课时跟踪检测(四十九) 直线与圆、圆与圆的位置关系(普通高中)

合集下载

高考数学总复习检测(四十五) 直线与圆、圆与圆的位置关系

高考数学总复习检测(四十五) 直线与圆、圆与圆的位置关系

3 A.
3
3 B.-
3
3 C.±
3
D.- 3
1 解析:选 B 由 S△AOB=2|OA||OB|sin∠AOB
1 = sin∠AOB,
2
π
1
可知当∠AOB= 时,△AOB 的面积最大,为 .
2
2
2 此时点 O 到直线 AB 的距离 d= .
2
设直线 AB 的方程为 y=k(x- 2)(k<0),
即 kx-y- 2k=0.
解析:选 D 当直线 l 的斜率不存在时,l 的方程为 x=2,则 P,Q 的坐标分别为(2,
1
1 5),(2,- 5),所以 S△OPQ=2×2×2 5=2 5.当直线 l 的斜率存在时,设 l 的方程为
( )1
|2k-1|
y-1=k(x-2) k ≠ ,则圆心 O 到直线 l 的距离 d=
,由平面几何知识得|PQ|=2
可得 a+b2+-2+22=2+1=3,即(a+b)2=9,
( ) a+b 9
根据基本不等式可知 ab≤
2= ,
24
3
9
当且仅当 a=b= 时等号成立,即 ab 的最大值为 .
2
4
5.过点( 2,0)引直线 l 与曲线 y= 1-x2相交于 A,B 两点,O 为坐标原点,当△
3
AOB 的面积取最大值时,直线 l 的斜率为( )
| 2k| 2
3
则 d=
= ,解得 k=- .
k2+1 2
3
6.(2019·台州模拟)已知 k∈R,点 P(a,b)是直线 x+y=2k 与圆 x2+y2=k2-2k+3 的
公共点,则 ab 的最大值为( )
A.15

课时跟踪检测(四十六) 直线与圆、圆与圆的位置关系

课时跟踪检测(四十六)  直线与圆、圆与圆的位置关系

课时跟踪检测(四十六) 直线与圆、圆与圆的位置关系一抓基础,多练小题做到眼疾手快1.圆(x -1)2+(y +2)2=6与直线2x +y -5=0的位置关系是( ) A .相切 B .相交但不过圆心 C .相交过圆心D .相离解析:选B 由题意知圆心(1,-2)到直线2x +y -5=0的距离d =|2×1-2-5|22+12=5<6且2×1+(-2)-5≠0,所以直线与圆相交但不过圆心.2.(2016·全国卷Ⅱ)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )A .-43B .-34C. 3D .2解析:选A 因为圆x 2+y 2-2x -8y +13=0的圆心坐标为(1,4), 所以圆心到直线ax +y -1=0的距离d =|a +4-1|a 2+1=1,解得a =-43.3.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( ) A .21 B .19 C .9D .-11解析:选C 圆C 1的圆心为C 1(0,0),半径r 1=1, 因为圆C 2的方程可化为(x -3)2+(y -4)2=25-m , 所以圆C 2的圆心为C 2(3,4),半径r 2=25-m (m <25).从而|C 1C 2|=32+42=5.由两圆外切得|C 1C 2|=r 1+r 2,即1+25-m =5,解得m =9.4.已知圆O :x 2+y 2=5和点A (1,2),则过A 且与圆O 相切的直线方程为________;其与两坐标轴围成的三角形的面积等于________.解析:因为点A (1,2)在圆x 2+y 2=5上, 故过点A 的圆的切线方程为x +2y -5=0,令x =0,得y =52.令y =0,得x =5,故所求三角形的面积S =12×52×5=254.答案:x +2y -5=02545.由直线y =x +1上的一点向圆(x -3)2+y 2=1引切线,则切线长的最小值为________. 解析:设直线上一点为P ,切点为Q ,圆心为M , 则|PQ |即切线长,|MQ |为圆M 的半径,长度为1,|PQ |=|PM |2-|MQ |2=|PM |2-1.要使|PQ |最小,即求|PM |的最小值,此题转化为求直线y =x +1上的点到圆心M 的最小距离, 设圆心到直线y =x +1的距离为d ,则d =|3-0+1|12+(-1)2=2 2.所以|PM |的最小值为2 2.所以|PQ |=|PM |2-1≥ (22)2-1=7,即切线长的最小值为7. 答案:7二保高考,全练题型做到高考达标1.圆x 2+2x +y 2+4y -3=0上的点到直线x +y +1=0的距离为2的共有( ) A .1个 B .2个 C .3个D .4个解析:选C 圆的方程化为(x +1)2+(y +2)2=8,圆心(-1,-2)到直线的距离d =|-1-2+1|2=2,半径是22,结合图形可知有3个符合条件的点. 2.若直线l :y =kx +1(k <0)与圆C :x 2+4x +y 2-2y +3=0相切,则直线l 与 圆D :(x -2)2+y 2=3的位置关系是( )A .相交B .相切C .相离D .不确定解析:选A 因为圆C 的标准方程为(x +2)2+(y -1)2=2, 所以其圆心坐标为(-2,1),半径为2, 因为直线l 与圆C 相切.所以|-2k -1+1|k 2+1=2,解得k =±1,因为k <0,所以k =-1, 所以直线l 的方程为x +y -1=0.圆心D (2,0)到直线l 的距离d =|2+0-1|2=22<3,所以直线l 与圆D 相交.3.(2018·温州调研)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( )A .y =-34 B .y =-12C .y =-32D .y =-14解析:选B 圆(x -1)2+y 2=1的圆心为(1,0),半径为1, 以|PC |=(1-1)2+(-2-0)2=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.4.(2018·台州调研)已知圆C 1:(x -a )2+(y +2)2=4与圆C 2:(x +b )2+(y +2)2=1 相外切,则ab 的最大值为( )A.62B.32C.94D.2 3解析:选C 由圆C 1与圆C 2相外切, 可得(a +b )2+(-2+2)2=2+1=3,即(a +b )2=9,根据基本不等式可知ab ≤⎝ ⎛⎭⎪⎫a +b 22=94,当且仅当a =b =32时等号成立,即ab 的最大值为94.5.过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率为( )A.33B .-33C .±33D .- 3解析:选B 由S △AOB =12|OA ||OB |sin ∠AOB =12sin ∠AOB ,可知当∠AOB =π2时,△AOB 的面积最大,为12.此时点O 到直线AB 的距离d =22. 设直线AB 的方程为y =k (x -2)(k <0), 即kx -y -2k =0. 则d =|2k |k 2+1=22,解得k =-33. 6.若直线y =-12x -2与圆x 2+y 2-2x =15相交于点A ,B ,则弦AB 的垂直平分线方程的斜截式为________;弦长|AB |的值为________.解析:圆的方程可整理为(x -1)2+y 2=16,所以圆心坐标为(1,0),半径r =4,易知弦AB 的垂直平分线l 过圆心,且与直线AB 垂直,而k AB =-12,所以k l =2.由点斜式方程可得直线l 的方程为y -0=2(x -1), 即y =2x -2.因为圆心到直线y =-12x -2的距离为d =⎪⎪⎪⎪-12-2⎝⎛⎭⎫-122+12= 5.所以弦长|AB |=216-5=211.答案:y =2x -2 2117.已知直线x -y +a =0与圆心为C 的圆x 2+y 2+2x -4y -4=0相交于A ,B 两点,且AC ⊥BC ,则实数a 的值为________.解析:由x 2+y 2+2x -4y -4=0得(x +1)2+(y -2)2=9, 所以圆C 的圆心坐标为C (-1,2),半径为3,由AC ⊥BC ,可知△ABC 是直角边长为3的等腰直角三角形,故可得圆心C 到直线x -y +a =0的距离为322,由点到直线的距离公式可得|-1-2+a |2=322,解得a =0或a =6. 答案:0或68.若直线x cos θ+y sin θ-1=0与圆(x -1)2+(y -sin θ)2=116相切,且θ为锐角,则该直线的斜率为________.解析:依题意得,圆心到直线的距离等于半径, 即|cos θ+sin 2θ-1|=14,|cos θ-cos 2θ|=14,所以cos θ-cos 2θ=14或cos θ-cos 2θ=-14(不符合题意,舍去).由cos θ-cos 2θ=14,得cos θ=12,又θ为锐角,所以sin θ=32, 故该直线的斜率是-cos θsin θ=-33.答案:-339.已知直线l :y =kx +1,圆C :(x -1)2+(y +1)2=12. (1)试证明:不论k 为何实数,直线l 和圆C 总有两个交点; (2)求直线l 被圆C 截得的最短弦长.解:(1)证明:因为不论k 为何实数,直线l 总过定点P (0,1),而|PC |=5<23, 所以点P (0,1)在圆C 的内部.所以不论k 为何实数,直线l 和圆C 总有两个交点. (2)由平面几何知识知过圆内定点P (0,1)的弦,只有与PC (C 为圆心)垂直时才最短,而此时点P (0,1)为弦AB 的中点, 由勾股定理,知|AB |=212-5=27,即直线l 被圆C 截得的最短弦长为27.10.已知圆C :x 2+y 2+2x -4y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C的切线,设切点为M .(1)若点P 运动到(1,3)处,求此时切线l 的方程; (2)求满足条件|PM |=|PO |的点P 的轨迹方程.解:把圆C 的方程化为标准方程为(x +1)2+(y -2)2=4, ∴圆心为C (-1,2),半径r =2.(1)当l 的斜率不存在时,此时l 的方程为x =1, C 到l 的距离d =2=r ,满足条件. 当l 的斜率存在时,设l 的方程为y -3=k (x -1),即kx -y +3-k =0, 则|-k -2+3-k |k 2+1=2,解得k =-34.∴切线l 的方程为y -3=-34(x -1),即3x +4y -15=0.综上,满足条件的切线l 的方程为x =1或3x +4y -15=0.(2)设P (x ,y ),则|PM |2=|PC |2-|MC |2=(x +1)2+(y -2)2-4,|PO |2=x 2+y 2, ∵|PM |=|PO |,∴(x +1)2+(y -2)2-4=x 2+y 2,整理得2x -4y +1=0, ∴点P 的轨迹方程为2x -4y +1=0.三上台阶,自主选做志在冲刺名校1.两圆x 2+y 2+2ax +a 2-4=0 和x 2+y 2-4by -1+4b 2=0恰有三条公切线,若a ∈R ,b ∈R 且ab ≠0,则1a 2+1b2的最小值为( )A .1B .3 C.19D.49解析:选A x 2+y 2+2ax +a 2-4=0,化为标准形式为(x +a )2+y 2=4,x 2+y 2-4by -1+4b 2=0,化为标准形式为x 2+(y -2b )2=1.依题意可得,两圆外切,则两圆圆心距离等于两圆的半径之和,则a 2+(2b )2=1+2=3,即a 2+4b 2=9,所以1a 2+1b 2=⎝⎛⎭⎫1a 2+1b 2⎝ ⎛⎭⎪⎫a 2+4b 29 =19⎝⎛⎭⎫5+a 2b 2+4b 2a 2 ≥19⎝⎛⎭⎫5+2a 2b 2·4b 2a 2=1, 当且仅当a 2b 2=4b 2a 2,即a =±2b 时取等号,故1a 2+1b2的最小值为1. 2.(2018·宁波十校联考)已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.解:(1)设圆心C (a,0)⎝⎛⎭⎫a >-52,则|4a +10|5=2⇒a =0或a =-5(舍去). 所以圆C 的方程为x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB 成立.当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 2=4,y =k (x -1)得(k 2+1)x 2-2k 2x +k 2-4=0, 所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB ,则k AN =-k BN ⇒y 1x 1-t +y 2x 2-t =0⇒k (x 1-1)x 1-t +k (x 2-1)x 2-t=0⇒2x 1x 2-(t+1)(x 1+x 2)+2t =0⇒2(k 2-4)k 2+1-2k 2(t +1)k 2+1+2t =0⇒t =4,所以当点N 为(4,0)时,能使得∠ANM=∠BNM 总成立.故当点N 为(4,0)时,使得x 轴平分∠ANB .。

课时跟踪检测(四十八) 直线与圆、圆与圆的位置关系

课时跟踪检测(四十八) 直线与圆、圆与圆的位置关系

课时跟踪检测(四十八)直线与圆、圆与圆的位置关系(分Ⅰ、Ⅱ卷,共2页)第Ⅰ卷:夯基保分卷1. 圆x2+y2-2x+4y-4=0与直线2tx-y-2-2t=0(t∈R)的位置关系为()A.相离B.相切C.相交D.以上都有可能2. 圆O1:x2+y2-2x=0和圆O2:x2+y2-4y=0的位置关系是()A.相离B.相交C.外切D.内切3. (2013·安徽高考)直线x+2y-5+5=0被圆x2+y2-2x-4y=0截得的弦长为()A.1 B.2C.4 D. 4 64.过点(1,1)的直线与圆(x-2)2+(y-3)2=9相交于A,B两点,则|AB|的最小值为() A.2 3 B.4C.2 5 D.55.(2013·福建模拟) 已知直线l:y=-3(x-1)与圆O:x2+y2=1在第一象限内交于点M,且l与y轴交于点A,则△MOA的面积等于________.6.以圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0公共弦为直径的圆的方程为______________.7. 已知圆C的圆心与点P(-2,1)关于直线y=x+1对称,直线3x+4y-11=0与圆C 相交于A,B两点,且|AB|=6,求圆C的方程.8. 已知点M(3,1),直线ax-y+4=0及圆(x-1)2+(y-2)2=4.(1)求过M点的圆的切线方程;(2)若直线ax-y+4=0与圆相切,求a的值.第Ⅱ卷:提能增分卷1.(2013·枣庄月考)已知:圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A,B两点,且|AB|=22时,求直线l的方程.2.(2013·湛江六校联考)已知圆C:x2+y2-2x+4y-4=0,是否存在斜率为1的直线l,使以l被圆截得的弦AB为直径的圆过原点?若存在,求出直线l的方程;若不存在,说明理由.3.(2013·江苏高考)如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.答 案第Ⅰ卷:基础保分卷1.选C ∵圆的方程可化为(x -1)2+(y +2)2=9,∴圆心为(1,-2),半径r =3.又圆心在直线2tx -y -2-2t =0上,∴圆与直线相交.2.选B 圆O 1的圆心坐标为(1,0),半径为r 1=1,圆O 2的圆心坐标为(0,2),半径r 2=2,故两圆的圆心距|O 1O 2|=5,而r 2-r 1=1,r 1+r 2=3,则有r 2-r 1<|O 1O 2|<r 1+r 2,故两圆相交.3.选C 依题意,圆的圆心为(1,2),半径r =5,圆心到直线的距离d =|1+4-5+5|5=1,所以结合图形可知弦长的一半为 r 2-d 2=2,故弦长为4.4.选B 由圆的几何性质可知,当点(1,1)为弦AB 的中点时,|AB |的值最小,此时|AB |=2r 2-d 2=29-5=4.5.解析:依题意,直线l :y =-3(x -1)与y 轴的交点A 的坐标为(0,3).由⎩⎪⎨⎪⎧x 2+y 2=1,y =-3(x -1)得, 点M 的横坐标x M =12,所以△MOA 的面积为 S =12|OA |×x M =12×3×12=34. 答案:346.解析:法一:将两圆方程相减得公共弦所在直线方程为4x +3y -2=0.由⎩⎪⎨⎪⎧4x +3y -2=0,x 2+y 2-12x -2y -13=0. 解得两交点坐标A (-1,2),B (5,-6).∵所求圆以AB 为直径,∴所求圆的圆心是AB 的中点M (2,-2),圆的半径为r =12|AB |=5, ∴圆的方程为(x -2)2+(y +2)2=25.法二:易求得公共弦所在直线方程为4x +3y -2=0.设所求圆x 2+y 2-12x -2y -13+λ(x 2+y 2+12x +16y -25)=0(λ≠-1),则圆心为-12λ-122(1+λ),-16λ-22(1+λ). ∵圆心在公共弦所在直线上,∴4×-12λ-122(1+λ)+3-16λ-22(1+λ)-2=0,解得λ=12.故所求圆的方程为x 2+y 2-4x +4y -17=0.答案:x 2+y 2-4x +4y -17=07.解:设点P 关于直线y =x +1的对称点为C (m ,n ),则由⎩⎪⎨⎪⎧1+n 2=-2+m 2+1,n -1m +2·1=-1⇒⎩⎪⎨⎪⎧ m =0,n =-1. 故圆心C 到直线3x +4y -11=0的距离d =|-4-11|9+16=3, 所以圆C 的半径的平方r 2=d 2+|AB |24=18. 故圆C 的方程为x 2+(y +1)2=18.8.解:(1)圆心C (1,2),半径为r =2,当直线的斜率不存在时,方程为x =3.由圆心C (1,2)到直线x =3的距离d =3-1=2=r 知,此时,直线与圆相切.当直线的斜率存在时,设方程为y -1=k (x -3),即kx -y +1-3k =0. 由题意知|k -2+1-3k |k 2+1=2,解得k =34. 故方程为y -1=34(x -3), 即3x -4y -5=0.故过M 点的圆的切线方程为x =3或3x -4y -5=0.(2)由题意有|a -2+4|a 2+1=2, 解得a =0或a =43. 第Ⅱ卷:提能增分卷1.解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切.则有|4+2a |a 2+1=2.解得a =-34. (2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得⎩⎪⎨⎪⎧ |CD |=|4+2a |a 2+1,|CD |2+|DA |2=|AC |2=22,|DA |=12|AB |= 2.解得a =-7或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.2.解:假设存在斜率为1的直线l ,满足题意,则OA ⊥OB .设直线l 的方程是y =x +b ,其与圆C 的交点A ,B 的坐标分别为A (x 1,y 1),B (x 2,y 2)则y 1x 1·y 2x 2=-1, 即x 1x 2+y 1y 2=0.①由⎩⎪⎨⎪⎧y =x +b ,x 2+y 2-2x +4y -4=0.消去y 得,2x 2+2(b +1)x +b 2+4b -4=0,∴x 1+x 2=-(b +1),x 1x 2=12(b 2+4b -4),② y 1y 2=(x 1+b )(x 2+b )=x 1x 2+b (x 1+x 2)+b 2=12(b 2+4b -4)-b 2-b +b 2=12(b 2+2b -4).③ 把②③式代入①得,得b 2+3b -4=0,解得b =1或b =-4,且b =1或b =-4都使得Δ=4(b +1)2-8(b 2+4b -4)>0成立.故存在直线l 满足题意,其方程为y =x +1或y =x -4.3.解:(1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2),于是切线的斜率必存在.设过A (0,3)的圆C 的切线方程为y =kx +3,由题意,得|3k +1|k 2+1=1,解得k =0或-34, 故所求切线方程为y =3或3x +4y -12=0.(2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1.设点M(x,y),因为MA=2MO,所以x2+(y-3)2=2x2+y2,化简得x2+y2+2y-3=0,即x2+(y+1)2=4,所以点M在以D(0,-1)为圆心,2为半径的圆上.由题意,点M(x,y)在圆C上,所以圆C与圆D有公共点,则|2-1|≤CD≤2+1,即1≤a2+(2a-3)2≤3.由5a2-12a+8≥0,得a∈R;由5a2-12a≤0,得0≤a≤125.所以点C的横坐标a的取值范围为[0,125.]。

人教A版高中数学必修二新课标高考一轮复习训练手册文科第四十九课时直线与圆、圆与圆的位置关系

人教A版高中数学必修二新课标高考一轮复习训练手册文科第四十九课时直线与圆、圆与圆的位置关系

课时作业(四十九) [第49讲 直线与圆、圆与圆的位置关系][时间:45分钟 分值:100分]基础热身 1.[2011·深圳一调] 已知p :“a =2”,q :“直线x +y =0与圆x 2+(y -a )2=1相切”,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 2.[2011·广雅、金山、佛山一中联考] 直线y =kx +1与圆x 2+y 2+kx -4y =0的两个交点恰好关于y 轴对称,则k 等于( )A .0B .1C .2D .33.过点P (-2,3)作圆x 2+(y +1)2=4的切线,则切线方程为( ) A .x +2=0或3x +4y +6=0 B .x +2=0或3x +4y -6=0 C .x -2=0或3x +4y -6=0 D .x -2=0和3x +4y +6=0 4.[2012·江西六校模拟] 直线y =kx +3与圆(x -3)2+(y -2)2=4相交于M ,N 两点,|MN |≥23,则k 的取值范围是________.能力提升 5.[2011·济南一模] 若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+(y -1)2=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1D .(x -3)2+(y -1)2=1 6.[2011·杭州二中模拟] 过点M (1,2)的直线l 将圆C :(x -2)2+y 2=9分成两段弧,当其中的劣弧最短时,直线l 的方程是( )A .x =1B .y =1C .x -y +1=0D .x -2y +3=07.[2011·铁岭六校三联] x 2+y 2=1的圆心O 到直线2ax +by =1的距离为22,若点P 的坐标(a ,b ),则|OP |的最大值为( )A. 2B.2+1 C .1 D .28.[2011·锦州质检] 已知圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0(a ,b ∈R )对称,则ab 的取值范围是( )A.⎝⎛⎦⎤-∞,14 B.⎝⎛⎭⎫0,14 C.⎝⎛⎭⎫-14,0D.⎣⎡⎭⎫-14,+∞9.在直线y =2x +1上有一点P ,过点P 且垂直于直线4x +3y -3=0的直线与圆x 2+y 2-2x =0有公共点,则点P 的横坐标取值范围是( )A .(-∞,-1)∪(1,+∞)B .(-1,1)C.⎣⎡⎦⎤-125,-25D.⎝⎛⎭⎫-125,-25 10.圆心在原点且圆周被直线3x +4y +15=0分成1∶2两部分的圆的方程为________.11.[2011·信阳二模] 已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与C 1关于直线x -y -1=0对称,则圆C 2的方程为________.12.[2011·东莞一模] 已知直线l 经过坐标原点,且与圆x 2+y 2-4x +3=0相切,切点在第四象限,则直线l 的方程为________.13.[2011·盐城摸底] 与直线x =3相切,且与圆(x +1)2+(y +1)2=1相内切的半径最小的圆的方程是________.14.(10分)如图K49-1,已知点P (0,5)及圆C :x 2+y 2+4x -12y +24=0. (1)若直线l 过点P 且被圆C 截得的线段长为43,求l 的方程; (2)求过P 点的圆C15.(13分)[2011·铁岭六校二联] 已知两点A (0,1),B (2,m ),如果经过A 与B 且与x 轴相切的圆有且只有一个,求m 的值及圆的方程.难点突破16.(1)(6分)[2011·西城模拟] 若直线ax +by =1与圆x 2+y 2=1相切,则实数ab 的取值范围是________.(2)(6分)[2011·重庆卷] 在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .5 2B .10 2C .15 2D .20 2课时作业(四十九)【基础热身】1.A [解析] a =2,则直线x +y =0与圆x 2+(y -a )2=1相切,反之,则有a =±2.因此p 是q 的充分不必要条件.故选A.2.A [解析] 由题意知直线垂直于y 轴,所以k =0,故选A.3.B [解析] 若切线斜率存在,设切线方程为y =k (x +2)+3,即kx -y +2k +3=0,已知圆的圆心为(0,-1),半径为2,所以|2k +4|k 2+1=2,解得k =-34,所以切线方程为y =-34(x +2)+3,即3x +4y -6=0;当斜率不存在时,由图可知切线方程为x +2=0,故选B.4.⎣⎡⎦⎤-34,0 [解析] 因为|MN |≥23,所以圆心(3,2)到直线y =kx +3的距离不大于22-(3)2=1,即|3k +1|k 2+1≤1,解得-34≤k ≤0.【能力提升】5.A [解析] 设圆方程为(x -a )2+(y -b )2=1(a >0,b >0),则有|4a -3b |5=b =1,所以a =2,b =1,所以方程为(x -2)2+(y -1)2=1.故选A.6.D [解析] 当劣弧最短时,直线l 被圆截得的弦最短,此时有CM ⊥l ,而k CM =2-01-2=-2,所以直线l 的斜率为12,方程为y -2=12(x -1),即x -2y +3=0.故选D. 7.A [解析] 由已知得12a 2+b 2=22,所以2a 2+b 2=2,所以|OP |2=a 2+b 2=2-a 2≤2,所以|OP |≤ 2.故选A.8.A [解析] 由已知圆心(-1,2)在直线上,所以-2a -2b +2=0,即a +b =1,所以ab =a (1-a )=-a 2+a =-⎝⎛⎭⎫a -122+14≤14.故选A.9.C [解析] 过点P 且垂直于直线4x +3y -3=0的直线的斜率是k =34,设点P (x 0,2x 0+1),其方程是y -2x 0-1=34(x -x 0),由圆心(1,0)到直线的距离小于或等于1可解得.10.x 2+y 2=36 [解析] 如下图,因为圆周被直线3x +4y +15=0分成1∶2两部分,所以∠AOB =120°.而圆心到直线3x +4y +15=0的距离d =1532+42=3,在△AOB 中,可求得OA =6.所以所求圆的方程为x 2+y 2=36.11.(x -2)2+(y +2)2=1 [解析] 根据轴对称关系得圆C 2的圆心为(2,-2),所以圆C 2的方程为(x -2)2+(y +2)2=1.12.x +3y =0 [解析] 设切线方程为y =kx ,代入圆方程中,得(1+k 2)x 2-4x +3=0.由Δ=0,解得k =-33⎝⎛⎭⎪⎫舍去k =33,所以切线方程为x +3y =0.13.⎝⎛⎭⎫x -122+(y +1)2=254 [解析] 作图可知,所求圆的圆心为⎝⎛⎭⎫12,-1,半径为52,所以圆的方程为⎝⎛⎭⎫x -122+(y +1)2=254.14.[解答] (1)|AB |=43,设D 是线段AB 的中点, 则CD ⊥AB ,∴|AD |=23,|AC |=4.在Rt △ACD 中,可得|CD |=2. 设所求直线l 的斜率为k , 则直线l 的方程为y -5=kx ,即kx -y +5=0.由点C 到直线AB 的距离公式得 |-2k -6+5|k 2+1=2,得k =34, 此时直线l 的方程为3x -4y +20=0.又直线l 的斜率不存在时,也满足题意,此时方程为x =0. ∴所求直线l 的方程为x =0或3x -4y +20=0. (2)设过P 点的圆C 的弦的中点为D (x ,y ),则CD ⊥PD ,∴CD →·PD →=0, ∴(x +2,y -6)·(x ,y -5)=0,化简得所求轨迹方程为x 2+y 2+2x -11y +30=0.15.[解答] 设圆的方程为(x -a )2+(y -b )2=b 2,则有:⎩⎨⎧a 2+(1-b )2=b 2,(2-a )2+(m -b )2=b 2,消去b 得(1-m )a 2-4a +4+m 2-m =0. 当m =1时,a =1,所以b =1, 圆的方程为(x -1)2+(y -1)2=1;当m ≠1时,由Δ=0得m (m 2-2m +5)=0,所以m =0,从而a =2,b =52,圆的方程为(x -2)2+⎝⎛⎭⎫y -522=254.综上知,m =1时,圆的方程为(x -1)2+(y -1)2=1;m =0时,圆的方程为(x -2)2+⎝⎛⎭⎫y -522=254.【难点突破】16.(1)-12≤ab ≤12 (2)B [解析] (1)由题可知原点到直线距离为1,有1a 2+b2=1,得a 2+b 2=1.又由基本不等式得a 2+b 2≥2|ab |,所以|ab |≤12,得-12≤ab ≤12.(2)将圆方程配方得(x -1)2+(y -3)2=10,则圆心G (1,3).最长弦AC 为过点E 的直径,则|AC |=210;最短弦BD 为与GE 垂直的弦,如图所示.易知|BG |=10,|EG |=(0-1)2+(1-3)2=5,|BD |=2|BE |=2|BG |2-|EG |2=2 5.所以所以四边形ABCD 的面积为S =12|AC ||BD |=10 2.故选B.。

课时跟踪检测(四十八) 直线与圆、圆与圆的位置关系

课时跟踪检测(四十八)  直线与圆、圆与圆的位置关系

课时跟踪检测(四十八) 直线与圆、圆与圆的位置关系一抓基础,多练小题做到眼疾手快1.圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为________. 解析:由两圆心距离d =(2+2)2+12=17,又R +r =2+3=5,∴d <R +r ,∴两圆相交. 答案:相交2.若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为________. 解析:因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b 2=|c |2|c |=22,因此根据直角三角形的关系,弦长的一半就等于1-⎝⎛⎭⎫222=22,所以弦长为 2. 答案: 23.直线l 与圆x 2+y 2+2x -4y +a =0(a <3)相交于A ,B 两点,若弦AB 的中点为(-2,3),则直线l 的方程为________.解析:设直线的斜率为k ,又弦AB 的中点为(-2,3),所以直线l 的方程为kx -y +2k +3=0,由x 2+y 2+2x -4y +a =0得圆的圆心坐标为(-1,2),所以圆心到直线的距离为2,所以|-k -2+2k +3|k 2+1=2,解得k =1,所以直线l 的方程为x -y +5=0.答案:x -y +5=04.若圆x 2+y 2+mx -14=0与直线y =-1相切,其圆心在y 轴的左侧,则m =________.解析:圆的标准方程为⎝⎛⎭⎫x +m22+y 2=⎝ ⎛⎭⎪⎫m 2+122,圆心到直线y =-1的距离m 2+12=|0-(-1)|,解得m =±3,因为圆心在y 轴的左侧,所以m = 3.答案: 35.已知点P 是圆C :x 2+y 2+4x -6y -3=0上的一点,直线l :3x -4y -5=0.若点P 到直线l 的距离为2,则符合题意的点P 有________个.解析:由题意知圆的标准方程为(x +2)2+(y -3)2=42,∴圆心到直线l 的距离d =|-6-12-5|5=235>4,故直线与圆相离,则满足题意的点P有2个.答案:2二保高考,全练题型做到高考达标1.(2016·苏州模拟)对任意的实数k ,直线y =kx -1与圆C :x 2+y 2-2x -2=0的位置关系是________.解析:直线y =kx -1恒经过点A (0,-1),圆x 2+y 2-2x -2=0的圆心为C (1,0),半径为3,而|AC |=2<3,故直线y =kx -1与圆x 2+y 2-2x -2=0相交.答案:相交2.圆x 2+y 2+2y -3=0被直线x +y -k =0分成两段圆弧,且较短弧长与较长弧长之比为1∶3,则k =________.解析:由题意知,圆的标准方程为x 2+(y +1)2=4.较短弧所对圆周角是90°,所以圆心(0,-1)到直线x +y -k =0的距离为22r = 2.即|1+k |2=2,解得k =1或-3.答案:1或-33.直线y =x +4与圆(x -a )2+(y -3)2=8相切,则a 的值为________.解析:法一:联立⎩⎪⎨⎪⎧y =x +4,(x -a )2+(y -3)2=8,消去y 可得,2x 2-(2a -2)x +a 2-7=0,则由题意可得Δ=[-(2a -2)]2-4×2×(a 2-7)=0,整理可得a 2+2a -15=0,解得a =3或-5.法二:因为(x -a )2+(y -3)2=8的圆心为(a,3),半径为22,所以由直线y =x +4与圆(x -a )2+(y -3)2=8相切,知圆心到直线的距离等于半径,所以|a -3+4|12+(-1)2=22,即|a +1|=4,解得a =3或-5.答案:3或-54.在圆x 2+y 2+2x -4y =0内,过点(0,1)的最短弦所在直线的倾斜角是________. 解析:由题意知,圆心为(-1,2),过点(0,1)的最长弦(直径)斜率为-1,且最长弦与最短弦垂直,∴过点(0,1)的最短弦所在直线的斜率为1,即倾斜角是π4.答案:π45.已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=________.解析:由于直线x+ay-1=0是圆C:x2+y2-4x-2y+1=0的对称轴,∴圆心C(2,1)在直线x+ay-1=0上,∴2+a-1=0,∴a=-1,∴A(-4,-1).∴|AC|2=36+4=40.又r=2,∴|AB|2=40-4=36.∴|AB|=6.答案:66.直线y=2x+3被圆x2+y2-6x-8y=0所截得的弦长等于________.解析:圆的方程可化为(x-3)2+(y-4)2=25,故圆心为(3,4),半径r=5.又直线方程为2x-y+3=0,所以圆心到直线的距离为d=|2×3-4+3|4+1=5,所以弦长为2r2-d2=2×25-5=220=4 5.答案:4 57.过点M(1,2)的直线l与圆C:(x-3)2+(y-4)2=25交于A,B两点,C为圆心,当∠ACB最小时,直线l的方程是____________.解析:依题意得知,当∠ACB最小时,圆心C到直线l的距离达到最大,此时直线l与直线CM垂直,又直线CM的斜率为1,因此所求的直线l的方程是y-2=-(x-1),即x +y-3=0.答案:x+y-3=08.(2016·南京名校联考)已知圆O:x2+y2=1,直线x-2y+5=0上动点P,过点P作圆O的一条切线,切点为A,则|PA|的最小值为________.解析:过O作OP垂直于直线x-2y+5=0,过P作圆O的切线PA,连结OA,易知此时|PA|的值最小.由点到直线的距离公式,得|OP|=|1×0-2×0+5|1+22= 5.又|OA|=1,所以|PA|=|OP|2-|OA|2=2.答案:29.已知圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)当直线l 与圆C 相交于A ,B 两点,且|AB |=22时,求直线l 的方程.解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2,解得a =-34.(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质, 得⎩⎪⎨⎪⎧|CD |=|4+2a |a 2+1,|CD |2+|DA |2=|AC |2=22,|DA |=12|AB |=2,解得a =-7或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.10.如图,已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P .(1)求圆A 的方程;(2)当|MN |=219时,求直线l 的方程. 解:(1)设圆A 的半径为R .由于圆A 与直线l 1:x +2y +7=0相切, ∴R =|-1+4+7|5=2 5.∴圆A 的方程为(x +1)2+(y -2)2=20.(2)①当直线l 与x 轴垂直时,易知x =-2符合题意; ②当直线l 的斜率存在时,设直线l 的方程为y =k (x +2). 即kx -y +2k =0. 连结AQ ,则AQ ⊥MN . ∵|MN |=219,∴|AQ |=20-19=1,则由|AQ |=|k -2|k 2+1=1,得k =34,∴直线l :3x -4y +6=0.故直线l 的方程为x =-2或3x -4y +6=0. 三上台阶,自主选做志在冲刺名校1.(2016·苏州调研)已知圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线,若a ,b ∈R 且ab ≠0,则1a 2+1b2的最小值为________.解析:圆C 1的标准方程为(x +2a )2+y 2=4,其圆心为(-2a ,0),半径为2;圆C 2的标准方程为x 2+(y -b )2=1,其圆心为(0,b ),半径为1.因为圆C 1和圆C 2只有一条公切线,所以圆C 1与圆C 2相内切,所以(-2a -0)2+(0-b )2=2-1,得4a 2+b 2=1,所以1a 2+1b2=⎝⎛⎭⎫1a 2+1b 2(4a 2+b 2)=5+b 2a 2+4a 2b 2≥5+2b 2a 2·4a 2b 2=9,当且仅当b 2a 2=4a 2b2,且4a 2+b 2=1,即a 2=16,b 2=13时等号成立.所以1a 2+1b2的最小值为9. 答案:92.(2016·江阴一中检测)若圆O :x 2+y 2=5与圆O 1:(x -m )2+y 2=20(m ∈R)相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长为________.解析:连结OO 1,记AB 与OO 1的交点为C ,如图所示,在Rt △OO 1A中,OA =5,O 1A =25,∴OO 1=5,∴AC =5×255=2,∴AB =4. 答案:43.已知圆心为C 的圆,满足下列条件:圆心C 位于x 轴正半轴上,与直线3x -4y +7=0相切,且被y 轴截得的弦长为23,圆C 的面积小于13.(1)求圆C 的标准方程;(2)设过点M (0,3)的直线l 与圆C 交于不同的两点A ,B ,以OA ,OB 为邻边作平行四边形OADB .是否存在这样的直线l ,使得直线OD 与MC 恰好平行?如果存在,求出l 的方程;如果不存在,请说明理由.解:(1)设圆C :(x -a )2+y 2=r 2(a >0),由题意知⎩⎪⎨⎪⎧|3a +7|32+42=r ,a 2+3=r ,解得a =1或a =138,又S =πr 2<13,∴a =1,r =2, ∴圆C 的标准方程为(x -1)2+y 2=4.(2)当斜率不存在时,直线l 为x =0,不满足题意.当斜率存在时,设直线l :y =kx +3,A (x 1,y 1),B (x 2,y 2),又l 与圆C 相交于不同的两点,联立得⎩⎪⎨⎪⎧y =kx +3,(x -1)2+y 2=4,消去y 得(1+k 2)x 2+(6k -2)x +6=0,∴Δ=(6k -2)2-24(1+k 2)=12k 2-24k -20>0, 解得k <1-263或k >1+263.x 1+x 2=-6k -21+k 2,y 1+y 2=k (x 1+x 2)+6=2k +61+k 2,OD =OA +OB =(x 1+x 2,y 1+y 2),MC =(1,-3),假设OD ∥MC ,则-3(x 1+x 2)=y 1+y 2, ∴3×6k -21+k 2=2k +61+k 2,解得k =34∉⎝⎛⎭⎫-∞,1-263∪⎝⎛⎭⎫1+263,+∞,假设不成立,∴不存在这样的直线l .。

课时跟踪检测(五十四) 直线与圆、圆与圆的位置关系

课时跟踪检测(五十四)  直线与圆、圆与圆的位置关系

课时跟踪检测(五十四) 直线与圆、圆与圆的位置关系一、题点全面练1.圆x 2+y 2-2x +4y =0与直线2tx -y -2-2t =0(t ∈R )的位置关系为( )A .相离B .相切C .相交D .以上都有可能解析:选C 直线2tx -y -2-2t =0恒过点(1,-2),∵12+(-2)2-2×1+4×(-2)=-5<0,∴点(1,-2)在圆x 2+y 2-2x +4y =0内部,直线2tx -y -2-2t =0与圆x 2+y 2-2x +4y =0相交.2.(2018·河南八市质检)过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( )A .2x +y -5=0B.2x +y -7=0 C .x -2y -5=0 D .x -2y -7=0解析:选B 由题意,过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则点(3,1)在圆上,代入可得r 2=5,圆的方程为(x -1)2+y 2=5,则过点(3,1)的切线方程为(x -1)·(3-1)+y (1-0)=5,即2x +y -7=0.3.(2019·六安模拟)已知过原点的直线l 与圆C :x 2+y 2-6x +5=0相交于不同的两点A ,B ,且线段AB 的中点坐标为D (2,2),则弦长为( )A .2B.3 C .4 D .5解析:选A 将圆C :x 2+y 2-6x +5=0,整理,得其标准方程为(x -3)2+y 2=4,∴圆C 的圆心坐标为(3,0),半径为2.∵线段AB 的中点坐标为D (2,2),∴|CD |=1+2=3,∴|AB |=24-3=2.故选A.4.已知圆O 1的方程为x 2+(y +1)2=6,圆O 2的圆心坐标为(2,1).若两圆相交于A ,B 两点,且|AB |=4,则圆O 2的方程为( )A .(x -2)2+(y -1)2=6B .(x -2)2+(y -1)2=22C .(x -2)2+(y -1)2=6或(x -2)2+(y -1)2=22D .(x -2)2+(y -1)2=36或(x -2)2+(y -1)2=32解析:选C 设圆O 2的方程为(x -2)2+(y -1)2=r 2(r >0).因为圆O 1的方程为x 2+(y +1)2=6,所以直线AB 的方程为4x +4y +r 2-10=0.圆心O 1到直线AB 的距离d =|r 2-14|42,由d 2+22=6,得(r 2-14)232=2,所以r 2-14=±8,r 2=6或22.故圆O 2的方程为(x -2)2+(y -1)2=6或(x -2)2+(y -1)2=22.5.(2018·全国卷Ⅲ)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( )A .[2,6]B.[4,8] C .[2,32] D .[22,32]解析:选A 设圆(x -2)2+y 2=2的圆心为C ,半径为r ,点P 到直线x +y +2=0的距离为d ,则圆心C (2,0),r =2,所以圆心C 到直线x +y +2=0的距离为|2+2|2=22, 可得d max =22+r =32,d min =22-r = 2. 由已知条件可得|AB |=22,所以△ABP 面积的最大值为12|AB |·d max =6, △ABP 面积的最小值为12|AB |·d min =2. 综上,△ABP 面积的取值范围是[2,6].6.若直线l :y =kx +1被圆C :x 2+y 2-2x -3=0截得的弦最短,则直线l 的方程是__________________. 解析:依题意,直线l :y =kx +1过定点P (0,1).圆C :x 2+y 2-2x -3=0化为标准方程为(x -1)2+y 2=4.故圆心为C (1,0),半径为r =2.则易知定点P (0,1)在圆内.由圆的性质可知当PC ⊥l 时,直线l :y =kx+1被圆C :x 2+y 2-2x -3=0截得的弦最短.因为k PC =1-00-1=-1,所以直线l 的斜率k =1,即直线l 的方程是x -y +1=0.答案:x -y +1=07.已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线l :y =x -1被圆C 所截得的弦长为22,则过圆心且与直线l 垂直的直线的方程为________________.解析:由题意,设所求的直线方程为x +y +m =0,圆心坐标为(a,0)(a >0),则由题意知⎝ ⎛⎭⎪⎫|a -1|22+2=(a -1)2, 解得a =3或-1(舍去),故圆心坐标为(3,0),因为圆心(3,0)在所求的直线上,所以3+0+m =0,解得m =-3,故所求的直线方程为x +y -3=0.答案:x +y -3=08.已知直线x -y +a =0与圆C :x 2+y 2+2x -4y -4=0相交于A ,B 两点,且AC ⊥BC ,则实数a 的值为________.解析:由x 2+y 2+2x -4y -4=0得(x +1)2+(y -2)2=9,所以圆C 的圆心坐标为C (-1,2),半径为3,由AC ⊥BC ,可知△ABC 是直角边长为3的等腰直角三角形,故可得圆心C 到直线x -y +a =0的距离为322, 由点到直线的距离公式可得|-1-2+a |2=322, 解得a =0或a =6.答案:0或69.已知圆C 经过点A (2,-1),与直线x +y =1相切,且圆心在直线y =-2x 上.(1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程.解:(1)设圆心的坐标为C (a ,-2a ),则(a -2)2+(-2a +1)2=|a -2a -1|2. 化简,得a 2-2a +1=0,解得a =1.∴C (1,-2),半径r =|AC |=(1-2)2+(-2+1)2= 2.∴圆C 的方程为(x -1)2+(y +2)2=2.(2)①当直线l 的斜率不存在时,直线l 的方程为x =0,此时直线l 被圆C 截得的弦长为2,满足条件. ②当直线l 的斜率存在时,设直线l 的方程为y =kx ,由题意得|k +2|1+k 2=1,解得k =-34, ∴直线l 的方程为y =-34x ,即3x +4y =0. 综上所述,直线l 的方程为x =0或3x +4y =0.10.已知以点C ⎝⎛⎭⎫t ,2t 为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为坐标原点. (1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若|OM |=|ON |,求圆C 的方程.解:(1)证明:由题意知圆C 过原点O ,∴半径r =|OC |.∵|OC |2=t 2+4t 2, ∴设圆C 的方程为(x -t )2+⎝⎛⎭⎫y -2t 2=t 2+4t 2. 令y =0,得x 1=0,x 2=2t ,则A (2t,0).令x =0,得y 1=0,y 2=4t ,则B ⎝⎛⎭⎫0,4t . ∴S △OAB =12|OA |·|OB |=12×⎪⎪⎪⎪4t ×|2t |=4, 即△OAB 的面积为定值.(2)∵|OM |=|ON |,|CM |=|CN |,∴OC 垂直平分线段MN .∵k MN =-2,∴k OC =12,∴直线OC 的方程为y =12x . ∴2t =12t ,解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),r =|OC |=5,此时圆心C 到直线y =-2x +4的距离d =15<5, 圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1),r =|OC |=5,此时圆心C 到直线y =-2x +4的距离d =95>5, 圆C 与直线y =-2x +4不相交.∴圆C 的方程为(x -2)2+(y -1)2=5.二、专项培优练(一)易错专练——不丢怨枉分1.设圆C 1,C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|等于( ) A .4B.4 2 C .8 D .8 2 解析:选C 因为圆C 1,C 2和两坐标轴相切,且都过点(4,1),所以两圆都在第一象限内,设圆心坐标为(a ,a ),则|a |=(a -4)2+(a -1)2,解得a =5+22或a =5-22,可取C 1(5+22,5+22),C 2(5-22,5-22),故|C 1C 2|=(42)2+(42)2=8,故选C. 2.已知圆C :(x -3)2+(y -1)2=1和两点A (-t,0),B (t,0)(t >0),若圆C 上存在点P ,使得∠APB=90°,则实数t 的最小值为( )A .4B.3 C .2 D .1解析:选D 由∠APB =90°得,点P 在圆x 2+y 2=t 2上,因此由两圆有交点得|t -1|≤|OC |≤t +1⇒|t -1|≤2≤t +1⇒1≤t ≤3,即t 的最小值为1.3.已知△ABC 的三个顶点的坐标分别为A (-2,3),B (-2,-1),C (6,-1),以原点为圆心的圆与此三角形有唯一的公共点,则圆的方程为( )A .x 2+y 2=1B.x 2+y 2=4 C .x 2+y 2=165 D .x 2+y 2=1或x 2+y 2=37解析:选D 如图所示,∵A (-2,3),B (-2,-1),C (6,-1).∴过A ,C 的直线方程为y +13+1=x -6-2-6,化为一般式为x +2y -4=0.点O 到直线x +2y -4=0的距离d =|-4|5=455>1, 又|OA |=(-2)2+32=13,|OB |=(-2)2+(-1)2=5,|OC |=62+(-1)2=37. ∴以原点为圆心的圆若与△ABC 有唯一的公共点,则公共点为(0,-1)或(6,-1),∴圆的半径分别为1或37,则圆的方程为x 2+y 2=1或x 2+y 2=37.4.过点A (3,5)作圆C :x 2+y 2-2x -4y +1=0的切线,则切线的方程为_____________.解析:圆C 的标准方程为(x -1)2+(y -2)2=4,其圆心为(1,2),∵|CA |=(3-1)2+(5-2)2=13>2,∴点A (3,5)在圆外.显然,当切线斜率不存在时,直线与圆相切,即切线方程为x -3=0,当切线斜率存在时,可设所求切线方程为y -5=k (x -3),即kx -y +5-3k =0.又圆心为(1,2),半径r =2,而圆心到切线的距离d =|3-2k |k 2+1=2,即|3-2k |=2k 2+1,∴k =512,故所求切线方程为5x -12y +45=0或x -3=0. 答案:5x -12y +45=0或x -3=05.已知圆M :(x -1)2+(y -1)2=4,直线l :x +y -6=0,A 为直线l 上一点,若圆M 上存在两点B ,C ,使得∠BAC =60°,则点A 的横坐标的取值范围为________.解析:由题意知,过点A 的两直线与圆M 相切时,夹角最大,当∠BAC =60°时,|MA |=|MB |sin ∠BAM =2sin 30°=4.设A (x ,6-x ),所以(x -1)2+(6-x -1)2=16,解得x =1或x =5,因此点A 的横坐标的取值范围为[1,5].答案:[1,5](二)难点专练——适情自主选6.已知圆H 被直线x -y -1=0,x +y -3=0分成面积相等的四部分,且截x 轴所得线段的长为2.(1)求圆H 的方程;(2)若存在过点P (a,0)的直线与圆H 相交于M ,N 两点,且|PM |=|MN |,求实数a 的取值范围. 解:(1)设圆H 的方程为(x -m )2+(y -n )2=r 2(r >0),因为圆H 被直线x -y -1=0,x +y -3=0分成面积相等的四部分,所以圆心H (m ,n )一定是两互相垂直的直线x -y -1=0,x +y -3=0的交点,易得交点坐标为(2,1),所以m =2,n =1.又圆H 截x 轴所得线段的长为2,所以r 2=12+n 2=2.所以圆H 的方程为(x -2)2+(y -1)2=2.(2)设N (x 0,y 0),由题意易知点M 是PN 的中点,所以M ⎝ ⎛⎭⎪⎫x 0+a 2,y 02. 因为M ,N 两点均在圆H 上,所以(x 0-2)2+(y 0-1)2=2,①⎝ ⎛⎭⎪⎫x 0+a 2-22+⎝⎛⎭⎫y 02-12=2, 即(x 0+a -4)2+(y 0-2)2=8,②设圆I :(x +a -4)2+(y -2)2=8,由①②知圆H 与圆I 有公共点,从而22-2≤|HI |≤22+2, 即2≤(a -2)2+(1-2)2≤32,整理可得2≤a 2-4a +5≤18,解得2-17≤a ≤1或3≤a ≤2+17,所以实数a 的取值范围是[2-17,1]∪[3,2+17].7.已知圆C 经过点A ⎝⎛⎭⎫74,174,B ⎝⎛⎭⎫-318,338,直线x =0平分圆C ,直线l 与圆C 相切,与圆C 1:x 2+y 2=1相交于P ,Q 两点,且满足OP ⊥O Q .(1)求圆C 的方程;(2)求直线l 的方程.解:(1)依题意知圆心C 在y 轴上,可设圆心C 的坐标为(0,b ),圆C 的方程为x 2+(y -b )2=r 2(r >0). 因为圆C 经过A ,B 两点,即716+28916-172b +b 2=3164+1 08964-334b +b 2,解得b =4. 则r 2=⎝⎛⎭⎫742+⎝⎛⎭⎫174-42=12, 所以圆C 的方程为x 2+(y -4)2=12. (2)当直线l 的斜率不存在时,由l 与C 相切得l 的方程为x =±22,此时直线l 与C 1交于P ,Q 两点,不妨设P 点在Q 点的上方,则P ⎝⎛⎭⎫22,22,Q ⎝⎛⎭⎫22,-22或P ⎝⎛⎭⎫-22,22,Q ⎝⎛⎭⎫-22,-22,则OP ―→·O Q ―→=0,所以OP ⊥O Q ,满足题意.当直线l 的斜率存在时,易知其斜率不为0,设直线l 的方程为y =kx +m (k ≠0,m ≠0),P (x 1,y 1),Q (x 2,y 2),将直线l 的方程与圆C 1的方程联立,得⎩⎪⎨⎪⎧y =kx +m ,x 2+y 2=1,消去y ,整理得(1+k 2)x 2+2kmx +m 2-1=0, 则Δ=4k 2m 2-4(1+k 2)(m 2-1)=4(k 2-m 2+1)>0,即1+k 2>m 2,则x 1+x 2=-2km 1+k 2,x 1x 2=m 2-11+k2, 所以y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=k 2(m 2-1)1+k 2-2k 2m 21+k 2+m 2=m 2-k 21+k 2, 又OP ⊥O Q ,所以OP ―→·O Q ―→=0,即x 1x 2+y 1y 2=m 2-11+k 2+m 2-k 21+k 2=0, 故2m 2=1+k 2,满足Δ>0,符合题意.因为直线l :y =kx +m 与圆C :x 2+(y -4)2=12相切, 所以圆心C (0,4)到直线l 的距离d =|m -4|1+k 2=22, 即m 2-8m +16=1+k 22,故m 2-8m +16=m 2,得m =2, 故1+k 2=8,得k =±7.故直线l的方程为y=±7x+2.或y=±7x+2. 综上,直线l的方程为x=±22。

高考数学一轮复习 直线与圆、圆与圆的位置关系跟踪检测 理(含解析)新人教A版

课时跟踪检测(五十四)直线与圆、圆与圆的位置关系(分Ⅰ、Ⅱ卷,共2页)第Ⅰ卷:夯基保分卷1. 圆x2+y2-2x+4y-4=0与直线2tx-y-2-2t=0(t∈R)的位置关系为()A.相离B.相切C.相交D.以上都有可能2. 圆O1:x2+y2-2x=0和圆O2:x2+y2-4y=0的位置关系是()A.相离B.相交C.外切D.内切3. (2013·安徽高考)直线x+2y-5+5=0被圆x2+y2-2x-4y=0截得的弦长为()A.1 B.2C.4 D. 4 64.过点(1,1)的直线与圆(x-2)2+(y-3)2=9相交于A,B两点,则|AB|的最小值为() A.2 3 B.4C.2 5 D.55.(2013·福建模拟) 已知直线l:y=-3(x-1)与圆O:x2+y2=1在第一象限内交于点M,且l与y轴交于点A,则△MOA的面积等于________.6.以圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0公共弦为直径的圆的方程为______________.7. 已知圆C的圆心与点P(-2,1)关于直线y=x+1对称,直线3x+4y-11=0与圆C 相交于A,B两点,且|AB|=6,求圆C的方程.8. 已知点M(3,1),直线ax-y+4=0及圆(x-1)2+(y-2)2=4.(1)求过M点的圆的切线方程;(2)若直线ax-y+4=0与圆相切,求a的值.第Ⅱ卷:提能增分卷1.(2013·枣庄月考)已知:圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A,B两点,且|AB|=22时,求直线l的方程.2.(2013·湛江六校联考)已知圆C:x2+y2-2x+4y-4=0,是否存在斜率为1的直线l,使以l被圆截得的弦AB为直径的圆过原点?若存在,求出直线l的方程;若不存在,说明理由.3.(2013·江苏高考)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.答 案第Ⅰ卷:夯基保分卷1.选C ∵圆的方程可化为(x -1)2+(y +2)2=9,∴圆心为(1,-2),半径r =3. 又圆心在直线2tx -y -2-2t =0上,∴圆与直线相交.2.选B 圆O 1的圆心坐标为(1,0),半径为r 1=1,圆O 2的圆心坐标为(0,2),半径r 2=2,故两圆的圆心距|O 1O 2|=5,而r 2-r 1=1,r 1+r 2=3,则有r 2-r 1<|O 1O 2|<r 1+r 2,故两圆相交.3.选C 依题意,圆的圆心为(1,2),半径r =5,圆心到直线的距离d =|1+4-5+5|5=1,所以结合图形可知弦长的一半为 r 2-d 2=2,故弦长为4.4.选B 由圆的几何性质可知,当点(1,1)为弦AB 的中点时,|AB |的值最小,此时|AB |=2r 2-d 2=29-5=4.5.解析:依题意,直线l :y =-3(x -1)与y 轴的交点A 的坐标为(0,3).由⎩⎨⎧x 2+y 2=1,y =-3(x -1)得, 点M 的横坐标x M =12,所以△MOA 的面积为S =12|OA |×x M =12×3×12=34. 答案:34 6.解析:法一:将两圆方程相减得公共弦所在直线方程为4x +3y -2=0.由⎩⎪⎨⎪⎧4x +3y -2=0,x 2+y 2-12x -2y -13=0.解得两交点坐标A (-1,2),B (5,-6).∵所求圆以AB 为直径,∴所求圆的圆心是AB 的中点M (2,-2),圆的半径为r =12|AB |=5,∴圆的方程为(x -2)2+(y +2)2=25.法二:易求得公共弦所在直线方程为4x +3y -2=0.设所求圆x 2+y 2-12x -2y -13+λ(x 2+y 2+12x +16y -25)=0(λ≠-1),则圆心为-12λ-122(1+λ),-16λ-22(1+λ).∵圆心在公共弦所在直线上,∴4×-12λ-122(1+λ)+3-16λ-22(1+λ)-2=0,解得λ=12.故所求圆的方程为x 2+y 2-4x +4y -17=0.答案:x 2+y 2-4x +4y -17=07.解:设点P 关于直线y =x +1的对称点为C (m ,n ),则由⎩⎪⎨⎪⎧ 1+n 2=-2+m 2+1,n -1m +2·1=-1⇒⎩⎪⎨⎪⎧m =0,n =-1. 故圆心C 到直线3x +4y -11=0的距离d =|-4-11|9+16=3, 所以圆C 的半径的平方r 2=d 2+|AB |24=18. 故圆C 的方程为x 2+(y +1)2=18.8.解:(1)圆心C (1,2),半径为r =2,当直线的斜率不存在时,方程为x =3. 由圆心C (1,2)到直线x =3的距离d =3-1=2=r 知,此时,直线与圆相切. 当直线的斜率存在时,设方程为y -1=k (x -3),即kx -y +1-3k =0. 由题意知|k -2+1-3k |k 2+1=2,解得k =34. 故方程为y -1=34(x -3),即3x -4y -5=0.故过M 点的圆的切线方程为x =3或3x -4y -5=0.(2)由题意有|a -2+4|a 2+1=2,解得a =0或a =43. 第Ⅱ卷:提能增分卷1.解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切.则有|4+2a |a 2+1=2.解得a =-34. (2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得⎩⎨⎧ |CD |=|4+2a |a 2+1,|CD |2+|DA |2=|AC |2=22,|DA |=12|AB |= 2.解得a =-7或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.2.解:假设存在斜率为1的直线l ,满足题意,则OA ⊥OB .设直线l 的方程是y =x +b ,其与圆C 的交点A ,B 的坐标分别为A (x 1,y 1),B (x 2,y 2)则y 1x 1·y 2x 2=-1, 即x 1x 2+y 1y 2=0.①由⎩⎪⎨⎪⎧y =x +b ,x 2+y 2-2x +4y -4=0. 消去y 得,2x 2+2(b +1)x +b 2+4b -4=0,∴x 1+x 2=-(b +1),x 1x 2=12(b 2+4b -4),② y 1y 2=(x 1+b )(x 2+b )=x 1x 2+b (x 1+x 2)+b 2=12(b 2+4b -4)-b 2-b +b 2=12(b 2+2b -4).③ 把②③式代入①得,得b 2+3b -4=0,解得b =1或b =-4,且b =1或b =-4都使得Δ=4(b +1)2-8(b 2+4b -4)>0成立.故存在直线l 满足题意,其方程为y =x +1或y =x -4.3.解:(1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2),于是切线的斜率必存在.设过A (0,3)的圆C 的切线方程为y =kx +3, 由题意,得|3k +1|k 2+1=1,解得k =0或-34, 故所求切线方程为y =3或3x +4y -12=0.(2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1. 设点M (x ,y ),因为MA =2MO ,所以x 2+(y -3)2=2x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点,则|2-1|≤CD ≤2+1,即1≤a 2+(2a -3)2≤3.由5a 2-12a +8≥0,得a ∈R ;由5a 2-12a ≤0,得0≤a ≤125. 所以点C 的横坐标a 的取值范围为[0,125].。

2021版新高考数学人教B版一轮核心素养测评 四十九 直线与圆、圆与圆的位置关系

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,★★★答案★★★解析附后。

关闭Word文档返回原板块。

核心素养测评四十九直线与圆、圆与圆的位置关系(30分钟60分)一、选择题(每小题5分,共25分)1.(2020·桂林模拟)已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为( )A.(x+2)2+(y-2)2=1B.(x-2)2+(y+2)2=1C.(x+2)2+(y+2)2=1D.(x-2)2+(y-2)2=1【解析】选B.圆C1:(x+1)2+(y-1)2=1的圆心坐标为(-1,1),关于直线x-y-1=0对称的圆心坐标为(2,-2),所求的圆C2的方程为(x-2)2+(y+2)2=1.2.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m= ( )A.21B.19C.9D.-11【解析】选C.圆C1的圆心是原点(0,0),半径r1=1,圆C2:(x-3)2+(y-4)2=25-m,圆心C2(3,4),半径r2=,由两圆相外切,得|C1C2|=r1+r2=1+=5,所以m=9.3.过点(0,1)且倾斜角为的直线l交圆x2+y2-6y=0于A,B两点,则弦AB 的长为 ( )A. B.2 C.2 D.4【解析】选D.过点(0,1)且倾斜角为的直线l为y-1=x,即x-y+1=0,因为圆x2+y2-6y=0,即x2+(y-3)2=9,所以圆心(0,3),半径r=3,圆心到直线l:x-y+1=0的距离d==1,所以直线被圆截得的弦长l=2=4.4.若直线l:ax+by=1与圆C:x2+y2=1无交点,则点P(b,a)与圆C的位置关系是 ( )世纪金榜导学号A.点在圆上B.点在圆外C.点在圆内D.不能确定【解析】选C.直线l:ax+by=1与圆C:x2+y2=1无交点,则>1,即a2+b2<1,所以点P(b,a)在圆C内部.5.(多选)在平面直角坐标系xOy中,圆C的方程为x2+y2-4x=0.若直线y=k(x+1)上存在一点P,使过P所作的圆的两条切线相互垂直,则实数k 的取值可以是 ( )A.1B.2C.3D.4【解析】选AB.圆C的方程为x2+y2-4x=0,则圆心为C(2,0),半径R=2. 设两个切点分别为A、B,则由题意可得四边形PACB为正方形,故有PC=R=2,所以圆心到直线y=k(x+1)的距离小于或等于PC=2,即≤2,解得k2≤8,可得-2≤k≤2,所以实数k的取值可以是1,2.二、填空题(每小题5分,共15分)6.(2020·合肥模拟)已知圆C1:(x-a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1相外切,则ab的最大值为________.【解析】由已知得圆C1的圆心C1(a,-2),圆C2的圆心C2(-b,-2),由两圆外切可知|a+b|=3,故a2+2ab+b2=9,所以4ab≤9,所以ab≤.★★★答案★★★:7.平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是________.世纪金榜导学号【解析】切线平行于直线2x+y+1=0,故可设切线方程为2x+y+c=0(c≠1),结合题意可得=,解得c=±5.★★★答案★★★:2x+y+5=0或2x+y-5=08.(2020·杭州模拟)已知直线l:x+y-m=0被圆C:x2+y2-2x-3=0截得的弦长为2,则圆心C到直线l的距离是________,m=________. 【解析】圆的标准方程为(x-1)2+y2=4,圆心C(1,0),半径r=2,根据几何法得:d===1,所以|1-m|=2,得m=-1或3.★★★答案★★★:1 -1或3三、解答题(每小题10分,共20分)9.已知两圆x2+y2-2x+10y-24=0和x2+y2+2x+2y-8=0.(1)试判断两圆的位置关系.(2)求公共弦所在的直线方程.(3)求公共弦的长度.【解析】(1)将两圆方程配方化为标准方程,C1:(x-1)2+(y+5)2=50,C2:(x+1)2+(y+1)2=10.则圆C1的圆心为(1,-5),半径r1=5;圆C2的圆心为(-1,-1),半径r2=.又|C1C2|=2,r1+r2=5+,r1-r2=5-.所以r1-r2<|C1C2|<r1+r2,所以两圆相交.(2)将两圆方程相减,得公共弦所在直线方程为x-2y+4=0.(3)方法一:两方程联立,得方程组两式相减得x=2y-4 ③,把③代入②得y2-2y=0,所以y1=0,y2=2.所以或所以交点坐标为(-4,0)和(0,2).所以两圆的公共弦长为=2.方法二:圆心C1到直线x-2y+4=0的距离d==3,所以两圆的公共弦长为2=2=2.10.已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切,过点B(-2,0)的动直线l与圆A相交于M,N两点,Q是MN的中点.(1)求圆A的方程.(2)当|MN|=2时,求直线l的方程.【解析】 (1)设圆A的半径为r,因为圆A与直线l1:x+2y+7=0相切,所以r==2,所以圆A的方程为(x+1)2+(y-2)2=20.(2)当直线l与x轴垂直时,则直线l的方程x=-2,此时有|MN|=2,即x=-2符合题意.当直线l与x轴不垂直时,设直线l的斜率为k,则直线l的方程为y=k(x+2),即kx-y+2k=0,因为Q是MN的中点,所以AQ⊥MN,所以|AQ|2+=r2,又因为|MN|=2,r=2,所以|AQ|==1,解方程|AQ|==1,得k=,所以此时直线l的方程为y=(x+2),即3x-4y+6=0.综上所述,直线l的方程为x=-2或3x-4y+6=0.(15分钟35分)1.(5分)已知k∈R,点P(a,b)是直线x+y=2k与圆x2+y2=k2-2k+3的公共点,则ab的最大值为( )A.15B.9C.1D.-【解析】选B.由题意得,原点到直线x+y=2k的距离d=≤,且k2-2k+3>0,解得-3≤k≤1,因为2ab=(a+b)2-(a2+b2)=4k2-(k2-2k+3)=3k2+2k-3,所以当k=-3时,ab取得最大值9.2.(5分)(2019·江西模拟)已知圆O:x2+y2=9,过点C(2,1)的直线l与圆O交于P,Q两点,当△OPQ的面积最大时,直线l的方程为( )世纪金榜导学号A.x-y-3=0或7x-y-15=0B.x+y+3=0或7x+y-15=0C.x+y-3=0或7x-y+15=0D.x+y-3=0或7x+y-15=0【解析】选D.当直线l的斜率不存在时,l的方程为x=2,则P,Q的坐标为(2,),(2,-),所以S△OPQ=×2×2=2.当直线l的斜率存在时,设l的方程为y-1=k(x-2),则圆心到直线PQ的距离d=,由平面几何知识得|PQ|=2,S△OPQ=·|PQ|·d=·2·d=≤=,当且仅当9-d2=d2,即d2=时,S△OPQ取得最大值.因为2<,所以S△OPQ的最大值为,此时=,解得k=-1或k=-7,此时直线l的方程为x+y-3=0或7x+y-15=0.3.(5分)(2020·湖南模拟)已知m>0,n>0,若直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,则m+n的取值范围是________.【解析】因为m>0,n>0,直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,所以圆心C(1,1)到直线的距离为半径1,所以=1,即|m+n|=.两边平方并整理得mn=m+n+1.由基本不等式mn≤可得m+n+1≤,即(m+n)2-4(m+n)-4≥0解得m+n≥2+2.当且仅当m=n时等号成立.★★★答案★★★:(2+2,+∞)4.(10分)已知圆(x-1)2+y2=25,直线ax-y+5=0与圆相交于不同的两点A,B. 世纪金榜导学号(1)求实数a的取值范围.(2)若弦AB的垂直平分线l过点P(-2,4),求实数a的值.【解析】(1)由题设知<5,故12a2-5a>0,所以a<0或a>.故实数a的取值范围为(-∞,0)∪.(2)圆(x-1)2+y2=25的圆心坐标为(1,0),又弦AB的垂直平分线过圆心(1,0)及P(-2,4),所以k l==-,又k AB=a,且AB⊥l,所以k l·k AB=-1,即a·=-1,所以a=.5.(10分)已知圆C经过点A(2,-1),和直线x+y=1相切,且圆心在直线y=-2x上. 世纪金榜导学号(1)求圆C的方程.(2)已知直线l经过原点,并且被圆C截得的弦长为2,求直线l的方程. 【解析】(1)设圆心的坐标为C(a,-2a),则=.化简,得a2-2a+1=0,解得a=1.所以C点坐标为(1,-2),半径r=|AC|==.故圆C的方程为(x-1)2+(y+2)2=2.(2)①当直线l的斜率不存在时,直线l的方程为x=0,此时直线l被圆C 截得的弦长为2,满足条件.②当直线l的斜率存在时,设直线l的方程为y=kx,由题意得=1,解得k=-,则直线l的方程为y=-x.综上所述,直线l的方程为x=0或3x+4y=0.关闭Word文档返回原板块感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。

2018届高考数学(文)总复习跟踪检测(四十六)直线与圆、圆与圆的位置关系含解析

课时跟踪检测 (四十六) 直线与圆、圆与圆的位置关系一抓基础,多练小题做到眼疾手快1.直线kx +y -2=0(k ∈R)与圆x 2+y 2+2x -2y +1=0的位置关系是( ) A .相交 B .相切 C .相离D .与k 值有关解析:选D 圆心为(-1,1),所以圆心到直线的距离为|-k +1-2|1+k 2=|k +1|1+k 2, 所以直线与圆的位置关系和k 值有关,故选D .2.已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A .-2B .-4C .-6D .-8解析:选B 圆的标准方程为(x +1)2+(y -1)2=2-a (a <2),圆心C (-1,1),半径r 满足r 2=2-a ,则圆心C 到直线x +y +2=0的距离d =2,所以r 2=22+(2)2=2-a ⇒a =-4.3.已知点M 是直线3x +4y -2=0上的动点,点N 为圆(x +1)2+(y +1)2=1上的动点,则|MN |的最小值是( )A .95 B .1 C .45D .135解析:选C 圆心(-1,-1)到点M 的距离的最小值为点(-1,-1)到直线的距离d =|-3-4-2|5=95,故点N 到点M 的距离的最小值为d -1=45.4.已知圆O :x 2+y 2=5和点A (1,2),则过A 且与圆O 相切的直线与两坐标轴围成的三角形的面积等于________.解析:因为点A (1,2)在圆x 2+y 2=5上, 故过点A 的圆的切线方程为x +2y =5, 令x =0,得y =52.令y =0,得x =5,故所求三角形的面积S =12×52×5=254.答案:2545.若圆x 2+y 2+mx -14=0与直线y =-1相切,其圆心在y 轴的左侧,则m =________.解析:圆的标准方程为⎝ ⎛⎭⎪⎫x +m 22+y 2=⎝ ⎛⎭⎪⎫m 2+122,圆心到直线y =-1的距离m 2+12=|0-(-1)|,解得m =±3,因为圆心在y 轴的左侧,所以m =3.答案: 3二保高考,全练题型做到高考达标1.若直线l :y =kx +1(k <0)与圆C :x 2+4x +y 2-2y +3=0相切,则直线l 与圆D :(x -2)2+y 2=3的位置关系是( )A .相交B .相切C .相离D .不确定解析:选A 因为圆C 的标准方程为(x +2)2+(y -1)2=2, 所以其圆心坐标为(-2,1),半径为2, 因为直线l 与圆C 相切. 所以|-2k -1+1|k 2+1=2,解得k =±1,因为k <0,所以k =-1, 所以直线l 的方程为x +y -1=0. 圆心D (2,0)到直线l 的距离d =|2+0-1|2=22<3, 所以直线l 与圆D 相交.2.若直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,则k ,b 的值分别为( )A .12,-4 B .-12,4C .12,4 D .-12,-4解析:选A 因为直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,所以直线y =kx 与直线2x +y +b =0垂直,且直线2x +y +b =0过圆心,所以⎩⎪⎨⎪⎧k =12,2×2+0+b =0,所以⎩⎪⎨⎪⎧k =12,b =-4.3.(2017·大连模拟)圆x 2+y 2+2y -3=0被直线x +y -k =0分成两段圆弧,且较短弧长与较长弧长之比为1∶3,则k =( )A .2-1或-2-1B .1或-3C .1或- 2D . 2解析:选B 由题意知,圆的标准方程为x 2+(y +1)2=4.较短弧所对圆周角是90°,所以圆心(0,-1)到直线x +y -k =0的距离为22r =2.即|1+k |2=2,解得k =1或-3.4.(2015·重庆高考)已知直线l :x +ay -1=0(a ∈R)是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=( )A .2B .4 2C .6D .210解析:选C 由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴, ∴圆心C (2,1)在直线x +ay -1=0上, ∴2+a -1=0,∴a =-1, ∴A (-4,-1). ∴|AC |2=36+4=40.又r =2,∴|AB |2=40-4=36. ∴|AB |=6.5.已知直线3x +4y -15=0与圆O :x 2+y 2=25交于A ,B 两点,点C 在圆O 上,且S △ABC =8,则满足条件的点C 的个数为( )A .1B .2C .3D .4解析:选C 圆心O 到已知直线的距离为d =|-15|32+42=3,因此|AB |=252-32=8,设点C 到直线AB 的距离为h ,则S △ABC =12×8×h =8,h =2,由于d +h =3+2=5=r (圆的半径),因此与直线AB 距离为2的两条直线中一条与圆相切,一条与圆相交,故符合条件的点C 有三个.6.若直线y =-12x -2与圆x 2+y 2-2x =15相交于点A ,B ,则弦AB 的垂直平分线方程的斜截式为________.解析:圆的方程可整理为(x -1)2+y 2=16,所以圆心坐标为(1,0),半径r =4,易知弦AB 的垂直平分线l 过圆心,且与直线AB 垂直,而k AB =-12,所以k l =2.由点斜式方程可得直线l 的方程为y -0=2(x -1), 即y =2x -2. 答案:y =2x -27.已知直线x -y +a =0与圆心为C 的圆x 2+y 2+2x -4y -4=0相交于A ,B 两点,且AC ⊥BC ,则实数a 的值为________.解析:由x 2+y 2+2x -4y -4=0得(x +1)2+(y -2)2=9, 所以圆C 的圆心坐标为C (-1,2),半径为3,由AC ⊥BC ,可知△ABC 是直角边长为3的等腰直角三角形, 故可得圆心C 到直线x -y +a =0的距离为322,由点到直线的距离公式可得|-1-2+a |2=322, 解得a =0或a =6. 答案:0或68.在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在l 上.若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,则切线的方程为________.解析:联立⎩⎪⎨⎪⎧y =x -1,y =2x -4,解得⎩⎪⎨⎪⎧x =3,y =2.所以圆心C (3,2).设切线方程为y =kx+3,可得圆心到切线的距离d =r ,即|3k +3-2|1+k 2=1,解得k =0或k =-34.则所求的切线方程为y =3或3x +4y -12=0.答案:y =3或3x +4y -12=09.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程. 解:(1)设圆心的坐标为C (a ,-2a ), 则a -2+-2a +2=|a -2a -1|2.化简,得a 2-2a +1=0,解得a =1. ∴C (1,-2),半径r =|AC |=-2+-2+2=2.∴圆C 的方程为(x -1)2+(y +2)2=2.(2)①当直线l 的斜率不存在时,直线l 的方程为x =0,此时直线l 被圆C 截得的弦长为2,满足条件.②当直线l 的斜率存在时,设直线l 的方程为y =kx ,由题意得|k +2|1+k2=1,解得k=-34,∴直线l 的方程为y =-34x .综上所述,直线l 的方程为x =0或3x +4y =0.10.如图,已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P .(1)求圆A 的方程;(2)当|MN |=219时,求直线l 的方程. 解:(1)设圆A 的半径为r .由于圆A 与直线l 1:x +2y +7=0相切, ∴r =|-1+4+7|5=25. ∴圆A 的方程为(x +1)2+(y -2)2=20.(2)①当直线l 与x 轴垂直时,易知x =-2符合题意;②当直线l 的斜率存在时,设直线l 的方程为y =k (x +2). 即kx -y +2k =0. 连接AQ ,则AQ ⊥MN . ∵|MN |=219, ∴|AQ |=20-19=1, 则由|AQ |=|k -2|k 2+1=1,得k =34,∴直线l :3x -4y +6=0.故直线l 的方程为x =-2或3x -4y +6=0. 三上台阶,自主选做志在冲刺名校1.已知AC ,BD 为圆O :x 2+y 2=4的两条互相垂直的弦,且垂足为M (1,2),则四边形ABCD 面积的最大值为( )A .5B .10C .15D .20解析:选A 如图,作OP ⊥AC 于P ,OQ ⊥BD 于Q ,则|OP |2+|OQ |2=|OM |2=3,∴|AC |2+|BD |2=4(4-|OP |2)+4(4-|OQ |2)=20.又|AC |2+|BD |2≥2|AC |·|BD |, 则|AC |·|BD |≤10,∴S 四边形ABCD =12|AC |·|BD |≤12×10=5,当且仅当|AC |=|BD |=10时等号成立, ∴四边形ABCD 面积的最大值为5.故选A .2.(2017·湖南省东部六校联考)已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.解:(1)设圆心C (a,0)⎝ ⎛⎭⎪⎫a >-52,则|4a +10|5=2, 解得a =0或a =-5(舍). 所以圆C :x 2+y 2=4.(2)如图,当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 2=4,y =k x -得,(k 2+1)x 2-2k 2x +k 2-4=0,所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB , 则k AN =-k BN ⇒y 1x 1-t +y 2x 2-t=0⇒k x 1-x 1-t+k x 2-x 2-t=0⇒2x 1x 2-(t +1)(x 1+x 2)+2t =0⇒k 2-k 2+1-2k 2t +k 2+1+2t =0⇒t =4,所以当点N 为(4,0)时, 能使得∠ANM =∠BNM 总成立.。

专题49 直线与圆、圆与圆的位置关系-2020年领军高考数学一轮复习(文理通用)(原卷版)

原创精品资源学科网独家享有版权,侵权必究! 1 专题49直线与圆、圆与圆的位置关系 最新考纲 1.能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系. 2.能用直线和圆的方程解决一些简单的问题. 3.初步了解用代数方法处理几何问题的思想.

基础知识融会贯通 1.判断直线与圆的位置关系常用的两种方法 (1)几何法:利用圆心到直线的距离d和圆的半径r的大小关系. dr⇔相离.

(2)代数法:――――→判别式Δ=b2-4ac >0⇔相交;=0⇔相切;<0⇔相离. 2.圆与圆的位置关系 设圆O1:(x-a1)2+(y-b1)2=r21(r1>0), 圆O2:(x-a2)2+(y-b2)2=r22(r2>0). 方法 位置关系 几何法:圆心距d与r1,r2的关系 代数法:联立两圆方程组成方程组的解的情况 外离 d>r1+r2 无解 外切 d=r1+r2 一组实数解 相交 |r1-r2|内切 d=|r1-r2|(r1≠r2) 一组实数解 内含 0≤d<|r1-r2|(r1≠r2) 无解 【知识拓展】 1.圆的切线方程常用结论 (1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2. (2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2. (3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2. 2.圆与圆的位置关系的常用结论 (1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离: 原创精品资源学科网独家享有版权,侵权必究! 2

4条. (2)当两圆相交时,两圆方程(x2,y2项系数相同)相减便可得公共弦所在直线的方程.

重点难点突破 【题型一】直线与圆的位置关系

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 8 页 课时跟踪检测(四十九) 直线与圆、圆与圆的位置关系 (一)普通高中适用作业

A级——基础小题练熟练快 1.已知点(a,b)在圆C:x2+y2=r2(r≠0)的外部,则ax+by=r2与C的位置关系是( ) A.相切 B.相离 C.内含 D.相交

解析:选D 由已知a2+b2>r2,且圆心到直线ax+by=r2的距离为d=r2a2+b2,则d故直线ax+by=r2与C的位置关系是相交. 2.与圆C1:x2+y2-6x+4y+12=0,C2:x2+y2-14x-2y+14=0都相切的直线有( ) A.1条 B.2条 C.3条 D.4条 解析:选A 两圆分别化为标准形式为C1:(x-3)2+(y+2)2=1,C2:(x-7)2+(y-1)2

=36,则两圆圆心距|C1C2|=7-32+[1--2]2=5,等于两圆半径差,故两圆内切.所以它们只有一条公切线.故选A. 3.若两圆x2+y2=m和x2+y2+6x-8y-11=0有公共点,则实数m的取值范围是( ) A.(0,1) B.(121,+∞) C.[1,121] D.(1,121) 解析:选C x2+y2+6x-8y-11=0化成标准方程为(x+3)2+(y-4)2=36.圆心距为d=0+32+0-42=5,若两圆有公共点,则|6-m|≤5≤6+m,解得1≤m≤121.故选C. 4.过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为( ) A.2x+y-5=0 B.2x+y-7=0 C.x-2y-5=0 D.x-2y-7=0 解析:选B 由题意知点(3,1)在圆上,代入圆的方程可得r2=5,圆的方程为(x-1)2+y2=5,则过点(3,1)的切线方程为(x-1)·(3-1)+y(1-0)=5,即2x+y-7=0.故选B. 5.直线y=kx+3与圆(x-3)2+(y-2)2=4相交于M,N两点,若|MN|≥23,则k的取值范围是( )

A.-∞,-34 B.-34,0

C.-33,33 D.-23,0 第 2 页 共 8 页 解析:选B 圆心(3,2)到直线y=kx+3的距离d=|3k-2+3|k2+1=|3k+1|k2+1,由|MN|≥23,得23≤24-d2,所以d2≤1,即8k2+6k≤0⇒-34≤k≤0,故选B. 6.已知点P(x,y)是直线kx+y+4=0(k>0)上一动点,PA,PB是圆C:x2+y2-2y=0的两条切线,A,B是切点,若四边形PACB的最小面积是2,则k的值为( )

A.3 B.212 C.22 D.2 解析:选D 圆C:x2+y2-2y=0的圆心为(0,1),半径r=1.由圆的性质,知S四边形PACB

=2S△PBC.∵四边形PACB的最小面积是2,∴S△PBC的最小值为1,则12rdmin=1(d是切线长),

∴dmin=2.∵圆心到直线的距离就是PC的最小值,∴|PC|min=51+k2=d2+1=5.∵k>0,∴k=2.故选D. 7.圆x2+y2=50与圆x2+y2-12x-6y+40=0的公共弦的长度为________. 解析:两圆的公共弦长即两圆交点间的距离,将两圆方程联立,可求得弦所在直线为

2x+y-15=0,原点到该直线的距离为d=|-15|22+1=35,则公共弦的长度为2r2-d2=250-352=25. 答案:25 8.已知圆M:(x-1)2+(y-1)2=4,直线l:x+y-6=0,A为直线l上一点,若圆M上存在两点B,C,使得∠BAC=60°,则点A的横坐标的取值范围为________. 解析:由题意知,过点A的两直线与圆M相切时,夹角最大,当∠BAC=60°时,

MA=MBsin∠BAM=2sin 30°=4.设A(x,6-x),所以(x-1)2+(6-x-1)2=16,解得x=1或x=5,因此点A的横坐标的取值范围为[1,5]. 答案:[1,5] 9.已知直线x-y+a=0与圆心为C的圆x2+y2+2x-4y-4=0相交于A,B两点,且AC⊥BC,则实数a的值为________. 解析:由x2+y2+2x-4y-4=0得(x+1)2+(y-2)2=9, 所以圆C的圆心坐标为C(-1,2),半径为3, 由AC⊥BC,可知△ABC是直角边长为3的等腰直角三角形,

故可得圆心C到直线x-y+a=0的距离为322, 由点到直线的距离公式可得|-1-2+a|2=322, 第 3 页 共 8 页 解得a=0或a=6. 答案:0或6 10.在圆C:x2+y2-2x-2y-7=0上总有四个点到直线l:3x+4y+m=0的距离是1,则实数m的取值范围是____________. 解析:圆的标准方程为(x-1)2+(y-1)2=9.若圆上有四个点到直线3x+4y+m=0的距

离是1,则圆心到直线的距离小于2,即d=|7+m|5<2,解得-17答案:(-17,3)

B级——中档题目练通抓牢 1.已知圆心(a,b)(a<0,b<0)在直线y=2x+1上的圆,其圆心到x轴的距离恰好等于圆的半径,在y轴上截得的弦长为25,则圆的方程为( ) A.(x+3)2+(y+5)2=25 B.(x+2)2+(y+3)2=9

C.x-232+y-732=499

D.x+232+y+732=499

解析:选B 设圆的方程为(x-a)2+(y-b)2=r2(r>0),则 r=|b|,b=2a+1,r2=|a|2+52,解得

 a=-2,b=-3,r=3,所以圆的方程为(x+2)2+(y+3)2=9.故选B.

2.已知圆C:(x-3)2+(y-1)2=1和两点A(-t,0),B(t,0)(t>0),若圆C上存在点P,使得∠APB=90°,则实数t的最小值为( ) A.4 B.3 C.2 D.1 解析:选D 由∠APB=90°得,点P在圆x2+y2=t2上,因此由两圆有交点得|t-1|≤|OC|≤t+1⇒|t-1|≤2≤t+1⇒1≤t≤3,即t的最小值为1.

3.已知△ABC的三个顶点的坐标分别为A(-2,3),B(-2,-1),C(6,-1),以原点为圆心的圆与此三角形有唯一的公共点,则圆的方程为( ) A.x2+y2=1 第 4 页 共 8 页 B.x2+y2=4 C.x2+y2=165 D.x2+y2=1或x2+y2=37 解析:选D 如图所示,因为A(-2,3),B(-2,-1),C(6,-1).

∴过A,C的直线方程为y+13+1=x-6-2-6,化为一般式为x+2y-4=

0.点O到直线x+2y-4=0的距离d=|-4|5=455>1, 又|OA|=-22+32=13,|OB|=-22+-12=5,|OC|=62+-12=37. ∴以原点为圆心的圆若与三角形ABC有唯一的公共点,则公共点为(0,-1)或(6,-1),∴圆的半径分别为1或37,则圆的方程为x2+y2=1或x2+y2=37. 4.(2016·全国卷Ⅲ)已知直线l:mx+y+3m-3=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点.若|AB|=23,则|CD|=________. 解析:由直线l:mx+y+3m-3=0知其过定点(-3,3),圆心O到直线l的距离为

d=|3m-3|m2+1.

由|AB|=23,得3m-3m2+12+(3)2=12, 解得m=-33. 又直线l 的斜率为-m=33, 所以直线l的倾斜角α=π6. 画出符合题意的图形如图所示,过点C作CE⊥BD,则∠DCE=π6.在Rt△CDE中,可得|CD|=|AB|cosπ6 =23×23=4.

答案:4 5.设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是________. 解析:由题意可知M在直线y=1上运动,设直线y=1与圆x2+y2

=1相切于点P(0,1).当x0=0,即点M与点P重合时,显然圆上存在点N(±1,0)符合要求;当x0≠0时,过M作圆的切线,切点之一为点P,此时对于圆上任意一点N,都有∠OMN≤∠OMP,故要存在∠OMN=45°,第 5 页 共 8 页 只需∠OMP≥45°.特别地,当∠OMP=45°时,有x0=±1.结合图形可知,符合条件的x0

的取值范围为[-1,1].

答案:[-1,1] 6.已知圆C经过点A(2,-1),和直线x+y=1相切,且圆心在直线y=-2x上. (1)求圆C的方程; (2)已知直线l经过原点,并且被圆C截得的弦长为2,求直线l的方程. 解:(1)设圆心的坐标为C(a,-2a),

则a-22+-2a+12=|a-2a-1|2. 化简,得a2-2a+1=0,解得a=1. ∴C(1,-2),半径r=|AC|=1-22+-2+12=2. ∴圆C的方程为(x-1)2+(y+2)2=2. (2)①当直线l的斜率不存在时,直线l的方程为x=0,此时直线l被圆C截得的弦长为2,满足条件.

②当直线l的斜率存在时,设直线l的方程为y=kx,由题意得|k+2|1+k2=1,解得k=-34,

∴直线l的方程为y=-34x,即3x+4y=0. 综上所述,直线l的方程为x=0或3x+4y=0. 7.已知以点Ct,2t为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中O为坐标原点. (1)求证:△OAB的面积为定值; (2)设直线y=-2x+4与圆C交于点M,N,若|OM|=|ON|,求圆C的方程. 解:(1)证明:由题意知圆C过原点O, ∴半径r=|OC|.

又∵|OC|2=t2+4t2,

∴设圆C的方程为(x-t)2+y-2t2=t2+4t2. 令y=0,得x1=0,x2=2t,则A(2t,0). 令x=0,得y1=0,y2=4t,则B0,4t.

∴S△OAB=12|OA|·|OB|=12×4t×|2t|=4,

相关文档
最新文档