【数学】2.2 圆与圆的位置关系 课件(北师大版必修2)
合集下载
2. 2.3 第二课时 圆与圆的位置关系课件(北师大版必修二)

其圆心为C1(1,-5),半径r1=5 2. 圆心C1到直线x-2y+4=0的距离 |1-2×-5+4| d= =3 5, 2 1+-2 设公共弦长为2l,由勾股定理r2=d2+l2,得50=45 +l2,解得l= 5,所以公共弦长2l=2 5.
[一点通]
(1)求圆的弦长,一般运用垂径定理构造直角三
C1:(x-m)2+(y+2)2=9;C2:(x+1)2+(y-m)2=4.其 中C1(m,-2),C2(-1,m),r1=3,r2=2. (1)如果C1与C2外切,则有 m+12+m+22 =3+2, 即(m+1)2+(m+2)2=25. ∴m2+3m-10=0,解得m=-5,或m=2.
(2)如果C1与C2内切,则有 m+12+m+22= 3-2,即(m+1)2+(m+2)2=1, ∴m2+3m+2=0,解得m=-2,或m=-1. ∴当m=-5或m=2时,圆C1与圆C2外切; 当m=-2或m=-1时,圆C1与圆C2内切.
解得a=3,或a=-2, ∴D(3,-1)或D(-2,4). ∴所求圆的方程为(x-3)2+(y+1)2=9或(x+2)2+ (y-4)2=9.
1.讨论圆与圆的位置关系问题,一般有两 种方法,即代数法和几何法,代数法有时比较麻烦且 只提供交点的个数;几何法就比较简洁,只要将圆心 距d与|r1-r2|,r1+r2比较即可得出位置关系.
②方程x2+y2+Dx+Ey+F+λ(ax+by+c)
=0,表示过圆x2+y2+Dx+Ey+F=0与直线ax+
by+c=0交点的圆.
6.(2011· 江西九江检测)求与直线x+y-2=0和曲线
x2+ y2-12x-12y+54=0都相切,且半径最小的
解:如图x2+y2-12x-12y+54=0化为标准方 圆的标 程为(x-6)2+(y-6)2=18. 准方程.
2.2.3.2 圆与圆的位置关系 课件(北师大必修2)

[一点通]
判断两圆的位置关系有几何法和代数法两
种方法,几何法比代数法简便,解题时一般用几何法.
用几何法判断两圆位置关系的操作步骤
(1)将两圆的方程化为标准方程. (2)求两圆的圆心坐标和半径R、r. (3)求两圆的圆心距d. (4)比较d与|R-r|、R+r的大小关系.
1.两圆x2+y2-2x+4y+4=0和x2+y2-4x+2y+=0的
当| 50-k-1|=5,即 50-k=6, k=14时,两圆内切. 当14<k<34时,则4< 50-k<6, 即r2-r1<|C1C2|<r1+r2,时,两圆相交. 当34<k<50时,则 50-k<4, 即 50-k+1<|C1C2|时,两圆相离.
[例2]
+2y-8=0.
已知两圆x2+y2-2x+10y-24=0和x2+y2+2x
其圆心为C1(1,-5),半径r1=5 2. 圆心C1到直线x-2y+4=0的距离 |1-2×-5+4| d= =3 5, 2 1+-2 设公共弦长为2l,由勾股定理r2=d2+l2,得50=45 +l2,解得l= 5,所以公共弦长2l=2 5.
[一点通]
(1)求圆的弦长,一般运用垂径定理构造直角三角形,
(2)将两圆方程相减,得公共弦所在直线方程为 x-2y+4=0. (3)法一:两方程联立,得方程组
x2+y2-2x+10y-24=0, 2 x +y2+2x+2y-8=0.
① ② ③
两式相减得x=2y-4,
把③代入②得 y2-2y=0,∴y1=0,y2=2.
x =-4, 1 ∴ y1=0, x =0, 2 或 y2=2.
[例1]
已知圆C1:x2+y2-2mx+4y+m2-5=0,
【数学】2.2圆与圆的位置关系课件(北师大版必修2)

作业布置
必做:
1、课本P130:练习 2、P132习题4.2:A组1
选做:习题4.2:B组1
小结:判断两圆位置关系
几何方法
两圆心坐标及半径(配方 法)
圆心距d
(两点间距离公式)
比较d和r1,r2 的大小,下结
论
代数方法
(
(x a1)2 ( y b1)2 x a2 )2 ( y b2 )2
圆C1x2 y2 2x 8y 8 0 圆C2 x2 y2 2x 8y 8 0
y
A
o
Bx
画出圆C1与圆C2以及 方程 表示直线,你 发现了什么?你能说 明为什么吗?
思考题
圆C1:x2 y2 2mx 4 y m2 5 0, 圆C2:x2 y2 2x - 2my m2 3 0, m为何值时, 两圆 (1)相切 (2)相交 (3)相离 (4)内含
圆与圆的位置关系
直线与圆的位置关系
?
回顾:如何判断直线和圆的位置关系
形:距离
数:方程
求圆心坐标及半径r 圆心到直线的距离d
(x a)2 ( y b)2 r2 Ax ByC 0
消去y(或x)
px2 qx t 0
d r : 相交 d r : 相切 d r : 相离
圆与圆的位置关系
r12 r22
消去y(或x)
px2 qx r 0
0 : 相交 0 :内切或外切 0 : 相离或内含
?
图示
Rr
O1
O2
Rr
O1
O2
Rr O1 O2
R
O1
O
r
2
RO1ຫໍສະໝຸດ Or2位置关系
外离
圆心距离与半径关系
|O1O2|>|R+r|
新版高中数学北师大版必修2课件2.2.3.2圆与圆的位置关系

C2:x2+y2+D2x+E2y+F2=0(������22 + ������22-4F2>0),
联立以上两个方程得
������2 ������2
+ +
������2 ������2
+ +
������1 ������ ������2 ������
+ ������1 ������ + ������1 + ������2������ + ������2
2.公共弦长的求法
(1)代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离
公式求出弦长.
(2)几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、
弦心距构成的直角三角形,根据勾股定理求解.
3.(1)当两圆内切时,两圆方程相减所得直线方程即为两圆的公切
线方程;当两圆外切时,两圆方程相减所得直线方程为两圆的内公
∴圆M的方程为(x+3)2+(y-3)2=10.
-16-
第2课时 圆与圆的位置关系
首页
Z H 自主预习 IZHUYUXI
合作学习
EZUOXUEXI
D当堂检测 ANGTANG JIANCE
探究一
探究二
探究三
易错辨析
探究三与两圆相切有关的问题
【例3】已知点F(0,1),一动圆过点F且与圆x2+(y+1)2=8内切,求动 圆圆心的轨迹方程.
(1)求公共弦AB所在直线的方程; (2)求圆心在直线y=-x上,且经过A,B两点的圆的方程.
解:(1)由已知得
������2 + ������2 + 2������ + 2������-8 = 0 ①
2. 2.3 第二课时 圆与圆的位置关系课件(北师大版必修二)

C1:(x-m)2+(y+2)2=9;C2:(x+1)2+(y-m)2=4.其 中C1(m,-2),C2(-1,m),r1=3,r2=2. (1)如果C1与C2外切,则有 m+12+m+22 =3+2, 即(m+1)2+(m+2)2=25. ∴m2+3m-10=0,解得m=-5,或m=2.
(2)如果C1与C2内切,则有 m+12+m+22= 3-2,即(m+1)2+(m+2)2=1, ∴m2+3m+2=0,解得m=-2,或m=-1. ∴当m=-5或m=2时,圆C1与圆C2外切; 当m=-2或m=-1时,圆C1与圆C2内切.
当| 50-k-1|=5,即 50-k=6, k=14时,两圆内切. 当14<k<34时,则4< 50-k<6, 即r2-r1<|C1C2|<r1+r2,时,两圆相交. 当34<k<50时,则 50-k<4, 即 50-k+1<|C1C2|时,两圆相离.
[例2]
已知两圆x2+y2-2x+10y-24=0和x2
由题意知,圆心(3,4)到已知直线l1的距离等于半径 |3k-4-k| 3 2,即 =2,解之得k=4. 2 k +1 所求直线l1的方程为x=1或3x-4y-3=0.
(2)依题意设D(a,2-a),又已知圆C的圆心(3,4), r=2,由两圆外切,可知|CD|=5, ∴可知 a-32+2-a-42=5,
位置关系是
A.相切 C.内含 B.外离 D.相交
(
)
解析:两圆的圆心和半径分别为O1(1,-2),r1=1, 1 O2(2,-1),r2= ,则圆心距d=|O1O2|= 2 1 1 2 2 1-2 +-2+1 = 2,由1- 2 <d<1+ 2 ,得两圆相 交.
(2)如果C1与C2内切,则有 m+12+m+22= 3-2,即(m+1)2+(m+2)2=1, ∴m2+3m+2=0,解得m=-2,或m=-1. ∴当m=-5或m=2时,圆C1与圆C2外切; 当m=-2或m=-1时,圆C1与圆C2内切.
当| 50-k-1|=5,即 50-k=6, k=14时,两圆内切. 当14<k<34时,则4< 50-k<6, 即r2-r1<|C1C2|<r1+r2,时,两圆相交. 当34<k<50时,则 50-k<4, 即 50-k+1<|C1C2|时,两圆相离.
[例2]
已知两圆x2+y2-2x+10y-24=0和x2
由题意知,圆心(3,4)到已知直线l1的距离等于半径 |3k-4-k| 3 2,即 =2,解之得k=4. 2 k +1 所求直线l1的方程为x=1或3x-4y-3=0.
(2)依题意设D(a,2-a),又已知圆C的圆心(3,4), r=2,由两圆外切,可知|CD|=5, ∴可知 a-32+2-a-42=5,
位置关系是
A.相切 C.内含 B.外离 D.相交
(
)
解析:两圆的圆心和半径分别为O1(1,-2),r1=1, 1 O2(2,-1),r2= ,则圆心距d=|O1O2|= 2 1 1 2 2 1-2 +-2+1 = 2,由1- 2 <d<1+ 2 ,得两圆相 交.
2. 2.3 第二课时 圆与圆的位置关系课件(北师大版必修二)

由题意知,圆心(3,4)到已知直线l1的距离等于半径 |3k-4-k| 3 2,即 =2,解之得k=4. 2 k +1 所求直线l1的方程为x=1或3x-4y-3=0.
(2)依题意设D(a,2-a),又已知圆C的圆心(3,4), r=2,由两圆外切,可知|CD|=5, ∴可知 a-32+2-a-42=5,
当| 50-k-1|=5,即 50-k=6, k=14时,两圆内切. 当14<k<34时,则4< 50-k<6, 即r2-r1<|C1C2|<r1+r2,时,两圆相交. 当34<k<50时,则 50-k<4, 即 50-k+1<|C1C2|时,两圆相离.
[例2]
已知两圆x2+y2-2x+10y-24=0和x2
因为点(1, 3)和(1,- 3)都在直线 x=1 上, 故过这两个点的圆的圆心在 x 轴上, 又圆心在直线 x- 3y-6=0 上, ∴圆心为(6,0),半径 r= 6-12+ 32= 28. ∴圆的方程为(x-6)2+y2=28.
法二:设所求圆的方程为: x2+y2-4+λ(x2+y2-4x)=0(λ≠-1). 4λ 4 整理得:x +y - x- =0, 1+λ 1+λ
圆心(6,6)到直线x+y-2=0的距离为 |6+6-2| d= =5 2, 2 ∴所求圆的圆心在过点(6,6)且与直线x+y-2=0垂 直的直线上,并且直径为2r=5 2-3 2=2 2,
∴所求圆的圆心在直线y=x上,且圆心到直线x+y-2 =0的距离为 2. |a+a-2| 设圆心为(a,a),则 = 2 ⇒a=2或a=0,但 2 圆心应在直线x+y-2=0上方, ∴a=2. ∴所求圆的方程为(x-2)2+(y-2)2=2.
[一点通]
高中数学北师大版必修二 2.2.3.2圆与圆的位置关系 课件(29张)

预习交流 2
在判定直线与圆的位置关系时,可用直线方程与圆的方程联立组 成的方程组的解的个数来判断,那么,用两圆的方程组成的方程组有一 解或无解时能否准确判定两圆的位置关系?若不能准确判定,怎么办? 提示:不能.当两圆方程组成的方程组有一解时,两圆有外切、内切 两种可能情况,当方程组无解时,两圆有相离、内含两种可能情况.下一 步应考查圆心距与两半径的和与差的大小关系 ,以此来判断两圆到底 是外切还是内切,是相离还是内含.
C.相切 D.内含 解析:圆 x2+y2+6x-7=0 可化为(x+3)2+y2=16,圆心(-3,0),半径 r1=4, 圆 x2+y2+6y-27=0 可化为 x2+(y+3)2=36,圆心(0,-3),半径 r2=6,圆心距 d=3 2,因此|r1-r2|<d<r1+r2,两圆相交. 答案:B
ቤተ መጻሕፍቲ ባይዱ
问题导学
当堂检测
解:(1)∵ m=1,∴ 两圆的方程分别可化为 C1:(x-1)2+(y+2)2=9.C2:(x+1)2+y2=1. 两圆的圆心距 d= (1 + 1)2 + (-2)2 =2 2, 又∵ r1+r2=3+1=4,|r1-r2|=|3-1|=2, ∴ |r1-r2|<d<r1+r2.∴ 圆 C1 与圆 C2 相交. (2)当 m=4 时,两圆的方程分别可化为 C1:(x-4)2+(y+2)2=9,C2:(x+1)2+y2=1. 两圆的圆心距 d= (4 + 1)2 + (-2)2 = 29, 又∵ r1+r2=3+1,∴ d>r1+r2. ∴ 圆 C1 与圆 C2 相离.
2.2.3.2 圆与圆的位置关系 课件(北师大必修2)

利用半径、弦心距先求半弦长,即得弦长. (2)求两圆的公共弦长及公共弦所在直线方程一般 不用求交点的方法,常用如下方法:
4.两圆x2+y2+4x-4y=0和x2+y2+2x-12=0的相交 弦方程为 A.x+2y-6=0 C.x-2y+6=0 B.x-3y+5=0 D.x+3y-8=0 ( )
解析:两圆方程相减得:
(2)将两圆方程相减,得公共弦所在直线方程为 x-2y+4=0. (3)法一:两方程联立,得方程组
x2+y2-2x+10y-24=0, 2 x +y2+2x+2y-8=0.
① ② ③
两式相减得x=2y-4,
把③代入②得 y2-2y=0,∴y1=0,y2=2.
x =-4, 1 ∴ y1=0, x =0, 2 或 y2=2.
解得a=3,或a=-2, ∴D(3,-1)或D(-2,4). ∴所求圆的方程为(x-3)2+(y+1)2=9或(x+2)2+ (y-4)2=9.
1.讨论圆与圆的位置关系问题,一般有两种方 法,即代数法和几何法,代数法有时比较麻烦且只提 供交点的个数;几何法就比较简洁,只要将圆心距d 与|r1-r2|,r1+r2比较即可得出位置关系.
a=1.
答案:1
[例3]
过两圆x2+y2-4=0和x2-4x+y2=0的交点,且
圆心在直线x- 3y-6=0上的圆的方程. [思路点拨] 求出交点,再求圆心和半径得圆的方程.
[精解详析]
法一:
x2+y2-4=0, 由 2 2 x +y -4x=0, x=1, 得 y= 3, x=1, 或 y=- 3,
F1-F2=0表示两圆的公共弦所在的直线方程.
②方程x2+y2+Dx+Ey+F+λ(ax+by+c)=0,
4.两圆x2+y2+4x-4y=0和x2+y2+2x-12=0的相交 弦方程为 A.x+2y-6=0 C.x-2y+6=0 B.x-3y+5=0 D.x+3y-8=0 ( )
解析:两圆方程相减得:
(2)将两圆方程相减,得公共弦所在直线方程为 x-2y+4=0. (3)法一:两方程联立,得方程组
x2+y2-2x+10y-24=0, 2 x +y2+2x+2y-8=0.
① ② ③
两式相减得x=2y-4,
把③代入②得 y2-2y=0,∴y1=0,y2=2.
x =-4, 1 ∴ y1=0, x =0, 2 或 y2=2.
解得a=3,或a=-2, ∴D(3,-1)或D(-2,4). ∴所求圆的方程为(x-3)2+(y+1)2=9或(x+2)2+ (y-4)2=9.
1.讨论圆与圆的位置关系问题,一般有两种方 法,即代数法和几何法,代数法有时比较麻烦且只提 供交点的个数;几何法就比较简洁,只要将圆心距d 与|r1-r2|,r1+r2比较即可得出位置关系.
a=1.
答案:1
[例3]
过两圆x2+y2-4=0和x2-4x+y2=0的交点,且
圆心在直线x- 3y-6=0上的圆的方程. [思路点拨] 求出交点,再求圆心和半径得圆的方程.
[精解详析]
法一:
x2+y2-4=0, 由 2 2 x +y -4x=0, x=1, 得 y= 3, x=1, 或 y=- 3,
F1-F2=0表示两圆的公共弦所在的直线方程.
②方程x2+y2+Dx+Ey+F+λ(ax+by+c)=0,