武汉大学研究生课程数值分析期末考试
数值分析期末复习题答案

数值分析期末复习题答案一、选择题1. 以下哪个算法是用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 共轭梯度法D. 辛普森积分法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的主要区别是什么?A. 插值点的选取不同B. 插值多项式的构造方式不同C. 计算复杂度不同D. 适用的函数类型不同答案:B3. 在数值积分中,梯形法则和辛普森法则的主要区别是什么?A. 精度不同B. 适用的积分区间不同C. 计算方法不同D. 稳定性不同答案:A二、简答题1. 解释什么是数值稳定性,并举例说明。
答案:数值稳定性指的是数值方法在计算过程中对于舍入误差的敏感程度。
例如,在求解线性方程组时,如果系数矩阵的条件数很大,则该方程组的数值解对舍入误差非常敏感,即数值稳定性差。
2. 说明数值微分与数值积分的区别。
答案:数值微分是估计函数在某一点的导数,而数值积分是估计函数在某个区间上的积分。
数值微分通常用于求解函数的局部变化率,而数值积分用于求解函数在一定区间内的累积效果。
三、计算题1. 给定一组数据点:(1, 2), (2, 3), (3, 5), (4, 6),请使用拉格朗日插值法构造一个三次插值多项式。
答案:首先写出拉格朗日插值基函数,然后根据数据点构造插值多项式。
具体计算过程略。
2. 给定函数 f(x) = x^2,使用牛顿-科特斯公式中的辛普森积分法在区间 [0, 1] 上估计积分值。
答案:首先确定区间划分,然后应用辛普森积分公式进行计算。
具体计算过程略。
四、论述题1. 论述数值分析中误差的来源及其控制方法。
答案:误差主要来源于舍入误差和截断误差。
舍入误差是由于计算机在进行浮点数运算时的精度限制造成的,而截断误差是由于数值方法的近似性质导致的。
控制误差的方法包括使用高精度的数据类型、选择合适的数值方法、增加计算步骤等。
五、综合应用题1. 给定一个线性方程组 Ax = b,其中 A 是一个 3x3 的矩阵,b 是一个列向量。
数值分析试题(卷)和答案解析

【试题__2009___年~__2010___年第 一学期课程名称: 数值分析 专业年级: 2009级(研究生) 考生学号: 考生姓名: 试卷类型: A 卷 √ B 卷 □ 考试方式: 开卷 √ 闭卷 □………………………………………………………………………………………………………一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。
-2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。
3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。
4. 1n +个节点的高斯求积公式的代数精确度为 。
二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解为什么说平方根法计算稳定2. 什么是不动点迭代法()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。
三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:。
i x 1 2 3i y2 4 12 <3i y '并估计误差。
(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。
(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。
(10分) 六.试用Doolittle 分解法求解方程组: ,12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦(10分)七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。
武汉大学2011工程硕士数值分析考试复习题

武汉大学2011工程硕士数值分析考试复习题预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制1、设()0f x =有根,且'0(),m f x M x <≤≤-∞<<+∞,试证明由1()k k k x x f x λ+=-产生的序列{}k x 对任意的0x 和02M λ<<均收敛。
2、对3*(),0()x x x x x φφ=+=为的一个不动点,验证10()0k k x x x φ+=≠对不收敛,但改用steffen 方法却收敛。
3、设*x 是()0f x =的根,且()()'''*0,f x f x x ≠在领域上连续,试证明:Newton 迭代序列{}n x 满足''*12'*12()lim ()2()k k k k k x x f x x x f x -→∞---=-4、给定方程组的雅可比迭代矩阵为022101220J B =----??,试证明雅可比迭代收敛而高斯迭代不收敛。
5、设二阶方程组为12630321x x = ? ? ?-????,取(0)00x ??= (1)用最快速下降法迭代两次求近似解(2)x ;(2)用共轭梯度法迭代两次求近似解(2)x ;(3)与精确解进行比较分析。
6、设方程组AX=B 系数矩阵A 非奇异,条件数cond (A ),设A 有扰动A δ,且11A A δ-<,分析解的扰动X δ的相对变化XX δ。
7、设2()[,],()()0f x c a b f a f b ?==且,试证明:2''()max ()max ()8a xb a x b b a f x f x ≤≤≤≤-≤8、试证明两点三次Hermite 插值余项(4)2231()()()()4!k k f R x x x x x ξ+=--,并求此分段三次Hermite 插值的误差限。
武汉大学数值分析期末考试(05-11年)

x1 + 2 x 2 − 2 x3 = 1, x1 + x 2 + x3 = −1, 2 x + 2 x + x = 0. 2 3 1 2a a 0 二、 (8 分)若矩阵 A = 0 a 0 ,说明对任意实数 a ≠ 0 ,方程组 AX = b 都是 0 0 a
dy = f (t , y ) 的单步法: 八、 (14 分)对于下面求解常微分方程初值问题 dt y (t 0 ) = y 0
λ
y n +1 = y n + hk 2 k1 = f (t n , y n ) 1 1 k 2 = f (t n + h, y n + hk1 ) 2 2 (1) 验证它是二阶方法; (2) 确定此单步法的绝对稳定区域。
1 1 y n +1 = y n + h( 2 k1 + 2 k 2 ) k1 = f ( x n , y n ) k = f ( x + h, y + hk ) n n 1 2 (1) 验证它是二阶方法; (2) 确定此单步法的绝对稳定域。
武 汉 大 学
2006~2007 学年第一学期硕士研究生期末考试试题 (A 卷)
非病态的(范数用 ⋅ ∞ ) 四 、(15 分)已知 y = f ( x) 的数据如下 : xi f ( xi ) f ′( xi )
0
0
1 2 1
2
6
求 f ( x) 的 Hermite 插值多项式 H 3 ( x) ,并给出截断误差 R ( x) = f ( x) − H 3 ( x) 。 五 、(10 分)在某个低温过程中,函数 y 依赖于温度 x(℃)的试验数据为 xi yi 1 0.8 2 1.5 3 1.8 4 2.0
武汉大学数值分析期末考试题目和答案

(2 分)
(2 分) (1 分)
注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考 生须在试题图上作解答,请另附该试题图。3、请在试卷类型、考试方式后打勾注明。 (第 5 页)
八.证明题(本大题共 2 小题,每小题 7 分,共 14 分) 1. 证:该问题的精确解为 y( x) y0e
六.试用 Doolittle 分解法求解方程组:
5 6 x1 1 0 2 4 1 3 1 9 x 1 9( 10 分) 2 6 3 6 x3 3 0 20 x1 2 x2 3x3 24 七.请写出雅可比迭代法求解线性方程组 x1 8 x2 x3 12 的迭代格式,并 2 x 3x 15 x 30 2 3 1
故有 B 1.25 1 ,因而雅可比迭代法不收敛。 (2)对于方程组,Gauss-Seidel 迭代法迭代矩阵为
0 0.5 0.5 B 0 0.5 0.5 0 0.5 0
其特征值为 1 0, 2 3 0.5 故有 B 0.5 1 ,因而雅可比迭代法收敛。
判断其是否收敛?(10 分)
y y 八.就初值问题 考察欧拉显式格式的收敛性。 (10 分) y (0) y0
注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考 生须在试题图上作解答,请另附该试题图。3、请在试卷类型、考试方式后打勾注明。 (第 2 页)
步 6:若 k<N,置 k:=k+1, μ:=mk,转 3;否则输出计算失败 信息,停止 三. 解: (1)利用插值法加待定系数法: 设 p2 x 满足 p2 1 2, p2 2 4, p2 3 12, 则 p2 x 3x 7 x 6, (3 分)
武汉大学研究生课程数值分析期末考试

武汉大学研究生课程《数值分析》半开卷考试资料
姓名: 学号: 第 1 章 绪论 1.1 误差的基本概念 绝对误差:∆ ������ = ������ ∗ − ������ ; ∆f(x) = ������������(������) = ������ ′ (������)������������ ; 绝对误差:∆������ ������ = 有效数字:������ = (0. ������1 ������2 … ������������ × 10−������ ) × 10������ ,则有 n 位有效数字。 1 1 误差限:|∆ ������| = |������ ∗ − ������| ≤ × 10������−������ ; |∆������ ������| ≤ × 10−(������−1)
|������ ∗ −������������+1 | ������→∞ |������ ∗ −������������|������
= C (对于收敛的迭代格式,当|������′(������)| = 0,则是线性收敛)
������(������ )
������
若碰到求收敛阶:迭代公式是个方程,准确解带进去是个方程,两方程相减,然后适当变形利用微分中值定理。 3.3 Newton 法 (二阶收敛):������������+1 = ������������ − ������′(������������ ) ; 假设������ ∗ 是 f(x) = 0 的单根, f(x)在������ ∗ 的邻域内具有连续的二阶导数且 f ′(������ ∗ ) ≠ 0 , 则牛顿公式具有局部收敛性;若 f′′(������ ∗ ) ≠ 0 且������0 ≠ ������ ∗ , 则序列{������������ }是平方收敛。 第 4 章 矩阵特征值特征向量 (略) Householder 变换(H=I-2wwT) 、 Givens 变换、幂法 第 5 章 插值与逼近 5.1 插值多项式的唯一性 Pn (x) = ������0 + ������1 ������ + ������2 ������ 2 + ⋯ + ������������ ������ ������ ; |������| = ∏(������������ − ������������ ) ≠ 0
数值分析题库

一. 单项选择题(每小题2分,共10分)1. 在下列四个数中,有一个数具有4位有效数字,且其绝对误差限为 51021-⨯,则该数是( ) A 0.001523 B 0.15230 C 0.01523 D 1.52300 2. 设方阵A 可逆,且其n 个特征值满足:n λλλ>≥> (21),则1-A 的主特征值是( )A11λ B nλ1 C1λ或n λ D 11λ或nλ13. 设有迭代公式→→+→+=fxB x k k )()1(。
若||B|| > 1,则该迭代公式( )A 必收敛B 必发散C 可能收敛也可能发散4. 常微分方程的数值方法,求出的结果是( )A 解函数B 近似解函数C 解函数值D 近似解函数值 5. 反幂法中构造向量序列时,要用到解线性方程组的( ) A 追赶法 B LU 分解法C 雅可比迭代法D 高斯—塞德尔迭代法二. 填空题(每小题4分,共20分)1. 设有方程组⎪⎩⎪⎨⎧=+-=+-=+02132432132132x x x x x x x x ,则可构造高斯—塞德尔迭代公式为⎪⎩⎪⎨⎧2. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111112101A ,则=∞A3. 设1)0(,2'2=+=y y x y ,则相应的显尤拉公式为=+1n y4. 设1)(+=ax x f ,2)(x x g =。
若要使)(x f 与)(x g 在[0,1]上正交,则a =5. 设T x )1,2,2(--=→,若有平面旋转阵P ,使P →x 的第3个分量为0,则P =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡ 三. 计算题(每小题10分,共50分)1. 求27的近似值。
若要求相对误差小于0.1%,问近似值应取几位有效数字?2. 设42)(x x x f -=,若在[-1,0]上构造其二次最佳均方逼近多项式,请写出相应的法方程。
3. 设有方程组⎪⎩⎪⎨⎧=++=++=-+1221122321321321x x x x x x x x x ,考察用雅可比迭代解此方程组的收敛性。
(完整)数值分析学期期末考试试题与答案(A),推荐文档

期末考试试卷(A 卷)2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟学号 姓名 年级专业一、判断题(每小题2分,共10分)1. 用计算机求1000100011n n=∑时,应按照n 从小到大的顺序相加。
( )2. 为了减少误差,进行计算。
( )3. 用数值微分公式中求导数值时,步长越小计算就越精确。
( )4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。
( )5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有关,与常数项无关。
( )二、填空题(每空2分,共36分)1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________.2. 设1010021,5,1301A x -⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦则1A =_____,2x =______,Ax ∞=_____.3. 已知53()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= .4. 为使求积公式11231()((0)f x dx A f A f A f -≈++⎰的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。
5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 .6. 用迭代法解线性方程组AX B =时,使迭代公式(1)()(0,1,2,)k k XMX N k +=+=K 产生的向量序列{}()k X收敛的充分必要条件是 .7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩阵U 的乘积,即.A LU = 若采用高斯消元法解AX B =,其中4221A -⎡⎤=⎢⎥⎣⎦,则L =_______________,U =______________;若使用克劳特消元法解AX B =,则11u =____;若使用平方根方法解AX B =,则11l 与11u 的大小关系为_____(选填:>,<,=,不一定)。