded: increase options.MaxIterations.找到的最⼤值:80.500388944554153.解TSP问题(⽤的数据和前⼏天⽤遗传算法写TSP问题的数据⼀致,但是结果⽐遗传算法算出来效果差很多,不知道是不是我写错了,怀疑⼈⽣_(:з」∠)_中。

五大常用算法 模拟退火算法

五大常用算法 模拟退火算法

五大常用算法模拟退火算法
模拟退火算法是一种常用的求解优化问题的算法,它可以用于解决各种实际问题。

本文将介绍模拟退火算法及其应用,同时还会介绍其他四种常用的算法。

一、模拟退火算法
模拟退火算法是一种启发式算法,适用于求解复杂的优化问题。

它源于固体物理学中的退火过程,通过模拟退火过程来寻求最优解。

模拟退火算法通过随机跳出局部最优解的过程,寻找全局最优解。

二、其他四种常用算法
1.遗传算法
遗传算法是一种模拟自然进化过程的优化方法。

它通过对可行解进行适应度评价、选择、交叉和变异等操作,将优秀的个体遗传给下一代,从而不断优化解的质量。

2.蚁群算法
蚁群算法是一种模拟蚂蚁寻找食物的行为而发展出来的算法。

它通过模拟蚂蚁在搜索过程中的信息素沉积和信息素挥发,不断优化搜索路径,从而找到最优解。

3.粒子群算法
粒子群算法是一种模拟粒子在空间中移动的算法。

它通过模拟粒子在搜索空间中的移动和互相协作,不断优化搜索路径,从而找到最优解。

4.人工神经网络
人工神经网络是一种模拟人脑神经元工作原理的算法。

它通过构建神经元之间的连接和权重来实现对输入信息的处理和输出结果的预测,可以用于分类、回归等问题的求解。

三、总结
以上介绍了五种常用的算法,它们都可以用于解决不同类型的优化问题。

在实际应用中,需要根据具体问题的特点选择合适的算法。

模拟退火算法是其中一种常用算法,具有较为广泛的应用。

模拟退火算法

模拟退火算法

模拟退火算法模拟退火是一种通用概率算法,目的是在固定时间内在一个大的搜寻空间内寻求给定函数的全局最优解。

它通常被用于离散的搜索空间中,例如,旅行商问题。

特别地,对于确定的问题,模拟退火算法一般是优于穷举法。

这是由于我们一般只需得到一个可接受的最优解,而不是精确的最优解。

退火一词来源于冶金学。

退火(见图1)是将材料加热后再经特定速率冷却,目的是增大晶粒的体积,并且减少晶格中的缺陷。

材料中的原子原来会停留在使内能有局部最小值的位置,加热使能量变大,原子会离开原来位置,而随机在其他位置中移动。

退火冷却时速度较慢,使得原子有较多可能可以找到内能比原先更低的位置。

因此,我们将热力学的理论应用到统计学上,将搜寻空间内每一点想象成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。

而模拟退火算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。

模拟退火原理最早是 S. Kirkpatrick, C. D. Gelatt 和 M. P. Vecchi 在1983年所创造的。

而 V . Černý 在1985年也独立发明了此算法。

1. 问题描述数学上的最优化问题一般描述为如下形式:()()minimize()g 0,1,2,,subject to 0,1,2,,i i f x x i m h x i p≤=⎧⎪⎨==⎪⎩ 其中,():R n f x R →称作问题的目标函数,()g 0i x ≤称作问题的不等式约束条件,()0i h x =称作问题的等式约束条件。

寻求上述问题的最优解的过程就类似于从热动力系统的任意一个初始状态向内能最小的状态转移的过程,即退火过程。

2. 模拟退火算法基本思想模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有图1 物理退火原理图序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。

模拟退火算法及其改进算法

模拟退火算法及其改进算法

模拟退火算法及其改进算法模拟退火算法(Simulated Annealing Algorithm)是一种基于概率的全局优化算法,它模拟了金属冶炼过程中的“退火”过程。

退火过程是指将高温物质逐渐降温,使之逐渐固化形成晶态结构。

同样地,模拟退火算法通过随机和接受不太好的解决方案的策略,以找到全局最优解。

算法的基本思路是在一个空间中随机生成一个起始解,然后通过一系列的变换和评估过程逐步更新当前解,直到找到满足优化目标的解决方案。

在每次迭代中,算法会通过采样邻域解决方案来将当前解转移到新的状态,并计算相应的目标函数值。

如果新的状态比当前解更优,则接受新的解作为当前解,并在下一次迭代中继续。

如果新的状态不是更优的解,则以一定的概率接受新的解,概率的大小与两个解之间的差距以及当前温度有关。

温度逐渐降低,使得算法在开始时可以接受较差的解决方案,但随着迭代次数的增加逐渐降低接受较差解决方案的概率,最终使算法收敛到一个较好的解。

尽管模拟退火算法在全局优化问题中表现优秀,但仍存在一些问题,例如收敛速度慢、易陷入局部最优解等。

因此,研究者提出了一些改进算法来提高模拟退火算法的性能。

一种改进算法是自适应模拟退火算法(Adaptive Simulated Annealing, ASA),它利用负自适应参数来调整算法自身的控制参数,从而提高收敛速度。

通过对负自适应参数进行精确建模和合适的调整,能够使算法自动地根据当前状态的差距和目标函数值的变化来调整的速度和方向。

另一种改进算法是量子模拟退火算法(Quantum Simulated Annealing, QSA),它引入了量子位操作和量子态演化来提高效率。

QSA利用一种特殊的迭代方式来更新解决方案,将随机排列算法与量子信息处理技术相结合,通过量子态的演化来寻找最优解,并避免陷入局部最优解。

此外,还有一些其他的改进算法,如多重爬山算法(Multi-startHill Climbing)、禁忌算法(Tabu Search)等,它们在模拟退火算法的基础上增加了一些启发式方法和约束条件,从而进一步提高性能。

模拟退火算法详解

模拟退火算法详解

车间调度问题求解
总结词
模拟退火算法在车间调度问题求解中具有较好的应用 效果,能够提高生产效率。
详细描述
车间调度问题是一个复杂的优化问题,旨在合理安排生 产任务和资源分配,以提高生产效率。模拟退火算法通 过随机搜索和接受不良解的概率,能够找到较为满意的 调度方案。在车间调度问题中,模拟退火算法可以与其 他启发式方法结合使用,以获得更好的性能。此外,模 拟退火算法还可以应用于其他生产调度问题,如作业车 间调度、装配线平衡等。
旅行商问题求解
总结词
模拟退火算法在旅行商问题求解中具有较好的性能, 能够找到高质量的解。
详细描述
旅行商问题是一个NP难问题,旨在寻找一条旅行路线 ,使得一个旅行商能够访问一系列城市并返回到起始 城市,且总旅行距离最短,同时满足每个城市恰好经 过一次。模拟退火算法通过随机搜索和接受不良解的 概率,能够探索更广阔的解空间,从而找到高质量的 解。在旅行商问题中,模拟退火算法可以与其他启发 式方法结合使用,以获得更好的性能。
迭代更新
重复产生新解、计算能量差和降低温度的 过程,直到满足终止条件。
终止条件
达到最大迭代次数
当达到预设的最大迭代次数时,算法终止。
温度低于阈值
当温度低于一个预设的阈值时,算法终止。
解的质量满足要求
当当前解的质量满足预设的要求或与最优解 的差距在可接受范围内时,算法终止。
03
模拟退火算法参数设置
温度衰减率
总结词
温度衰减率是模拟退火算法中温度变化的速率,它决定了算法的收敛速度和全局搜索能 力。
详细描述
温度衰减率决定了算法在迭代过程中温度下降的速度。较小的衰减率可以使算法在迭代 过程中有更多的时间来探索解空间,但可能会导致算法收敛速度较慢;而较大的衰减率 则可以使算法更快地收敛到最优解,但可能会牺牲一些全局搜索能力。因此,选择合适

模拟退火算法公式

模拟退火算法公式

模拟退火算法公式模拟退火算法是一种基于物理退火过程的优化算法,最早由美国物理学家,冯·诺依曼奖得主,以及诺贝尔物理学奖得主南部-安丘因于1953年提出。

它模拟了固体物质退火时的行为,通过对潜在解空间的搜索,寻找全局最优解。

在固体退火过程中,物质从高温到低温逐渐冷却,通过不断调控温度,使系统的能量逐渐减少。

模拟退火算法的核心思想正是基于这一过程,通过一系列接受概率较低的状态转移,来跳出局部最优解,最终找到全局最优解。

模拟退火算法具体流程如下:1. 随机初始化初始解,并设定初始温度和终止温度。

2. 在每个温度下,通过随机扰动当前解,产生一个新解。

3. 计算新解的函数值和当前解的函数值之差△E。

4. 如果△E ≤ 0,则接受新解作为当前解。

5. 如果△E > 0,则以一定概率接受新解。

该概率由Metropolis 准则决定,概率公式为 P = e^(-△E/T)。

6. 逐渐降低温度,根据设定的降温速率进行迭代搜索,直到达到终止温度。

值得注意的是,温度决定了接受不良解的概率,随着退火过程的进行,温度逐渐降低,接受不良解的概率减小,使得算法更加倾向于收敛到全局最优解。

模拟退火算法在全局优化问题中有着广泛的应用。

例如,在旅行商问题中,通过模拟退火算法可以找到最优的旅行路径,从而使得旅行商的行程最短。

在网络设计中,模拟退火算法可以优化网络拓扑结构,提高数据传输效率。

在机器学习中,模拟退火算法可以用于参数调优,帮助优化模型的性能。

然而,模拟退火算法也存在着一定的局限性。

首先,算法的运行时间较长,需要大量的迭代次数和计算资源。

其次,在应对高维问题和非凸问题时,算法可能会陷入局部最优解,无法得到全局最优解。

因此,在实际应用中,我们需要根据问题的特点选择合适的算法,并结合其他优化方法来提高解的质量。

综上所述,模拟退火算法是一种具有指导意义的全局优化算法。

通过模拟退火过程,可以在搜索解空间时避免陷入局部最优解,并找到全局最优解。

模拟退火算法

模拟退火算法

模拟退火算法(Simulated Annealing)是一种随机优化算法,其基本思想是将问题转化为能量最小化问题,在解空间中以概率形式进行搜索空间,从而达到全局优化的目的。

一、算法原理的原理源于冶金学中的“模拟退火”过程。

在冶金学中,模拟退火是一种将材料加热到足够高的温度,使得原子以无序方式排列,并随着温度逐渐下降,原子逐渐重新排列成为有序状态的过程。

类似地,在算法中,模拟退火过程由三个参数组成:初始温度、降温速率和停止温度。

算法从一个初始解开始,随机产生新解,并计算新解与当前解之间的能量差。

如果新解的能量小于当前解的能量,则直接接受新解,如果新解的能量大于当前解的能量,则以一定的概率接受新解,以避免过早陷入局部最优解。

通过不断降温的过程,在搜索空间中进行随机跳跃,并慢慢收敛到全局最优解。

二、算法流程的流程如下:1. 设定初始温度、降温速率和停止温度。

2. 随机生成一个初始解,并计算其能量。

3. 生成一个新解,并计算新解与当前解之间的能量差。

4. 如果新解的能量小于当前解的能量,则接受新解。

5. 如果新解的能量大于当前解的能量,则以一定的概率接受新解。

6. 降温,更新温度。

7. 判断算法是否收敛,如果未收敛则返回步骤2。

三、应用场景广泛应用于组合优化问题、图论问题、生产调度问题等领域。

例如:1. 旅行商问题:在旅行商问题中,可以通过搜索空间中随机跳跃的方式找到最短路径,从而达到全局最优解。

2. 排课问题:在学校的排课问题中,可以帮助学校最优化考虑不同的课程安排,得到最优化的课程表。

3. 生产调度问题:在生产调度问题中,可以帮助生产企业在限制资源的条件下找到最优化的生产方案,提高生产效率。

四、优缺点作为一种优化算法,具有以下优点:1. 全局搜索能力强:能够在搜索空间中进行全局搜索,并趋向于全局最优解。

2. 算法收敛性好:在算法搜索到解后,能够很快地达到最优解,收敛速度较快。

3. 收敛到局部最优解的可能性较小:由于算法在跳跃过程中具有随机性,因此收敛到局部最优解的可能性较小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

给给给给给给给给
给 给 给 给 给 给 给 给 给 给 给 给 给 给 给 给 k=0
算法流程
tk+1=update(tk)
Y
给 k=k+1
Y
给给给给给给给给给给
N
Metropolis给 给 给 给 给 给 给 给 给 给
N
给 给 给 给 给 Si给 给 给 给 给 Sj
给 给 给 给 给 给 给 s*
N
给给给给给给 给给
给给 min{1,exp[-(C(sj)-C(si))/tk]}
>=random[0,1]
Y
给 Si给 Sj, 给 给 给 给 给 给 给 给 s*
三、模拟退火算法的实现与应用 3.1 30城市TSP问题(d*=423.741 by D B Fogel)
初始温度的计算
for i=1:100 route=randperm(CityNum); fval0(i)=CalDist(dislist,route);
解决的办法是对系统经常地”摇 动”一下,就很可能把粒子从D 点越过C点摇到B 点,而把它摇 到A点的可能性减小。
这就是回火技术:降温后以一 定概率升温,引入产生函数扰 动因子,来控制搜寻全局最优 值的范围。
C D A
B
模拟退火算法的应用前景
算法特性
优点
1. 可并行性 2. 扩展性和通用性
它可以高效的解决几乎所有的组合优化问题。
这是基于蒙特卡罗迭代求解法的一种启发 式随机搜索过程。
组合优化与物理退火的相似性
相似性比较
优化问题 解
最优解 设定初温 Metropolis抽样过程 控制参数的下降 目标函数
金属物体 粒子状态
能量最低的状态 熔解过程 等温过程 冷却 能量
模拟退火算法的优化 回火技术
如图所示,若粒子开始处于D状 态,若让能量逐渐减小,则粒 子最终到达的是A 点(局部最低 点)而不是B(全局最低点)点,这 是我们所不希望的。
第三篇 模拟退火算法
一、模拟退火算法的基本思想 二、模拟退火算法的实现 三、模拟退火算法的应用
一、模拟退火算法的基本思想
启发 注意到一个自然规则:物质总是趋于最低 的能态。
水总是向低处流。 电子总是向最低能级的轨道排布。
最低能态是最稳定的状态。物质会”自动” 地趋向的最低能态。
模拟退火算法的设计与原理 猜想
三、模拟退火算法的应用
3.1 30城市TSP问题(d*=423.741 by D B Fogel) 运行过程
三、模拟退火算法的应用 3.1 30城市TSP问题(d*=423.741 by D B Fogel) 运行过程
三、模拟退火算法的应用 3.1 30城市TSP问题(d*=423.741 by D B Fogel) 运行过程
TSP Benchmark 问题 41 94;37 84;54 67;25 62; 7 64;2 99;68 58;71 44;54 62;83 69;64 60;18 54;22 60;83 46;91 38;25 38;24 42;58 69;71 71;74 78;87 76;18 40;13 40;82 7;62 32; 58 35;45 21;41 26;44 35;4 50
3. 高效率,高性价比
1. 逼近速度快,可极快的求得很好的近似值 2. SA算法比传统算法速度快的多了,解也以1的概率趋
于最优解。在解的质量与时间的比上效果良好。 传统算法要运行几年的情况,SA只需几秒。 3. 具有全局优化特性
三、模拟退火算法的应用
3.1 30城市TSP问题(d*=423.741 by D B Fogel)
end t0=-(max(fval0)-min(fval0))/log(0.9);
三、模拟退火算法的应用 3.1 30城市TSP问题(d*=423.741 by D B Fogel)
状态产生函数的设计
(1)互换操作,随机交换两个城市的顺序;
283591467
281593467
(2)逆序操作,两个随机位置间的城市逆序;
使固体中所有粒子处于无
序的状态(最高的熵值),
15
然后将温度缓慢下降,粒
子渐渐有序(熵值下降), 温度 10
最低能态
这样只要温度上升得足够
T(t)
高,冷却过程足够慢,则
5
所有粒子最终会处于最低
能态(最低的熵值)。
0
0
10
20
30
时间 t
Metropolis准则(1953)——以概率接受新状态
p=exp[-(Ej-Ei)/kBT] 在高温下,可接受与当前状态能量差较大的新状态; 在低温下,只接受与当前状态能量差较小的新状态。
小结
模拟退火: 模仿自然界的物理行为,来求 解函数最小值的方法
小结
创意独特 摒弃旧思维----从函数性质分析 创造新思维----从自然规律入手 个人认为这个创意是独特的,独辟蹊径。 向自然学习,利用了物理的理论来解决数学问题。 效率高 虽不是最优解,但其优性较速度来说,效率是极 高的。
时间就是金钱。在现代市场中这很重要。
三、模拟退火算法的应用
3.1 30城市TSP问题(d*=423.741 by D B Fogel) 运行过程
三、模拟退火算法的应用 3.1 30城市TSP问题(d*=423.741 by D B Fogel) 运行过程
三、模拟退火算法的应用 3.1 30城市TSP问题(d*=423.741 by D B Fogel) 运行结果
最低能态
相似性?
最小值
降温图像
离散函数图像
物质自动趋向的最低能态与函数最小值之间有相 似性!!!
我们能不能设计一种算法求函数最小值,就 像物质”自动”地趋向最低能态?
模拟退火算法的设计与原理
物理模型——固体退火
退火俗称固体降温
t0 7 a 0.187 H 5
先把固体加热至足够高温, T(t) H (t0 H)e a(tt0)
283591467
283419567
(3)插入操作,随机选择某点插入某随机位置。
283591467
235981467
三、模拟退火算法பைடு நூலகம்应用 3.1 30城市TSP问题(d*=423.741 by D B Fogel)
参数设定
截止温度 tf=0.01; 退温系数 alpha=0.90; 内循环次数 L=200*CityNum;
模拟退火算法的设计与原理提出
模拟退火算法(SA) 就是这样一个将退 火过程中系统熵值类比为目标函数值F, 来模拟这个退火系统的算法。
二、模拟退火算法的实现
SA 算法在Markov 链长度内持续进行“产 生新解—判断—接受/舍弃”的迭代过程, 对应着固体在某一恒定温度下趋于热平衡 的过程。算法终止时的当前解即为所得近 似最优解。
相关文档
最新文档