2008级研究生数值分析试题

合集下载

2008年数四 考研数学真题及解析

2008年数四 考研数学真题及解析

2008年全国硕士研究生入学统一考试数学四试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1)设0a b <<,则()10lim nnnn ab--→+( )()A a .()B 1a -. ()C b .()D 1b -.(2)设函数()f x 在区间[1,1]-上连续,则0x =是函数0()()x f t dt g x x=⎰的( )()A 跳跃间断点. ()B 可去间断点.()C 无穷.()D 振荡.(3)设()f x 是连续奇函数,()g x 是连续偶函数,区域{(,)01,D x y x y =≤≤≤≤则正确的( )()A ()()0Df yg x dxdy =⎰⎰.()B ()()0D f x g y d x d y =⎰⎰.()C [()()]0Df xg y dxdy +=⎰⎰.()D [()()]0Df yg x dxdy +=⎰⎰.(4)曲线方程为()y f x =函数在区间[0,]a 上有连续导数,则定积分'0()axf x dx ⎰( )()A 曲边梯形ABCD 面积.()B 梯形ABCD 面积.()C 曲边三角形ACD 面积.()D 三角形ACD 面积.(5)设A 为n 阶非零矩阵,E 为n 阶单位矩阵. 若30A =,则( )()A E A -不可逆,E A +不可逆.()B E A -不可逆,E A +可逆.()C E A -可逆,E A +可逆.()D E A -可逆,E A +不可逆.(6)设1221A ⎛⎫=⎪⎝⎭,则在实数域上与A 合同的矩阵为( ) ()A 2112-⎛⎫⎪-⎝⎭ ()B 2112-⎛⎫ ⎪-⎝⎭ ()C 2112⎛⎫ ⎪⎝⎭()D 1221-⎛⎫⎪-⎝⎭. (7)随机变量,X Y 独立同分布且X 的分布函数为()F x ,则{}max ,Z X Y =的分布函数为( )()A ()2F x .()B ()()F x F y .()C ()211F x --⎡⎤⎣⎦.()D ()()11F x F y --⎡⎤⎡⎤⎣⎦⎣⎦.(8)随机变量()0,1X N ,()1,4Y N 且相关系数1XY ρ=,则( )()A {}211P Y X =--=. ()B {}211P Y X =-=. ()C {}211P Y X =-+=.()D {}211P Y X =+=.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)设函数21,()2,x x cf x x c x ⎧+≤⎪=⎨>⎪⎩在(,)-∞+∞内连续,则c = .(10)已知函数()f x 连续且0()lim2x f x x→=,则曲线()y f x =上对应0x =处切线方程为 . (11)2113ln y dx x xdy =⎰⎰ .(12)微分方程2()0x y x e dx xdy -+-=通解是y = .(13)设3阶矩阵A 的特征值互不相同,若行列式0A =,则A 的秩为 .(14)设随机变量X 服从参数为1的泊松分布,则{}2P X EX == .三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)求极限201sin limln x x x x→. (16) (本题满分10分) 设()()1f x t t x dt =-⎰,01x <<,求()f x 的极值、单调区间和凹凸区间.(17)(本题满分10分)求函数222u x y z =++在在约束条件22z x y =+和4x y z ++=下的最大和最小值.(18)(本题满分10分)设(),z z x y =是由方程()22x y z x y z ϕ+-=++所确定的函数,其中ϕ具有2阶导数且1ϕ'≠-时,求(1)dz (2)记()1,z z u x y x y x y ⎛⎫∂∂=- ⎪-∂∂⎝⎭,求u x ∂∂.(19)(本题满分10分)()f x 是周期为2的连续函数,(1)证明对任意实数都有()()22t tf x dx f x dx +=⎰⎰(2)证明()()()202x t t g x f t f s ds dt +⎡⎤=-⎢⎥⎣⎦⎰⎰是周期为2的周期函数. (20)(本题满分11分)设矩阵2221212n na a a A a a ⨯⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭ ,现矩阵A 满足方程AX B =,其中()1,,T n X x x = ,()1,0,,0B = ,(1)求证()1nA n a =+(2)a 为何值,方程组有唯一解(3)a 为何值,方程组有无穷多解 (21)(本题满分11分)设A 为3阶矩阵,12,αα为A 的分别属于特征值1,1-特征向量,向量3α满足323A ααα=+,证明(1)123,,ααα线性无关; (2)令()123,,P ααα=,求1P AP -.(22)(本题满分9分)设随机变量X 与Y 相互独立,X 概率分布为{}()11,0,13P X i i ===-,Y 概率密度为()1010Y y f y ≤≤⎧=⎨⎩其它,记Z X Y =+(1)求102P Z X ⎧⎫≤=⎨⎬⎩⎭(2)求Z 的概率密度(23)(本题满分9分)设某企业生产线上产品合格率为0.96,不合格产品中只有34产品可进行再加工且再加工的合格率为0.8,其余均为废品,每件合格品获利80元,每件废品亏损20元,为保证该企业每天平均利润不低于2万元,问企业每天至少生产多少产品?.。

北京理工大学2008级数值分析试题及答案

北京理工大学2008级数值分析试题及答案

课程编号:12000044 北京理工大学2009-2010学年第二学期2008级计算机学院《数值分析》期末试卷A 卷班级 学号 姓名 成绩注意:① 答题方式为闭卷。

② 可以使用计算器。

请将填空题和选择题的答案直接填在试卷上,计算题答在答题纸上。

一、 填空题(每空2分,共30分)1. 设函数f (x )区间[a ,b]内有二阶连续导数,且f (a )f (b )<0, 当 时,用双点弦截法产生的解序列收敛到方程f (x )=0的根。

2. n 个求积节点的插值型求积公式的代数精确度至少为______次,n 个求积节点的高斯求积公式的代数精度为 。

3. 已知a =3.201,b =0.57是经过四舍五入后得到的近似值,则a ⨯b 有 位有效数字,a +b 有 位有效数字。

4. 当x =1,-1,2时,对应的函数值分别为f (-1)=0,f (0)=2,f (4)=10,则f (x )的拉格朗日插值多项式是 。

5. 设有矩阵⎥⎦⎤⎢⎣⎡-=4032A ,则‖A ‖1=_______。

6. 要使...472135.420=的近似值的相对误差小于0.2%,至少要取 位有效数字。

7. 对任意初始向量0()X 和常数项N ,有迭代公式1()()k k x Mx N +=+产生的向量序列{}()k X 收敛的充分必要条件是 。

8. 已知n=3时的牛顿-科特斯系数,83,81)3(1)3(0==C C 则=)4(2C ,=)3(3C 。

9. 三次样条函数是在各个子区间上的 次多项式。

10. 用松弛法 (9.0=ω)解方程组⎪⎩⎪⎨⎧=+-=++--=++3103220241225322321321x x x x x x x x x 的迭代公式是。

11. 用牛顿下山法求解方程033=-x x 根的迭代公式是 ,下山条件是 。

二、选择填空(每题2分,共10分)1. 已知数x 1=721 x 2=0.721 x 3=0.700 x 4=7*10-2是由四舍五入得到的,则它们的有效数字的位数应分别为( )。

文档:数值分析试题A08.1

文档:数值分析试题A08.1

中国石油大学(北京)2007--2008学年第一学期研究生期末考试题库A (闭卷考试)课程名称:数值分析 注:计算题取小数点后四位 一、填空题(每空3分,共24分)(1) 设1222A ⎡⎤-=⎢⎥-⎢⎥⎣⎦,则A 的奇异值为 。

(2) 设0.00013753x =为真值0.00013759T x =的近似值,则x 有 位有效数字。

(3) 设数据123,,x x x 的绝对误差为0.002,那么123x x x -+的绝对误差约为 ____ _。

(4) )x (l ,),x (l ),x (l n 10是以01,,,,(2)n x x x n ≥为节点的拉格朗日插值基函数,则20(2)()nkk k xl x =+=∑ 。

(5) 插值型求积公式22=≈∑⎰()()nk k k x f x dx A f x 的求积系数之和0nk k A ==∑ 。

其中2x 为权函数,1≥n 。

(6)已知(3,4),(0,1)TTx y ==,求Householder 阵H 使Hx ky =,其中k R ∈。

H= 。

(7) 数值求积公式112()((0)(322f x dx f f f -⎡⎤≈++⎢⎥⎣⎦⎰的代数精度为___。

(8) 下面Matlab 程序所求解的数学问题是 。

(输入向量x , 输出S ) x =input('输入x :x ='); n=length(x ); S=x (1); for i=2:nif x (i)<S ,S=x (i);else,continue;end end S二、(12分) (1)证明对任何初值 0x R ∈,由迭代公式124cos ,0,1,2, (3)k k x x k +=+= 所产生的序列{}0k k x ∞=都收敛于方程1232cos 0x x -+=的根。

(2)证明它具有线性收敛性。

三、(12分)(1)用辛浦生公式计算积分4x e dx ⎰的近似值;(2)若用复化辛浦生公式计算积分4x e dx ⎰,问至少应将区间[0,4]多少等分才能保证计算结果有五位有效数字?四、(12分) 已知数据表 2102230.510.5i iix y w --(1)构造关于点集和权的正交函数组01{(),()}x x ϕϕ;(2)利用01{(),()}x x ϕϕ拟合已知数据点,并求最小二乘拟合误差2δ。

2008年南开大学数学分析考研试题及解答

2008年南开大学数学分析考研试题及解答

南开大学2008年数学分析考研试题.一.计算题1.求极限21lim[ln(1)]x x x x→∞-+。

2.求和()()∑∞=-+-1121n n n n 。

3.已知()()()1f x x f x ''-=-,求()x f ? 4.设2ln 261txdt e π=-⎰,则x =?5.设区域()[][]{}1,1,2,0,-∈∈=y x y x D ,求Dx y dxdy -⎰⎰。

二.设61-≥x 61+=+n n x x ,(1,2,)n = ,证明数列{}n x 收敛,并求其极限。

三.设()[]b a C x f ,∈,并且[]b a x ,∈∀,[]b a y ,∈∃,使()()x f y f 21≤,证明[]b a ,∈∃ξ,使得()0=ξf .四.设()x f 在[)+∞,a 一致连续,且广义积分()af x dx +∞⎰收敛,求证()0lim =+∞→x f x 。

五.设()x f 在(,)-∞+∞上可微,对任意(,)x ∈-∞+∞,()0f x >, ()()f x mf x '≤, 其中10<<m ,任取实数0a ,1ln ()n n a f a -=,(1,2,)n = ,证明级数11||n n n a a ∞-=-∑收敛。

六.证明函数项级数()1nxn f x ne∞-==∑,(1)在()+∞,0上收敛,但不一致收敛;(2)和函数()x f 在()+∞,0上任意次可导。

七.作变换xy u =,x v =,w xz y =-,将方程2222z z yyyx∂∂+=∂∂变换为w 关于自变量(),u v 方程。

八.求由曲面2224x y az a ++=将球体2224x y z az ++≤分成两部分的体积之比。

九、设()f x 是(0,)+∞上具有二阶连续导数的正函数,且()0f x '≤,(0,)x ∈+∞,()f x ''在(0,)+∞上有界,则lim ()0x f x →+∞'=。

东北大学 数值分析 08数值分析(研)答案

东北大学 数值分析 08数值分析(研)答案
0 1
y n1 y n
f 1 h 2 f n hfn ( n fn ) 3 3 x y ( 2
2 2 fn 2 fn 2 fn 2 f f n2 ) O(h 4 ) n xy x 2 y 2
问应取 n 为多少?并求此近似值。 2 2 1.由 A0 A1 A2 , A0 A1 x1 A2 0, A0 A1 x12 A2 , 3 5 1 4 3 A0 A1 x1 A2 0, 可得: A0 A2 , A1 , x1 0 ,具有 3 次代数精度。 5 15 2. n 4
五、 (12 分)已知求解常微分方程初值问题:
y f ( x, y) , x [a, b] y ( a)
的差分公式:
h y n 1 y n 3 (k1 k 2 ) k f (x , y ) n n 1 k 2 f ( x n h, y n hk1 ) y0
( A)
5 33 , Cond( A)1 21。 2
6.求区间[0,1]上权函数为 ( x) 1 的二次正交多项式 P2 ( x) 。
P0 ( x) 1, P1 ( x) x
9 x 3 3. x 为何值时,矩阵 A x 8 4 可分解为 GG T ,并求 x 6 时的分解式,其中 3 4 3
由 A 正定可得, 0 x 8 , x 6 时有:
9 6 3 3 3 2 1 A 6 8 4 = 2 2 2 1 3 4 3 1 1 1 1
试求形如 y a bx2 的拟合曲线。 由于 0 ( x) 1,1 ( x) x 2 ,所以 0 (1,1,1,1)T ,1 (1,0,1,4)T , f (2,1,3,2)T

2008年华南理工数学分析考研试题及解答

2008年华南理工数学分析考研试题及解答

例 1.设:n n f R R →,且()1nf C R ∈,满足()()f x f yx y -≥-,对于任意,nx y R∈,都成立.试证明f 可逆,且其逆映射也是连续可导的. 证明 显然,对于任意,n x y R ∈,x y ≠,有()()f x f y ≠,f 是单射,所以1f -存在,由()()11f x f y x y ---≤-,知1f -连续,由()()f x f y x y -≥-,得对任意实数0,t ≠向量,n x h R ∈,有()()f x th f x t h +-≥,在()()f x th f x ht+-≥中令0t →,取极限,则有 得()Jf x h h ≥,任何,n x h R ∈,从而必有|()|0Jf x ≠,Jf 可逆,由隐函数组存在定理,所以1f-存在,且是连续可微的。

例2. 讨论序列()sin n ntf t n t=在()0,+∞上一致收敛性. 解 方法一 显然()11n f t n t≤⋅,对任意()0,t ∈+∞,有()lim 0n n f t →∞=,()sin n nt ntf t t n t n t=≤=, ()0lim 0n t f t +→=,关于n 是一致的;对任意0δ>,当[),t δ∈+∞时,()11n f t n δ≤⋅, 于是(){}n f t 在[),δ+∞上是一致收敛于0的, 综合以上结果,故(){}n f t 在()0,+∞上是一致收敛于0的.方法二 由()sin sin 1n nt nt nt f t n tn tn t n=≤≤≤, 即得(){}n f t 在()0,+∞上是一致收敛于0的 例3、 判断1nn nx ∞=∑在1x >上是否一致收敛. 例4. 设()f x 在(),-∞+∞上一致连续,且()f x dx +∞-∞⎰收敛,证明()lim 0x f x →∞=.例5.求有曲面2221x y za b c⎛⎫++= ⎪⎝⎭所围成的立体的体积其中常数,,0a b c >.例6、 设D 为平面有界区域,(),f x y 在D 内可微,在D 上连续,在D 的边界上(),0f x y =,在D 内f 满足方程f f f x y∂∂+=∂∂. 试证:在D 上(),0f x y ≡.证明 因为(),f x y 在D 上连续, 设()(),max ,x y DM f x y ∈=,则0M =,假若0M >,则存在()00x y D ∈,使得()00f x y M =, 于是有()000f x y x ∂=∂,()000fx y y∂=∂, 这与()()00000f f x y f x y x y ⎛⎫∂∂+=> ⎪∂∂⎝⎭矛盾,假若0M <,亦可得矛盾.同理,对()(),min ,x y Dm f x y ∈=,亦有0m =,故(),0f x y =,(),x y D ∈.华南理工大学2008年数学分析考研试题及解答一.求解下列各题 1、设0a ≠,数列{}n x 满足lim 0n n n x ax a→∞-=+,证明lim n n x a →∞=。

2008考研数一真题答案及详细解析

2008考研数一真题答案及详细解析

nx
2
=1-- 六3 -.I,-
41记10=70 1
(—1y+1 n2
cos
nx,
0� 正女.
令x = O,有
2

,=(-l)n+l
f(O) = l--3 +4n�= l n 2
,
又f(O)=l, 所以 (20)证 (I) r(A)=r(a矿+PJJT)
I:=(-l)n -1
ne=l
n"
2
=— 1穴2"
a2 2a l
矿 2a,,,
以下用数学归纳法证明D n =Cn+Da气
当n = l时 , D 1 = 2a, 结论成立.
2a 当n = 2时 , 几=
a
1 = 3a2 ,结论成立.
2a
假设结论对小于n的情况成立.将D n 按第1行展开 , 得 矿1
0 2a 1
D ,, = 2aD n_l -
矿 2a 1
尸 2-2z 2= 0,
2x+3z = 5,
解得
(� — x= — 5,
1
x= l,
5, 或{y�],
之 = 5,
之 = 1.
根据几何意义,曲线 C 上存在距离 xOy 面最远的点和最近的点,故所求点依次为( — 5' — 5,5)
和(1,1,1).
08) CI) 证
对任意的x, 由于J是连续函数,所以
所以所求微分方程为
y/f/ -y"+4y'-4y=O.
(4) B
解 若{xn }单调,则由f(x)在(— =, 十=)内单调有界知,订(xn )}单调有界,因此

[考研类试卷]2008年工程硕士研究生学位课程(数值分析)真题试卷B.doc

[考研类试卷]2008年工程硕士研究生学位课程(数值分析)真题试卷B.doc

[考研类试卷]2008年工程硕士研究生学位课程(数值分析)真题试卷B一、填空题请完成下列各题,在各题的空处填入恰当的答案。

1 为了使计算y=11+的乘除法运算次数尽量地少,应将该表达式改为_____.2 求方程x-f(x)=0根的牛顿迭代格式是_____3 设A=则‖A‖∞=_______4 解方程组的Jacobi迭代格式为______5 设f(x)=8x4+3x3-98x+1,则差商f[2,4,8,16,32]=______6 记h=(b-a)/n,x i=a+ih,0≤i≤n,则计算I(f)=的复化Simpson公式为______,代数精度为______7 用简单迭代法求非线性方程x-lnx=2在(2,+∞)内的根,要求精确至6位有效数字,并说明所用迭代格式为什么是收敛的.8 给定线性方程组 1)写出Gauss-Seidel迭代格式; 2)分析此迭代格式的收敛性.9 1)给定如下数据表:求f(x)的2次插值多项式L(x);2)利用如下数据表:求f(x)的3次插值多项式H(x).10 求a,b,使得达到最小,并求出此最小值.11 求系数A1,A2,A3,使得求积公式≈A1f(-1)+A2f(-1/3)+A3f(2/3)的代数精度尽可能高,并指出所达到的代数精度的次数.12 给定常微分方程初值问题取正整数n,并记h=(b-a)/n,x i=a十ih,0≤i≤n.1)分析如下求解公式的局部截断误差y i+1=y i+[f(x i+1,y i+1)+f(x i,y i)](A)2)分析如下求解公式的局部截断误差y i+1=y i+[3f(x i,y i)-f(x i-1,y i-1)];(B)3)指出以上两个求解公式各是儿阶公式,并从局部截断误差的大小、显隐格式及单多步公式几方面作一个简单的比较.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太原科技大学
2008级硕士研究生08/09学年第一学期
《数值分析》考试试卷
说明:1、Legendre 正交多项式)(x L n 有三项递推关系式:
⎪⎪
⎩⎪
⎪⎨⎧=+-++===-+
,2,1)(1)(112)()(,1)(1110n x L n n x xL n n x L x x L x L n n n 2、Chebyshev 多项式)(x T n 有三项递推关系式:
⎪⎩

⎨⎧=-===-+ ,2,1)()(2)()(,1)(1110n x T x xT x T x x T x T n n n
一、填空题:(每题4分,共20分)
1、设⎪⎪⎭

⎝⎛-=1511A ,则=∞)(A Cond 2、为提高数值计算精度,当x 充分小时,应将
x
x
sin cos 1-改写为
3、设)5()(2
-+=x a x x ϕ,要使)(1k k x x ϕ=+局部收敛到5*
=
x ,则a 的取值范围为
4、近似数235.0*
=x 关于真值229.0=x 有 位有效数字。

5、设,1)(3
-+=x x x f 则差商=]3,2,1,0[f
二、(本题满分10分)用数值积分的方法建立求解初值问题b x a y a y y x f y a ≤≤==',)(),,(的Simpson 公式:
)4(3
1111-+-++++=n n n n n f f f h
y y
其中1,,1),,(+-==n n n i y x f f i i i ,11-+-=-=n n n n x x x x h . 三、(本题满分15分)设要用Gauss-Seidel 迭代法求解下列线性方程组
⎪⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-1541221121321x x x b a 1、试写出解的迭代形式(分量形式);
2、当且仅当a,b 满足什么条件时迭代收敛?
四、(本题满分10分)求不超过三次的多项式)(x H ,使它满足插值条件
1)1(,1)1(,15)1(,9)1(-='==-'-=-H H H H
五、(本题满分15分)确定参数2121,,,A A x x ,使下面公式为Gauss 求积公式:
)()()(2
2
1
1
1
x f A x f A dx x f +≈⎰
六、(本题满分15分)求函数4
)(x x f =在[-1,1]上带权函数1)(=x ρ的二次最佳平方逼近多项式.
七、(本题满分15分)给定数据{}m i i i y x 1),(=,求它的形如x
x be ae x -+=)(ϕ的最小二乘拟合中的参数b a ,.。

相关文档
最新文档