重庆大学研究生数值分析期末考试试卷
研究生数值分析试卷.docx

2005-2006学年第一学期硕士研究生期末考试试题(A 卷)科目名称:数值分析学生所在院: _______ 学号: _________ 姓名: _______ 注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。
一、 (15分)设求方程12-3x + 2cosx = 0根的迭代法(1) 证明对0兀0 w /?,均有lim 林,其中T 为方程的根.kT8 (2) 此迭代法收敛阶是多少?证明你的结论.二、 (12分)讨论分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下列方程组的 收敛性。
x } + 2X 2 - 2X 3 = 1,v 兀]+ 兀2 +兀3 = _1,2兀]+ 2兀2 +兀3 = °・a 0、a 0 ,说明对任意实数。
工0,方程组AX=b 都是0 Q,非病态的。
(范数用||・|L )四、(15分)已知y = f (x )的数据如下:求/(%)的Hermite 插值多项式H 3 (%),并给出截断误差/?(兀)=f (x ) - H 3 (x )。
五、(10分)在某个低温过程屮,函数y 依赖丁•温度兀(°C )的试验数据为已知经验公式的形式为『=仮+方兀2 ,试用最小二乘法求出a , b o 六、(12分)确定常数a, b 的值,使积分(2a 三、(8分)若矩阵A = 0J(a, /?) = !] [ax2取得最小值。
七、(14分)已知Legendre (勒让德)止交多项式厶(x )有递推关系式:'L 曲(兀)=^77 心(兀)一 -—Ln-1(兀)(斤=1, 2,…)试确定两点的高斯一勒让德(G —L )求积公式£ f (x )djc = £ f\x }) + A 2 .f (兀2)的求积系数和节点,并用此公式近似计算积分go ) = y ()儿+1 =儿+力(^心+-^2) k\=f (Xn ,yJ 忍=fg + h,y n +hk {)(1) 验证它是二阶方法; (2) 确定此单步法的绝对稳定域。
数值分析期末考试和答案

数值分析期末考试和答案一、单项选择题(每题2分,共20分)1. 在数值分析中,下列哪个方法用于求解线性方程组?A. 插值法B. 迭代法C. 直接法D. 拟合法答案:C2. 以下哪个数值方法是用于求解非线性方程的?A. 高斯消元法B. 牛顿迭代法C. 线性插值法D. 拉格朗日插值法答案:B3. 在数值积分中,梯形法则的误差与下列哪个因素无关?A. 被积函数的二阶导数B. 积分区间的长度C. 积分区间的划分数量D. 被积函数的一阶导数答案:D4. 以下哪个数值方法是用于求解常微分方程的?A. 欧拉方法B. 牛顿迭代法C. 拉格朗日插值法D. 高斯消元法答案:A5. 在数值分析中,下列哪个方法用于求解特征值问题?A. 高斯消元法B. 幂迭代法C. 牛顿迭代法D. 梯形法则答案:B6. 以下哪个数值方法是用于求解线性最小二乘问题的?A. 高斯消元法B. 梯形法则C. 正交分解法D. 牛顿迭代法答案:C7. 在数值分析中,下列哪个方法用于求解非线性方程组?A. 高斯消元法B. 牛顿迭代法C. 线性插值法D. 欧拉方法答案:B8. 在数值分析中,下列哪个方法用于求解偏微分方程?A. 有限差分法B. 牛顿迭代法C. 线性插值法D. 梯形法则答案:A9. 在数值分析中,下列哪个方法用于求解优化问题?A. 高斯消元法B. 梯形法则C. 牛顿迭代法D. 单纯形法答案:D10. 在数值分析中,下列哪个方法用于求解插值问题?A. 高斯消元法B. 梯形法则C. 牛顿迭代法D. 拉格朗日插值法答案:D二、填空题(每题2分,共20分)1. 在数值分析中,求解线性方程组的直接法包括______消元法和______消元法。
答案:高斯;LU2. 牛顿迭代法的收敛速度是______阶的。
答案:二3. 梯形法则的误差与被积函数的______阶导数有关。
答案:二4. 欧拉方法是一种求解______阶常微分方程的数值方法。
答案:一5. 幂迭代法是求解______特征值问题的数值方法。
重庆大学《数值分析》期末考试真题及答案

重庆大学《数值分析》期末考试真题及答案(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一.填空题: 1. 若求积公式对任意不超过 m 次的多项式精确成立,而对 m+1 次多项式不成立,则称此公式的代数精度为m 次. 2. 高斯消元法求解线性方程组的的过程中若主元素为零会发生 计算中断 ;.主元素的绝对值太小会发生 误差增大 .3. 当A 具有对角线优势且 不可约 时,线性方程组Ax=b 用简单迭代法和塞德尔迭代法均收敛.4. 求解常微分方程初值问题的欧拉方法是 1 阶格式; 标准龙格库塔法是 4 阶格式.5. 一个n 阶牛顿-柯特斯公式至少有 n 次代数精度,当n 偶数时,此公式可以有n+1 次代数精度.6. 相近数 相减会扩大相对误差,有效数字越多,相对误差 越大 .二计算题: 1. 线性方程组:⎪⎩⎪⎨⎧-=++-=+-=++5.1526235.333321321321x x x x x x x x x 1) 对系数阵作LU 分解,写出L 阵和U 阵;⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=79/123/5413314/33/113/11U L 2) 求出此方程组的解.)5.0,1,2('-=x2. 线性方程组:⎪⎩⎪⎨⎧=++-=++=++332212325223321321321x x x x x x x x x 1)对系数阵作LU 分解,写出L 阵和U 阵;⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛=573235223152321321//////U L2)求出此方程组的解.),,('-=133x3) 此方程组能否用用简单迭代法和高斯塞德尔迭代法求解.0732223222305322303>=>=>,,A 对称正定,用高斯-塞德尔迭代法收敛;..,.,//////)(,6667033331027163432323232323232131=-==+-=-⎪⎪⎪⎭⎫ ⎝⎛-=+-=-λλλλλJ J B I U L D B 用简单迭代法不收敛3. 设f (x )= x 4, 以-1,0,1,2为插值节点,1) 试写出f (x )的三次拉格朗日插值多项式P 3(x )及其插值余项R 3(x );6)2)(1())()(())()(()(3020103210---=------=x x x x x x x x x x x x x x x x l 2)2)(1)(1())()(())()(()(3121013201--+=------=x x x x x x x x x x x x x x x x l 2)2)(1())()(())()(()(3212023102-+-=------=x x x x x x x x x x x x x x x x l 6)1)(1())()(())()(()(2313032103-+=------=x x x x x x x x x x x x x x x x l )(8)()()(3203x l x l x l x P ++=())2)(1)(1()2)(1()1(!4)()4(43--+=--+=x x x x x x x x x x R 2) 求出f 的近似值,并估计误差.0625.55.1)5.1(4==f-0.93755.05.05.25.1)2)(1)(1()5.1(3=-⨯⨯⨯=--+=x x x x R 6)9375.0(0625.5)5.1(3=--=P或:0.3125610.9375 0625.0)5.1(8)5.1()5.1()5.1(3203⨯++=++=l l l P =6 -0.937560625.5)5.1()5.1()5.1(33=-=-=P f R4 设x x f ln )(=, 以1,2,3为插值节点,1) 试写出f (x )的二次拉格朗日插值多项式P 2(x )及其插值余项R 2(x );2322010210))(())(())(()(--=----=x x x x x x x x x x x l ))(())(())(()(312101201---=----=x x x x x x x x x x x l2211202102))(())(())(()(--=----=x x x x x x x x x x x l98080124711438009861693102212...)(.)(.)(-+-=+=x xx l x l x P 23112312333ln ()()()()()()()!R x x x x x x x ξξ'''=---=---2) 求出)(ln e p e 2≈的近似值,与精确值1比较,并用误差公式估计误差限.0135010135122.,ln ,.)(===R e e p231123123331171830718302817011593ln ()()()()()()()!..(.).R e e e e e e e ξξ'''=---=---≤⨯⨯⨯-=5 有积分公式()()2)0(2)(33f c f b f a dx x f ⨯+⨯+-⨯=⎰-,c b a ,,是待定参数,试确定c b a ,,,使得上述公式有尽可能高的代数精度,并确定代数精度为多少.⎰⎰⎰---==+==+-==++==332333318)(40)(2612,1,0,)(dx x b a xdx b a dx c b a k x x f k)]()()([)(/,/33023343234933f f f dx x f c b a ++-====∴⎰- 至少有2次代数精度.[][]10872072435486,024024430,)(33433343=++≠==++-===⎰⎰--dx x dx x x x x f此公式代数精度为3. 6 有积分公式)]2(3)0(2)2(3[43)(33f f f dx x f ++-=⎰- 1) 试确定代数精度为多少;2) 用它计算⎰-33dx e x,精确到2位小数,与3333---=⎰e e dx e x 作比较.[][][][][]10872072435486,02402443012012431860643032343614,3,2,1,0,)(3343333323333=++≠==++-==++==++-==++====⎰⎰⎰⎰⎰-----dx x dx x dx x xdx dx k x x f k代数精度为3.04.2043.18]323[43333320332=-==++≈⎰⎰----e e dx e e e e dx e x x7. 某企业产值与供电负荷增长情况如下表:1) 试用一次多项式拟合出经验公式bx a y +=;⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛415521186062625..b a 解之: 0006101811.,.ab =-=0061018110..-=x y8. 测试某型号水泵得到扬程(米)和出水量(立米/小时)的对照表如下:1)试用一次多项式拟合出经验公式x ba y +=;bX a y x X +==,/1⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛12365491404514515....b a 解之: 59953043864.,.ba ==-38644953059./.-=x y2) 计算拟合值填入上表的空格,看是否与实际值基本吻合; 3) 某用户使用此型号水泵时扬程为米,试估计此时出水量67183864462953059.../.=-=y9 方程01=-+-x xe x有一个实根:1)用区间对分法搜索确定根所在的区间 (a,b ),使 b-a ≤;,1) 用某种迭代法求出此正根,精确到5位有效数字65905.0*≈x10 方程x e x-= 1) 证明它在(0,1)区间有且只有一个实根; 2) 证明 ,,,101==-+k e x k x k ,在(0,1)区间内收敛;3) 用牛顿迭代法求出此根,精确到5位有效数字1),.)(,)(,)(063201100>=-==-=-f f e x x f x(0,1)区间有一个实根;)(,)(x f e x f x 011>>+='-是严格增函数,只有一个实根。
数值分析期末实验试题及答案

A =
1 0 0 2
0 1 0 4
0 0 1 3
Jacobi输出结果:
N x1 x2 x3 err
2, 1.656250, 3.875000, 3.175000, 1.250000
3, 1.925000, 3.850000, 2.887500, 0.287500
4, 1.990625, 3.948437, 3.000000, 0.112500
Gauss-Seidel迭代法:
N x1 x2 x3 err
2, 1.875000, 3.937500, 2.962500, 0.437500
3, 1.993750, 3.992188, 2.999063, 0.118750
4, 1.998281, 3.999023, 2.999508, 0.006836
SOR迭代法
N x1 x2 x3 err
2, 1.721568, 3.608925, 2.679907, 0.233925
3, 1.824455, 3.629131, 2.727301, 0.102888
4, 1.812174, 3.627893, 2.720033, 0.012281
5, 1.814371, 3.628155, 2.721265, 0.002197
end
function[y,n]=sor(A,b,x0,ep,w)
D=diag(diag(A));
L=-tril(A,-1);
U=-triu(A,1);
B=(D-w*L)\((1-w)*D+w*U);
f=w*(D-w*L)\b;
y=B*x0+f;
n=1;
whileabs(norm(y-x0,inf))>=ep
2019年数值分析第二学期期末考试试题与答案A

卷)期末考试试卷(A2007学年第二学期考试科目:数值分析分钟考试时间:120年级专业学号姓名题号一2二三0四总分分)分,共10一、判断题(每小题210001?n)( 1. 用计算机求时,应按照从小到大的顺序相加。
1000n1n?219992001?为了减少误差2. ,应将表达式进行计算。
(改写为)19992001?)( 3. 用数值微分公式中求导数值时,步长越小计算就越精确。
) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。
(系数矩阵及其演变方式有用迭代法解线性方程组时,5. 迭代能否收敛与初始向量的选择、)(关,与常数项无关。
分)二、填空题(每空2分,共36_________.________,相对误差限为已知数a的有效数为0.01,则它的绝对误差限为1.0?110??????????xA?Ax,0?21,x??5A?_____.则设______,_____,2. ????21?????1?130????53f(x)?2x?4x?5x,f[?1,1,0]?f[?3,?2,?1,1,2,3]? 3. 已知则, .331?)?Af(0)?Af(f(x)dx?Af(?)的代数精度尽量高,应使4. 为使求积公式321331?A?A?A?,此时公式具有,,次的代数精度。
312?nA)(A的关系是 5. A阶方阵的谱半径与它的任意一种范数.(k?1)(k)BAX??N(k?XMX?0,1,2,)产时,使迭代公式用迭代法解线性方程组6.??)k(X .生的向量序列收敛的充分必要条件是AX?BAL和上三角矩7. 使用消元法解线性方程组系数矩阵时,可以分解为下三角矩阵14?2??BAX?.A?LUU?A,则阵若采用高斯消元法解的乘积,即,其中??21??L?U?AX?B,则,______________;若使用克劳特消元法解_______________u?lu BAX?的大小关系为_____(选填:则____;若使用平方根方法解>与,,111111<,=,不一定)。
数值方法期末考试题及答案

数值方法期末考试题及答案一、选择题(每题2分,共20分)1. 在数值分析中,下列哪个算法用于求解线性方程组?A. 快速傅里叶变换B. 高斯消元法C. 牛顿法D. 辛普森积分法答案:B2. 插值和逼近的主要区别是什么?A. 插值点必须在数据点上B. 逼近点可以不在数据点上C. 插值是线性的,逼近是非线性的D. 插值是多项式,逼近是函数答案:A3. 以下哪个是数值稳定性好的算法?A. 直接迭代法B. 雅可比迭代法C. 高斯-塞德尔迭代法D. 松弛法答案:C4. 牛顿-拉弗森方法用于求解什么类型的方程?A. 线性方程B. 非线性方程C. 微分方程D. 积分方程答案:B5. 以下哪个是数值积分方法?A. 欧拉方法B. 辛普森方法C. 拉格朗日插值D. 牛顿法答案:B...(此处省略其他选择题)二、简答题(每题10分,共30分)1. 解释什么是病态问题,并给出一个例子。
答案:病态问题是指那些微小的输入变化会导致输出结果产生巨大变化的问题。
例如,在数值分析中,求解线性方程组时,如果系数矩阵的条件数很大,那么该问题就被认为是病态的。
这意味着即使输入数据只有微小的误差,也会导致解的误差非常大。
2. 描述数值微分和数值积分的区别。
答案:数值微分是估计函数在某点的导数,而数值积分是估计函数在某个区间上的积分。
数值微分通常涉及到差分,例如前向差分、后向差分和中心差分等。
数值积分则涉及到数值积分方法,如梯形法则、辛普森法则等。
3. 解释什么是条件数,并说明它在数值分析中的重要性。
答案:条件数是一个量度,用来衡量问题的敏感性,即输入数据的微小变化会导致输出结果多大的变化。
在数值分析中,一个条件数较小的问题被认为是良态的,因为这意味着问题对输入数据的微小变化不敏感。
相反,条件数较大的问题被认为是病态的,需要特别小心处理,以避免数值误差的累积。
三、计算题(每题25分,共50分)1. 给定线性方程组:\[\begin{align*}4x + y - 2z &= 6 \\2x - y + 3z &= -1 \\-2x + 3y + z &= 4\end{align*}\]使用高斯消元法求解该方程组,并给出解。
重庆大学研究生数值分析试题解析
算精度为=10-2的近似根; (3)此迭代法的收敛阶是多少?说明之.
解 (1)因为0<x1时,(x)<0,x2时,(x)>0,所以(x)仅在(1,2)内有零点,而当1<x<2 时,(x)>0,故(x)单调.因此方程(x)=0有唯一正根,且在区间(1,2)内.
(3)因为0<</2,所以() 故,此迭代法线性收敛(收敛阶为1).
0
cos / 2 1 sin
三、(14分)设线性方程组
4x1 x2 2x3 1 x1 5x2 x3 2 2x1 x2 6x3 3
(1)写出Jacobi法和SOR法的迭代格式(分量形式); (2)讨论这两种迭代法的收敛性. (3)取初值x(0)=(0,0,0)T,若用Jacobi迭代法计算时, 预估误差x*-x(10) (取三位有效数字).
R(பைடு நூலகம்) f (4) ( x ) x(x 1)2 (x 2)
4!
五、(12分)试确定参数A,B,C及,使数值积分公式
2
2
f
(x)dx
Af
( )
Bf
(0)
Cf
( )
有尽可能高的代数精度,并问代数精度是多少?它是否是Gauss公式?
解 令公式对(x)=1,x,x2,x3,x4都精确成立,则有 4=A+B+C, 0=A-C, 16/3=A2+C2, 0=A3-C3 64/5=A4+C4 ,解得:A=C=10/9,B=16/9,=(12/5)1/2
考试题解析
(完整)数值分析学期期末考试试题与答案(A),推荐文档
期末考试试卷(A 卷)2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟学号 姓名 年级专业一、判断题(每小题2分,共10分)1. 用计算机求1000100011n n=∑时,应按照n 从小到大的顺序相加。
( )2. 为了减少误差,进行计算。
( )3. 用数值微分公式中求导数值时,步长越小计算就越精确。
( )4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。
( )5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有关,与常数项无关。
( )二、填空题(每空2分,共36分)1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________.2. 设1010021,5,1301A x -⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦则1A =_____,2x =______,Ax ∞=_____.3. 已知53()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= .4. 为使求积公式11231()((0)f x dx A f A f A f -≈++⎰的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。
5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 .6. 用迭代法解线性方程组AX B =时,使迭代公式(1)()(0,1,2,)k k XMX N k +=+=K 产生的向量序列{}()k X收敛的充分必要条件是 .7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩阵U 的乘积,即.A LU = 若采用高斯消元法解AX B =,其中4221A -⎡⎤=⎢⎥⎣⎦,则L =_______________,U =______________;若使用克劳特消元法解AX B =,则11u =____;若使用平方根方法解AX B =,则11l 与11u 的大小关系为_____(选填:>,<,=,不一定)。
【学期】数值分析学期期末考试试题与答案A
【关键字】学期期末考试试卷(A卷)2007学年第二学期考试科目:数值分析考试时间:120 分钟学号姓名年级专业一、判断题(每小题2分,共10分)1. 用计算机求时,应按照从小到大的顺序相加。
()2. 为了减少误差,应将表达式改写为进行计算。
()3. 用数值微分公式中求导数值时,步长越小计算就越精确。
()4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。
()5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有关,与常数项无关。
()2、填空题(每空2分,共36分)1. 已知数a的有效数为0.01,则它的绝对误差限为________,相对误差限为_________.2. 设则_____,______,_____.3. 已知则, .4. 为使求积公式的代数精度尽量高,应使,,,此时公式具有次的代数精度。
5. 阶方阵A的谱半径与它的任意一种范数的关系是.6. 用迭代法解线性方程组时,使迭代公式产生的向量序列收敛的充分必要条件是.7. 使用消元法解线性方程组时,系数矩阵可以分解为下三角矩阵和上三角矩阵的乘积,即若采用高斯消元法解,其中,则_______________,______________;若使用克劳特消元法解,则____;若使用平方根方法解,则与的大小关系为_____(选填:>,<,=,不一定)。
8. 以步长为1的二阶泰勒级数法求解初值问题的数值解,其迭代公式为___________________________.三、计算题(第1~3、6小题每题8分,第4、5小题每题7分,共46分)1.以为初值用牛顿迭代法求方程在区间内的根,要求(1)证明用牛顿法解此方程是收敛的;(2)给出用牛顿法解此方程的迭代公式,并求出这个根(只需计算计算结果取到小数点后4位)。
2.给定线性方程组(1)分别写出用Jacobi和Gauss-Seidel迭代法求解上述方程组的迭代公式;(2)试分析以上两种迭代方法的敛散性。
数值分析报告期末考试复习题及其问题详解
数值分析期末考试复习题及其答案1. 已知325413.0,325413*2*1==X X 都有6位有效数字,求绝对误差限。
(4分)解:由已知可知,n=65.01021,0,6,10325413.0016*1=⨯==-=⨯=ε绝对误差限n k k X 2分 620*21021,6,0,10325413.0-⨯=-=-=⨯=ε绝对误差限n k k X 2分2. 已知⎢⎢⎢⎣⎡=001A 220- ⎥⎥⎥⎦⎤440求21,,A A A ∞ (6分) 解:{},88,4,1max 1==A 1分 {},66,6,1max ==∞A 1分 ()A A A T max 2λ= 1分⎢⎢⎢⎣⎡=001A A T 420 ⎥⎥⎥⎦⎤-420⎢⎢⎢⎣⎡001 220- ⎥⎥⎥⎦⎤440=⎢⎢⎢⎣⎡001 080 ⎥⎥⎥⎦⎤3200 2分 {}3232,8,1max )(max ==A A T λ 1分 24322==A3. 设32)()(a x x f -= (6分) ① 写出f(x)=0解的Newton 迭代格式② 当a 为何值时,)(1k k x x ϕ=+ (k=0,1……)产生的序列{}k x 收敛于2解:①Newton 迭代格式为:xa x x x ax a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(22321+=+=---=-=+ϕ 3分②时迭代收敛即当222,11210)2(',665)('2<<-<-=-=a a x a x ϕϕ 3分4. 给定线性方程组Ax=b ,其中:⎢⎣⎡=13A ⎥⎦⎤22,⎥⎦⎤⎢⎣⎡-=13b 用迭代公式)()()()1(k k k Ax b x x -+=+α(k=0,1……)求解Ax=b ,问取什么实数α,可使迭代收敛(8分)解:所给迭代公式的迭代矩阵为⎥⎦⎤--⎢⎣⎡--=-=ααααα21231A I B 2分其特征方程为 0)21(2)31(=----=-αλαααλλB I 2分即,解得αλαλ41,121-=-= 2分 要使其满足题意,须使1)(<B ρ,当且仅当5.00<<α 2分5. 设方程Ax=b ,其中⎢⎢⎢⎣⎡=211A 212 ⎥⎥⎥⎦⎤-112,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=765b 试讨论解此方程的Jacobi 迭代法的收敛性,并建立Gauss-Seidel 迭代格式 (9分)解:U D L A ++=⎢⎢⎢⎣⎡--=+-=-210)(1U L D B J 202-- ⎥⎥⎥⎦⎤-012 3分0,03213=====-λλλλλJ B I 2分即10)(<=J B ρ,由此可知Jacobi 迭代收敛 1分 Gauss-Seidel 迭代格式:⎪⎩⎪⎨⎧--=--=+-=++++++)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(12276225k k k k k k k k k x x x x x x x x x (k=0,1,2,3……) 3分6. 用Doolittle 分解计算下列3个线性代数方程组:i i b Ax =(i=1,2,3)其中⎢⎢⎢⎣⎡=222A 331 ⎥⎥⎥⎦⎤421,23121,,974x b x b b ==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= (12分)解:①11b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=9741x A=⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211=LU 3分 由Ly=b1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡974 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 1分 由Ux1=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 得x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 2分 ②22b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 由Ly=b2=x1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 1分 由Ux2=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 得x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 2分 ③33b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0由Ly=b3=x2,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 1分 由Ux3=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 得x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-025.0375.0 2分7. 已知函数y=f(x)有关数据如下:要求一次数不超过3的H 插值多项式,使'11'33)(,)(y x H y x H i i == (6分)解:作重点的差分表,如下:3分21021101011001003))(](,,,[))(](,,[)](,[][)(x x x x x x x x f x x x x x x x f x x x x f x f x H --+--+-+= =-1+(x+1)-x(x+1)+2x.x(x+1)=232x x + 3分8. 有如下函数表:试计算此列表函数的差分表,并利用Newton 前插公式给出它的插值多项式 (7分)解:由已知条件可作差分表,3分i ih x x i =+=0 (i=0,1,2,3)为等距插值节点,则Newton 向前插值公式为: 033210022100003!3))()((!2))((!1)()(f h x x x x x x f h x x x x f h x x f x N ∆---+∆--+∆-+==4+5x+x(x-1)=442++x x 4分9. 求f(x)=x 在[-1,1]上的二次最佳平方逼近多项式)(2x P ,并求出平方误差 (8分)解:令22102)(x a x a a x P ++= 2分取m=1, n=x, k=2x ,计算得: (m,m)=dx ⎰-111=0 (m,n)=dx x ⎰-11=1 (m,k)= dx x ⎰-112=0(n,k)= dx x ⎰-113=0.5 (k,k)= dx x ⎰-114=0 (m,y)= dx x ⎰-11=1(n,y)=dx x⎰-112=0 (k,y)= dx x ⎰-113=0.5得方程组:⎪⎩⎪⎨⎧==+=5.05.005.011201a a a a 3分解之得c a a c a 2,1,210-=== (c 为任意实数,且不为零)即二次最佳平方逼近多项式222)(cx x c x P -+= 1分 平方误差:32),(22222222=-=-=∑=i i i y a fp f ϕδ 2分10. 已知如下数据:用复合梯形公式,复合Simpson 公式计算⎰+=10214dx x π的近似值(保留小数点后三位) (8分)解:用复合梯形公式:)}1()]87()43()85()21()83()41()81([2)0({1618f f f f f f f f f T ++++++++==3.139 4分用复合Simpson 公式: )}1()]43()21()41([2)]87()85()83()81([4)0({2414f f f f f f f f f S ++++++++==3.142 4分11. 计算积分⎰=20sin πxdx I ,若用复合Simpson 公式要使误差不超过51021-⨯,问区间]2,0[π要分为多少等分?若改用复合梯形公式达到同样精确度,区间]2,0[π应分为多少等分? (10分)解: ①由Simpson 公式余项及x x f x x f sin )(,sin )()4(==得544)4(2041021)1()4(360)(max )4(1802)(-≤≤⨯≤=≤n x f n f R x n πππππ 2分即08.5,6654≥≥n n ,取n=6 2分即区间]2,0[π分为12等分可使误差不超过51021-⨯ 1分②对梯形公式同样1)(''max 20≤≤≤x f x π,由余项公式得51021)2(122)(-⨯≤≤n f R n ππ2分即255,2.254=≥n n 取 2分即区间]2,0[π分为510等分可使误差不超过51021-⨯ 1分12. 用改进Euler 格式求解初值问题:⎩⎨⎧==++1)1(0sin 2'y x y y y 要求取步长h 为0.1,计算y(1.1)的近似值 (保留小数点后三位)[提示:sin1=0.84,sin1.1=0.89] (6分)解:改进Euler 格式为:⎪⎩⎪⎨⎧++=+=+-++-+)],(),([2),(1111n n n n n n n n n n y x f y x f hy y y x hf y y 2分 于是有⎪⎩⎪⎨⎧+++-=+-=+-++-+-+)sin sin (05.0)sin (1.012112121n n n n n n n n n n n n n x y y x y y y y x y y y y (n=0,1,2……) 2分 由y(1)=0y =1,计算得⎪⎩⎪⎨⎧=≈=+-=-838.0)1.1(816.0)1sin 11(1.01121y y y 2分 即y(1.1)的近似值为0.83813. ][],[],,[lim ],[),,(],,[)(0'000000'x f x x f x x f x x f b a x b a C x f x x ==∈∈→证明:定义:设(4分)证明:]['],[],[],[lim ][][lim]['00000000000x f x x f x x f x x f x x x f x f x f x x x x ===--=→→故可证出 4分14. 证明:设nn RA ⨯∈,⋅为任意矩阵范数,则A A ≤)(ρ (6分)证明:设λ为A 的按模最大特征值,x 为相对应的特征向量,则有Ax=λx 1分 且λρ=)(A ,若λ是实数,则x 也是实数,得Ax x =λ 1分而x x ⋅=λλ x A x ,⋅≤⋅⋅≤λ故x A Ax 2分由于A x 0x ≤≠λ得到,两边除以 1分故A A ≤)(ρ 1分 当λ是复数时,一般来说x 也是复数,上述结论依旧成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆大学研究生数值分析课程
试卷
A卷
B卷
2012 ~2013 学年 第 1学期
开课学院:数统学院 课程号:
考试日期:
考试方式:
开卷闭卷 其他 考试时间 120 分钟
注:1.大标题用四号宋体、小标题及正文推荐用小四号宋体;2.按A4纸缩小打印
一、 选择题(3分/每小题,共15分)
1、以下误差公式不正确的是( A )
A. ()()()1212x x x x εεε-=-
B. ()()()1212x x x x εεε+=+ C .()()()122112x x x x x x εεε=+ D. ()()22x x x εε=
2、通过点()00,x y ,()11,x y 的拉格朗日插值基函数()0l x ,()1l x 满足(C )
A. ()000l x =,()110l x =
B. ()000l x =,()111l x =
C. ()001l x =,()111l x =
D. ()001l x =,()110l x =
3、已知等距节点的插值型求积公式
()()352
k
k
k f x dx A f x =≈∑⎰,则3
k
k A
==∑( C )
A. 1
B. 2
C. 3
D. 4
4、解线性方程组Ax b =的简单迭代格式()()1k k x Bx f +=+收敛的充要条件是( B ) A. ()1A ρ< B. ()1B ρ< C. ()1A ρ> D. ()1B ρ>
5、已知差商021[,,]5f x x x =,402[,,]9f x x x =,234[,,]14f x x x =,032[,,]8f x x x =,则420[,,]f x x x =( B )
A. 5
B. 9
C. 14
D. 8
学院 专业、班 年级 学号 姓名
公平竞争、诚实守信、严肃考纪、拒绝作弊
封
线
密
二、 填空题(3分/每小题,共15分)
1取 3.141592x =作为数3.141592654...的近似值,则x 有____6____位有效数字 2、Cotes 求积公式的代数精度为 5
3、若()2
[,]f x C a b ∈,则梯形求积公式的截断误差为:3''
()()2
b a f η--
4、迭代法()1n n x x ϕ+=收敛的充分必要条件是:()'1x ϕ<
5. 方程组12123153x x x x -=⎧⎨+=⎩的Jacobi 迭代格式为:221(1)()1
(1)()
3153k k k k x x x x ++⎧=+⎪⎨=-+⎪⎩
三、 已知线性方程组
1231232258538149x x x ⎡⎤⎡⎤⎡⎤
⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦
1、求出系数矩阵的1范数。
2、作系数矩阵的Doolittle 分解并求解这个方程组。
令1232583814A ⎡⎤
⎢⎥=⎢⎥⎢⎥⎣⎦
,则1A =25
四、 用牛顿法求()3310f x x x =--=在02x =附近的实根,精确到四位有效数
字(8分)
解:由()3310f x x x =--=,得()'233f x x =-
故 ()1()k k k k f x x x f x +=-'=323133
k
k k k x x x x ----
将 02x =代入迭代格式得
五、 用经典的四阶R-K 方法求初值问题
'(0)1y xy
y ⎧=⎨=⎩
在x =0.2处的值,取步长h =0.1(13分)
代入公式得:
1000.1(,)0K f x y =⋅=
2000
0.1(0.05,)0.10.0510.0052K f x y =⋅++=⨯⨯=
3000.005
0.1(0.05,)0.10.05 1.00250.00501252
K f x y =⋅++=⨯⨯=
4000.1(0.1,0.005012)0.10.1 1.0050120.01005012K f x y =⋅++=⨯⨯= 1012341(22)6y y K K K K =++++=1
1(00.010.0100250.01005012)6
++++
1122343(,),22,22(,)
i i i i i i i i K hf x y K h K hf x y K h K hf x y K hf x h y K =⎧⎪
⎛⎫
⎪=++ ⎪⎪⎝⎭
⎨
⎛⎫
⎪=++ ⎪⎪⎝
⎭⎪
=++⎩112341
(22)
6
i i y y K K K K +=++++000,1
x y ==
=1.00501 同理可算出y 2
六、 已知连续函数()y f x =的如下数值表
i x 0.10 0.19 0.26 0.31 ()i f x
1.280
2.011
2.351
3.000
试构造差商表,并求()0.23f 的近似值(小数点后保留5位)(12分)
七、 用n=5的复化梯形公式计算积分1
0I xdx =⎰(小数点后保留4位)(7分)。
解:00x =,115x =,225x =,335x =,44
5
x =,51x =
15
h =
()505123422h I h h h h h h =
++⋅+++⎡⎤⎣⎦=1123410121055552⎡⎤⎛⎫=++⋅+++= ⎪⎢⎥⎝⎭⎣
⎦
八、 确定下列公式的待定参数,使其代数精度尽可能的高,并指明求积公式的
代数精度(12分)
1
0120
113
()()()()424
f x dx A f A f A f ≈++⎰
解:令2()1,(),()f x f x x f x x ===对求积公式准确成立,则
012012012111314242119116
4163A A A A A A A A A ⎧
⎪++=⎪
⎪++=⎨⎪
⎪++=⎪⎩ 解该线性方程组得:012212,,333A A A ==-=
所以得:1
0211123()()()()343234
f x dx f f f =
-+⎰
令3()f x x =,准确成立
令4()f x x =,不成立,故代数精度为3
THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考。