新人教版七年级数学下册第六章《实数》测试卷及答案 (1)

合集下载

【3套精选】人教版初中数学七年级下册第六章《实数》单元测试题(含答案)

【3套精选】人教版初中数学七年级下册第六章《实数》单元测试题(含答案)

人教版七年级下册第六章实数单元同步测试一、选择题1、以下说法正确的选项是()A.负数没有立方根B.一个正数的立方根有两个,它们互为相反数C.假如一个数有立方根,则它必有平方根D.不为 0 的任何数的立方根,都与这个数自己的符号同号2、以下语句中正确的选项是()A.-9 的平方根是 -3B.9 的平方根是 3C.9 的算术平方根是3D.9 的算术平方根是 33、以下说法中正确的选项是()A、若 a 为实数,则a0 B 、若 a 为实数,则 a 的倒数为1aC、若 x,y 为实数,且x=y ,则x y D 、若 a 为实数,则a204、估量287 的值在A. 7和8之间B. 6和 7之间C. 3和4之间D. 2和 3之间5、以下各组数中,不可以作为一个三角形的三边长的是()A、 1、 1000、 1000B、 2、 3、5C、32,42,52D、38 , 327 , 3646、以下说法中,正确的个数是()(1)- 64 的立方根是- 4;( 2)49的算术平方根是7 ;(3)1的立方根为1;(4)1是27341的平方根。

16A 、1B 、2C 、3D 、47、一个数的平方根与立方根相等,则这个数是( )A.1B. ±1C.0D. —18、假如 3 2.37 1.333 , 3 23.7 2.872 ,那么 3 0.0237 约等于().A. 13.33B. 28.72C. 0.1333D. 0.28729、若x 1 +( y+2 ) 2=0,则( x+y ) 2017=( )A .﹣ 1B . 1C . 32017D .﹣ 3201710、若 0a 1,则 a, a 2, 1的大小关系是 ()a二、填空题11、 0.0036 的平方根 是,81 的算术平方根是.12、若a 的平方根为 3 ,则 a=.13、假如一个数的平方根是 a+6 和 2a-15 ,则这个数为。

14、比较大小:5 11(填“>”、“<”或“ =”).15、比较大小: 3 10 ________5 ( 填“>”或 “<” ) .16、立方等于它自己的数是。

2023年七年级数学下学期第6章《实数》测试卷及答案解析

2023年七年级数学下学期第6章《实数》测试卷及答案解析

中选择出若干个数,使它们的和大于 3,那么至少要选几个数?
26.已知实数 x,y 满足关系式
|y2﹣1|=0.
(1)求 x,y 的值;
, ,如果从 㐮
第 2 页 共 13 页
(2)判断
是有理数还是无理数?并说明理由.
27.将下列各数填入相应的集合内.
﹣7,0.32, ,0, , , ,π,0.1010010001…
A.1
B.﹣1
C.i
D.﹣i
二.填空题(共 10 小题)
11.若一个正数的两个平方根分别为 4+a 和 3﹣2a,则这个正数为

第 1 页 共 13 页
12.已知 㐮 44.89, 㐮 t 14.19,则 㐮t

13.已知实数 x、y 满足|y |
0,则 yx=

14.已知 4a+1 的算术平方根是 3,则 a﹣10 的立方根是
①有理数集合{
…}
②无理数集合{
…}
③负实数集合{
…}.
28.阅读下列材料并解决有关问题.
我们知道,|x|
<㐮 㐮 㐮 .现在我们可以用这一结论来化简含有绝对值的代数式,如
>㐮
化简代数式|x+1|+|x﹣2|时,可令 x+1=0 和 x﹣2=0,分别求得 x=﹣1,x=2(称﹣1,2
分别为|x+1|与|x﹣2|的零点值).在实数范围内,零点值 x=﹣1 和 x=2 可将全体实数分成
第 3 页 共 13 页




4




度.
30.(1)用“<““>“或“=“填空:

人教版数学七年级下册:《实数》单元测试卷(含答案)

人教版数学七年级下册:《实数》单元测试卷(含答案)

人教版数学七年级下册:《实数》单元测试卷(含答案)实数单元测试卷一、选择题:1、下列数中,是无理数的有()A.0个B.1个C.2个D.3个2、下列说法正确的是()A.任何数都有算术平方根;B.只有正数有算术平方根;C.0和正数都有算术平方根;D.负数有算术平方根。

3、下列语句正确的是()A.9的平方根是-3;B.-7是-49的平方根;C.-15是225的平方根;D.(-4)2的平方根是±4,的立方根是±1.4、下列数中是有理数的是()A.-√2;B.π;C.0.5;D.√9.5、下列各数中,与数3最接近的数是()A.4.99;B.2.4;C.2.5;D.2.3.6、有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④√17是无理数;其中正确的有()A.3个;B.2个;C.1个;D.0个。

7、∛8的值是()A.2;B.4;C.8;D.-8.8、若a2=4,b2=9,且ab<0,则a-b的值为()A.-2;B.±5;C.5;D.-5.9、已知实数a,满足a2-3a+2=0,则a=()A.3;B.-1;C.1;D.-2.10、如图,数轴上的点A、B、C、D分别表示数-1、1、2、3,则表示2-√的点P应在()A.线段AO上;B.线段OB 上;C.线段BC上;D.线段CD上。

二、填空题:13、√64=8.14、一个数的平方根和它的立方根相等,则这个数是1.15、已知√(a+1)+√(a-1)=2,则a=2.16、若某数的平方根为a+3和2a-15,则这个数是25.17、已知|a+1|=0,则a-b=a+1-b=1-b。

18、定义运算“@”的运算法则为:x@y=xy-1,下面给出关于这种运算的几种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x-1=0;④若x@y=0,则(xy)@(xy)=0,其中正确结论的序号是2、3、4.三、解答题:19、计算:(2-√3)(√3-1)=1.20、计算:(√3+1)(√3-1)=2.21、计算:(√2+1)2-(√2-1)2=4√2.22、求y的值:(2y-3)2-64=0,解得y=5或-5.23、64(x+1)3=27,解得x=-7/8.24、实数a、b在数轴上的位置如图所示,请化简:|a-b|+|b-a|=0,化简后得到0=0,XXX成立。

人教七年级下册数学第六章实数测试卷(含答案)

人教七年级下册数学第六章实数测试卷(含答案)

第六章 实数 测试卷满分:120分 考试时间:120分钟一、选择题(每小题3分,共30分)1.给出四个数0,3,2,-1,其中最大的数是( )A.0B.3C.2D.-1 2.若n 是有理数,则n 的值可以是( ) A.-1 B.2.5 C.8 D.9 3.下列各组数中,互为相反数的是( )A.-3与3B.3-与-31C.3-与-3D.3与()23-4.下列运算正确的是( )A.473=- B.()552-=-C.77-2-= D.39±=5.已知一个数的平方是16,则这个数的立方是( ) A.8 B.64 C.8或-8 D.64或-646.已知(x-4)2=19,x 的值为a 或b ,且a >b ,则下列结论中正确的是( ) A.a 是19的算术平方根 B.b 是19的平方根 C.a-4是19的算术平方根 D.b+4是19的平方根7.若a =3,b =2--,c =()332--,则a 、b 、c 的大小关系是( ) A.a<b<c B.b<a<c C.b<c<a D. c<b<a8.在如图所示的数轴上,表示无理数m 的点在A ,B 之间,则数m 不可能是( )A.10B.7C.6D.59.如图,一块“Z”字形的铁片,每个角都是直角,且AB =BC =EF =GF =1,CD =DE =GH =AH =3.现将铁片裁剪并拼接成一个和它面积相等的正方形,则正方形的边长是A.3B.4C.8D.10 10如图,某计算器中有三个按键,以下是这三个按键的功能:①:将荧幕显示的数变成它的算术平方根 ②:将荧幕显示的数变成它的倒数 ③:将荧幕显示的数变成它的平方小明输入一个数据后,按照以下步骤操作,依次按照从第1步到第3步循环按键 输入若一开始输入的数据为10.则第2019步之后,显示的结果是( ) A.10 B.100 C.0.01 D.0.1 二、填空题(每小题3分,共24分)11.3的算术平方根是 ,-64的立方根为 。

人教版七年级数学下册 第六章 实数 达标检测卷(含详细解答)

人教版七年级数学下册 第六章 实数 达标检测卷(含详细解答)

人教版七年级数学下册 第六章 达标检测卷(考试时间:120分钟 满分:120分) 班级:________ 姓名:________ 分数:________第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分) 1.下列实数中,是无理数的是 ( ) A.5 B .0 C .13 D . 22.4的算术平方根是( )A .4B .-4C .2D .±2 3.估计38 的值在 ( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间 4.在实数-13 ,-2,0, 3 中,最小的实数是 ( )A .-2B .0C .-13 D . 35.下列计算中正确的是 ( )A .0.9 =0.3B .169 =±13C .327 =±3 D .±0.16 =±0.4 6.立方根等于本身的数是( )A .-1B .0C .±1D .±1或0 7.★若a 2=9,3b =-2,则a +b = ( ) A .-5 B .-11 C .-5或-11 D .5或118.若a 3=-27,则a 的倒数是 ( ) A .3 B .-3 C .13 D .-139.(杨浦区期中)实数a ,b ,c 在数轴上对应点的位置如图所示,下列结论中正确的是 ( )A .ac <0B .|a +b|=a -bC .|c -a|=a -cD .|a|>|b| 10.★(保定期末)对任意实数x ,[x]表示不超过x 的最大整数,如[3.14]=3,[1]=1,[-1.2]=-2.对数字65进行如下运算:①[65 ]=8;②[8 ]=2;③[ 2 ]=1.这样对数字65进行3次运算后的值为1,若对数字255进行这样的运算后的值为1,则需进行运算的次数为 ( ) A .3 B .4 C .5 D .6第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共24分) 11. 3 -2的绝对值是 .12.(海宁市期中)选用适当的不等号填空:-31 -π. 13.如果a 的算术平方根是3,那么a = .14.若325.36 =2.938,3253.6 =6.329,则325 360 000 =_ . 15.★如图,将两个边长为 3 的正方形沿对角线剪开,将所得的四个三角形拼成一个大的正方形,则这个大正方形的边长是 .16.如图,数轴上A ,B 两点对应的实数分别是1和 3 ,若点A 关于点B 的对称点为点C(即AB=BC),则点C所对应的实数为.17.★观察数表:1 23 2 5 67 8 3 10 11 1213 14 15 4 17 18 19 20…第1行第2行第3行第4行…根据数表排列的规律,第10行从左向右数第8个数是.18.若x,y为实数,且||x-2+y+3 =0,则(x+y)2 021的值为.三、解答题(共66分)19.(6分)计算:(1)0.64 +425-3-64 -30.343 ;(2)|1- 2 |+| 3 - 2 |+| 3 -2|+|2- 5 |+| 5 - 6 |.20.(8分)求下列各式中x 的值. (1)(x -3)2-4=21;(2)(x +2)3+1=78.21.(8分)把下列各数分别填入相应的集合里: 38 , 2 ,-3.141 59,π2 ,227 ,-33 ,-78,0,-0.03,1.732,- 6 ,1.202 002 000 2…(每两个相邻的2中间依次多1个0).(1)正有理数集合:{ }; (2)无理数集合:{ }; (3)非负数集合:{ }; (4)分数集合:{ }; 22.(8分)如图,已知长方体冰箱的体积为1 024立方分米,它的长、宽、高的比是1∶1∶2,则它的长、宽、高分别为多少分米?23.(10分)已知x-2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.24.(12分)我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b 看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若31-2x 与33x-5 互为相反数,求1-x 的值.25.(14分)(北仑区期中)操作探究:已知在纸面上有一数轴(如图所示).(1)折叠纸面,使表示的点1与-1重合,则-2表示的点与什么数表示的点重合;(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:①5表示的点与什么数表示的点重合;② 3 表示的点与什么数表示的点重合;③若数轴上A,B两点之间距离为9(A在B的左侧),且A,B两点经折叠后重合,此时点A表示的数是多少,点B表示的数是多少;(3)已知在数轴上点A表示的数是a,点A移动4个单位长度,此时点A表示的数和a是互为相反数,求a的值.参考答案第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.下列实数中,是无理数的是 ( D ) A.5 B .0 C .13D . 22.4的算术平方根是 ( C ) A .4 B .-4 C .2 D .±23.估计38 的值在 ( C ) A .4和5之间 B .5和6之间 C .6和7之间 D .7和8之间4.在实数-13 ,-2,0, 3 中,最小的实数是 ( A )A .-2B .0C .-13D . 35.下列计算中正确的是 ( D ) A .0.9 =0.3 B .169 =±13 C .327 =±3 D .±0.16 =±0.46.立方根等于本身的数是 ( D )A .-1B .0C .±1D .±1或07.★若a 2=9,3b =-2,则a +b = ( C ) A .-5 B .-11 C .-5或-11 D .5或118.若a 3=-27,则a 的倒数是 ( D ) A .3 B .-3 C .13 D .-139.(杨浦区期中)实数a ,b ,c 在数轴上对应点的位置如图所示,下列结论中正确的是 ( C )A .ac <0B .|a +b|=a -bC .|c -a|=a -cD .|a|>|b|10.★(保定期末)对任意实数x ,[x]表示不超过x 的最大整数,如[3.14]=3,[1]=1,[-1.2]=-2.对数字65进行如下运算:①[65 ]=8;②[8 ]=2;③[ 2 ]=1.这样对数字65进行3次运算后的值为1,若对数字255进行这样的运算后的值为1,则需进行运算的次数为( A )A .3B .4C .5D .6第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共24分) 11. 3 -2的绝对值是__2- 3 __. 12.(海宁市期中)选用适当的不等号填空: -31 __<__-π.13.如果a的算术平方根是3,那么a=__9__.14.若325.36 =2.938,3253.6 =6.329,则325 360 000 =__293.8__.15.★如图,将两个边长为 3 的正方形沿对角线剪开,将所得的四个三角形拼成一个大的正方形,则这个大正方形的边长是__ 6 __.16.如图,数轴上A,B两点对应的实数分别是1和 3 ,若点A关于点B的对称点为点C(即AB=BC),则点C所对应的实数为__2 3 -1__.17.★观察数表:1 23 2 5 67 8 3 10 11 1213 14 15 4 17 18 19 20…第1行第2行第3行第4行…根据数表排列的规律,第10行从左向右数第8个数是__98 __.18.若x,y为实数,且||x-2+y+3 =0,则(x+y)2 021的值为__-1__.三、解答题(共66分)19.(6分)计算:(1)0.64 +425-3-64 -30.343 ; 解:原式=0.8+25 -(-4)-0.7=4.5.(2)|1- 2 |+| 3 - 2 |+| 3 -2|+|2- 5 |+| 5 - 6 |. 解:原式= 2 -1+ 3 - 2 +2- 3 + 5 -2+ 6 - 5 = 6 -1.20.(8分)求下列各式中x 的值. (1)(x -3)2-4=21; 解:(x -3)2=25, ∴x -3=±5,∴x -3=5或x -3=-5, ∴x =8或x =-2.(2)(x +2)3+1=78.解:(x +2)3=-18,∴x +2=-12 ,∴x =-212.21.(8分)把下列各数分别填入相应的集合里: 38 , 2 ,-3.141 59,π2 ,227 ,-33 ,-78,0,-0.03,1.732,- 6 ,1.202 002 000 2…(每两个相邻的2中间依次多1个0).(1)正有理数集合:{38 ,227,1.732,…}; (2)无理数集合:{ 2 ,π2,-33 ,- 6 ,1.202 002 000 2…(每两个相邻的2中间依次多1个0),…};(3)非负数集合:{38 , 2 ,π2 ,227 ,0,1.732,1.202 002 000 2…(每两个相邻的2中间依次多1个0),…};(4)分数集合:{-3.141 59,227 ,-78,-0.03,1.732,…}.22.(8分)如图,已知长方体冰箱的体积为1 024立方分米,它的长、宽、高的比是1∶1∶2,则它的长、宽、高分别为多少分米?解:设长方体的长、宽、高分别是x 分米、x 分米、2x 分米,由题意得2x ·x ·x =1 024.解得x =8,则2x =16,答:长方体的长、宽、高分别为8分米、8分米、16分米.23.(10分)已知x-2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.解:∵x-2的平方根是±2,2x+y+7的立方根是3,∴x-2=(±2)2=4,2x+y+7=33=27,∴x=6,y=8,∴x2+y2=62+82=100,∴x2+y2的平方根为±x2+y2=±100 =±10.24.(12分)我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b 看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若31-2x 与33x-5 互为相反数,求1-x 的值.解:(1)∵2+(-2)=0,而且23=8,(-2)3=-8,有8+(-8)=0,∴结论成立.∴“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的.(2)由(1)验证的结果知,1-2x +3x -5=0,∴x =4,∴1-x =1-2=-1.25.(14分)(北仑区期中)操作探究:已知在纸面上有一数轴(如图所示).(1)折叠纸面,使表示的点1与-1重合,则-2表示的点与什么数表示的点重合;(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:①5表示的点与什么数表示的点重合;② 3 表示的点与什么数表示的点重合;③若数轴上A ,B 两点之间距离为9(A 在B 的左侧),且A ,B 两点经折叠后重合,此时点A 表示的数是多少,点B 表示的数是多少;解:(1)折叠纸面,使表示的点1与-1重合,折叠点对应的数为-1+12=0, 设-2表示的点所对应点表示的数为x ,于是有-2+x 2=0,解得x =2, 故答案为2.(2)折叠纸面,使表示的点-1与3重合,折叠点对应的数为-1+32=1, ①设5表示的点所对应点表示的数为y ,于是有5+y 2=1,解得y =-3, ②设 3 表示的点所对应点表示的数为z , 于是有z +32=1,解得z =2- 3 , ③设点A 所表示的数为a ,点B 表示的数为b ,由题意得a +b 2=1且b -a =9, 解得a =-3.5,b =5.5,故答案为-3,2- 3 ,-3.5,5.5.(3)已知在数轴上点A 表示的数是a ,点A 移动4个单位长度,此时点A 表示的数和a 是互为相反数,求a 的值.解:①A 往左移4个单位长度:(a -4)+a =0.解得a =2.②A 往右移4个单位长度:(a +4)+a =0,解得a =-2.答:a 的值为2或-2.。

人教版七年级数学下册 第六章《 实数》综合练习(附答案)

人教版七年级数学下册 第六章《 实数》综合练习(附答案)

人教版七年级数学下册 第六章《实数》综合练习一、单选题1.9的平方根是( )A .±√3B .3C .±81D .±322 ,则a 的值为( )A .-4B .4C .-2 D3)A .±2B .±4C .4D .2 4.下列说法错误的是( )A .﹣4是16的平方根B 2C .116的平方根是14D 55.(2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或7 6.下列实数中,无理数是( )A .3.14B .2.12122CD .2277.实数a b c d ,,,在数轴上对应的点的位置如图所示,这四个数中最大的是( )A .aB .bC .cD .d8.下列说法正确的是()A.无理数都是无限不循环小数B.无限小数都是无理数C.有理数都是有限小数D.带根号的数都是无理数9.面积为2的正方形的边长在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间10.在实际生活中,八点五十五通常说成九点差五分,受此启发,我们设计了一种新的加减计数法,比如:7写成13,即13=10-3=7;191写成209,即209=200-9=191,按这个方法计算2019等于( )A.2020B.2001C.1991D.1981二、填空题11.一个正数的两个平方根分别是3a+2和a-4.则a的值是.12-125的立方根的和为______.13的整数部分是m,小数部分是n,则n2﹣2m﹣1的值为_____.14.====,…,则第8个等式是__________.三、解答题15.求出下列x的值.(1)16x2﹣49=0;(2)24(x﹣1)3+3=0.16.已知一个正数的平方根分别是32x +和49x -,求这个数.17.观察下列计算过程,猜想立方根.13=123=833=2743=6453=12563=21673=34383=51293=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为______,又由203<19000<303,猜想19683的立方根的十位数为_____,验证得19683的立方根是______.(2)请你根据(1)中小明的方法,求﹣373248的立方根.18.填空并解答相关问题:(1)观察下列数1,3,9,27,81…,发现从第二项开始,每一项除以前一项的结果是一个常数,这个常数是________;根据此规律,如果a n (n 为正整数)表示这列数的第n 项,那么a n =__________;你能求出它们的和吗?计算方法:如果要求1+3+32+33+…+320的值,可令S=1+3+32+33+ (320)将①式两边同乘以3,得3S=3+32+33+…+320+321①由①式左右两边分别减去①式左右两边,得3S -S=(3+32+33+…+320+321)-(1+3+32+33+…+320),即2S=321-1,两边同时除以2得()211312S =-. (2)你能用类比的思想求1+6+62+63+…+6100的值吗?写出求解过程.(3)你能用类比的思想求1+m+m 2+m 3+…+m n (其中mn≠0,m≠1)的值吗?写出求解过程. 19.阅读下面文字,然后回答问题.的小数部分我们不可能全部的整数部分是1 减去它的整数部分,差就是它的小数部分,因此﹣1表示.由此我们得到一个真命题:=x +y ,其中x 是整数,且0<y <1,那么x =1,y ﹣1.请解答下列问题:(1a +b ,其中a 是整数,且0<b <1,那么a = ,b = ;(2c +d ,其中c 是整数,且0<d <1,那么c = ,d = ;(3)已知m+n ,其中m 是整數,且0<n <1,求|m ﹣n |的值答案1.D 2.B 3.D 4.C 5.D 6.C 7.D 8.A 9. B 10.D11.-12.12.-3或-713.5-14=15.(1)x=±74;(2)x=12.16.2517.(1)7,2,27;(2)-72.18.(1) 3, a n =13n -;(2) ()1011651S =-;(3) ()1111-n m S m +=-.19.(1)a =2,b 2;(2)c =﹣3,d =3(3)6。

人教版七年级下册数学第六章实数 单元测试训练卷含答案


22.方案一可行.
因为正方形胶合板的面积为 4 m2,所以正方形胶合板的边长为 4=2(m).
如图所示,沿着 EF 裁剪,因为 BC=EF=2 m,所以只要使 BE=CF=3÷2=1.5(m)就满足条
件.
方案二不可行.理由如下: 设所裁长方形装饰材料的长为 3x m、宽为 2x m. 则 3x·2x=3,
11. 1- 2 的相反数是_______,绝对值是_________.
12. 我们可以利用计算器求一个正数 a 的算术平方根,其操作方法是按顺序进行按键输入:
3 a = .小明按键输入 3 1 6 = 显示结果为 4,则他按键输入
3 1 6 0 0 = 显示结果应为____. 13. 计算:| 2- 3|+ 2=________. 14. 一个正数的平方根分别是 x+1 和 x-5,则 x=________. 15. 有两个正方体纸盒,已知小正方体纸盒的棱长是 5 cm,大正方体纸盒的体积比小正方体 纸盒的体积大 91 cm3,则大正方体纸盒的棱长是__ __cm. 16. 现有两个大小不等的正方体茶叶罐,大正方体茶叶罐的体积为 1 000 cm3,小正方体茶叶 罐的体积为 125 cm3,将其叠放在一起放在地面上(如图),则这两个茶叶罐的最高点 A 到地 面的距离是________cm.
()
A.2 倍 B.3 倍
C.4 倍 D.5 倍
7. 实数 a,b 在数轴上对应点的位置如图所示,则化简 (a-1)2- (a-b)2+b 的结果
是( )
A.1
B.b+1
C.2a
D.1-2a
8. 制作一个表面积为 30 cm2 的无盖正方体纸盒,则这个正方体纸盒的棱长是( )
A. 6 cm B. 5 cm

人教版数学七年级下册第6章《实数》综合测评(附答案)

人教版版七年级下册第6章《实数》综合测评满分120分检测时间100分钟班级________姓名________座号______成绩________一.选择题(共10小题,满分30分)1.下列各数中最小的是()A.0B.1C.﹣D.﹣π2.在,3.1415926,(π﹣2)0,﹣3,,﹣,0这些数中,无理数有()A.2个B.3个C.4个D.5个3.已知,则的值是()A.1B.2C.3D.44.下列说法不正确的是()A.﹣2是负数B.﹣2是负数,也是有理数C.﹣2是负数,是有理数,但不是实数D.﹣2是负数,是有理数,也是实数5.实数m、n在数轴上的位置如图所示,化简|n﹣m|﹣m的结果为()A.n﹣2m B.﹣n﹣2m C.n D.﹣n6.如果≈1.333,≈2.872,那么约等于()A.28.72B.0.2872C.13.33D.0.1333 7.利用教材中的计算器依次按键下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5B.2.6C.2.8D.2.98.设a,b,c为不为零的实数,那么的不同的取值共有()A.6种B.5种C.4种D.3种9.如图,某计算器中有、、三个按键,以下是这三个按键的功能.①:将荧幕显示的数变成它的算术平方根;②:将荧幕显示的数变成它的倒数;③:将荧幕显示的数变成它的平方.小明输入一个数据后,按照以下步骤操作,依次按照从第一步到第三步循环按键.若一开始输入的数据为10,那么第2018步之后,显示的结果是()A.B.100C.0.01D.0.110.已知min{,x2,x}表示取三个数中最小的那个数,例如:当x=9,min{,x2,x}=min{,92,9}=3﹒当min{,x2,x}=时,则x的值为()A.B.C.D.二.填空题(共6小题,满分24分)11.5的平方根是,算术平方根是.12.若的平方根为±3,则a=.13.正方形的面积为5m2,则它的周长为m.14.﹣3的相反数是.15.一次数学游戏活动时,有7个同学藏在大木牌后面,男同学的木牌前写的是正数,女同学的木牌前写的是负数,7个木牌如下所示,则男生有人.16.我们规定:相等的实数看作同一个实数.有下列六种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③每个有理数都可以用数轴上唯一的点来表示;④数轴上每一个点都表示唯一一个实数;⑤没有最大的负实数,但有最小的正实数;⑥没有最大的正整数,但有最小的正整数.其中说法错误的有(注:填写出所有错误说法的编号)三.解答题(共8小题,满分66分)17.(6分)计算:18.(6分)已知一个正数的平方根为2a﹣1和﹣a+2,求这个正数.19.(8分)求下列各式中的x.(1)3x2﹣12=0(2)(x﹣1)3=﹣6420.(8分)把下列各数填入表示它所在的数集的大括号:﹣2.4,π,2.008,﹣,﹣0.,0,﹣10,﹣1.1010010001….整数集合:{ };负分数集合:{ };正数集合:{ };无理数集合:{ }.21.(8分)有一张面积为256cm2的正方形贺卡,另有一个长方形信封,长宽之比为3:2,面积为420cm2,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.22.(10分)某地气象资料表明:某地雷雨持续的时间t(h)可以用下面的公式来估计:,其中d(km)是雷雨区域的直径.(1)雷雨区域的直径为8km,那么这场雷雨大约能持续多长时间?(2)如果一场雷雨持续了2h,那么这场雷雨区域的直径大约是多少?23.(10分)观察下表后回答问题:a0.00010.011100100000.01x1y100(1)表格中x=,y=;(2)由上表你发现什么规律?;(3)根据你发现的规律填空:①已知≈1.732,则≈,≈;②已知=0.056,则=.24.(10分)课堂上,老师出了一道题,比较与的大小.小明的解法如下:解:﹣==,因为42=16<19,所以>4,所以﹣4>0.所以>0,所以>,我们把这种比较大小的方法称为作差法.(1)根据上述材料填空(在横线上填“>”“=”或“<”):①若a﹣b>0,则a b;②若a﹣b=0,则a b;③若a﹣b<0,则a b.(2)利用上述方法比较实数与的大小.参考答案一.选择题(共10小题)1.【解答】解:﹣π<﹣<0<1.则最小的数是﹣π.故选:D.2.【解答】解:无理数有,,共2个,故选:A.3.【解答】解:∵,∴1﹣a=﹣8,a=9,∴==3,故选:C.4.【解答】解:A、﹣2小于零,是负数,故A正确;B、﹣2小于零是负数,是整数,也是有理数,故B正确;C、﹣2小于零是负数,是整数,也是有理数,有理数属于实数,故C错误;D、﹣2小于零是负数,是整数,也是有理数,有理数属于实数,故D正确.故选:C.5.【解答】解:由实数m、n在数轴上的位置可知,n﹣m<0,所以|n﹣m|﹣m=m﹣n﹣m=﹣n,故选:D.6.【解答】解:∵≈1.333,∴=≈1.333×10=13.33.故选:C.7.【解答】解:∵≈2.646,∴与最接近的是2.6,故选:B.8.【解答】解:①当a>0,b>0,c>0时,原式=1+1+1=3;②当a>0,b>0,c<0时,原式=1+1﹣1=1;③当a>0,b<0,c>0时,原式=1﹣1+1=1;④当a>0,b<0,c<0时,原式=1﹣1﹣1=﹣1;⑤当a<0,b>0,c>0时,原式=﹣1+1+1=1;⑥当a<0,b>0,c<0时,原式=﹣1+1﹣1=﹣1;⑦当a<0,b<0,c>0时,原式=﹣1﹣1+1=﹣1;⑧当a<0,b<0,c<0时,原式=﹣1﹣1﹣1=﹣3.∴的不同的取值共有4种.故选:C.9.【解答】解:根据题意得:102=100,=0.01,=0.1;0.12=0.01,=100,=10;…∵2018=6×336+2,∴按了第2018下后荧幕显示的数是0.01.故选:C.10.【解答】解:当=时,x=,x<,不合题意;当x2=时,x=±,当x=﹣时,x<x2,不合题意;当x=时,=,x2<x <,符合题意;当x=时,x2=,x2<x,不合题意,故选:C.二.填空题(共6小题)11.【解答】解:5的平方根是±,算术平方根是.12.【解答】解:∵的平方根为±3,∴=9,解得:a=81,故答案为:8113.【解答】解:设正方形的边长为xm,则x2=5,所以x=或x=﹣(舍),即正方形的边长为m,所以周长为4cm故答案为:4.14.【解答】解:﹣3的相反数是3﹣,故答案为:3﹣.15.【解答】解:∵=,=1,﹣(﹣3.5)=3.5∴正数有:,,,﹣(﹣3.5)四个,∵男同学的木牌前写的是正数,∴有4个男同学,故答案为4.16.【解答】解:①数轴上有无数多个表示无理数的点是正确的;②带根号的数不一定是无理数是正确的,如=2;③每个有理数都可以用数轴上唯一的点来表示是正确的;④数轴上每一个点都表示唯一一个实数是正确的;⑤没有最大的负实数,也没有最小的正实数,原来的说法错误;⑥没有最大的正整数,有最小的正整数,原来的说法正确.故答案为:⑤.三.解答题(共8小题)17.【解答】解:原式==.18.【解答】解:∵一个正数的平方根为2a﹣1和﹣a+2,∴2a﹣1﹣a+2=0,解得:a=﹣1,则2a﹣1=﹣3,故这个正数是:(﹣3)2=9.19.【解答】解:(1)3x2﹣12=0,3x2=12,x2=4,x=±2;∴x1=2,x2=﹣2.(2)(x﹣1)3=﹣64,x﹣1=﹣4,x=﹣3.20.【解答】解:整数集合:{0,﹣10,…};负分数集合:{﹣2.4,﹣,﹣0.,…};正数集合:{π,2.008,…};无理数集合{π,﹣1.1010010001…,…}.21.【解答】解:放不进去;理由:正方形贺卡面积为256cm2,∴贺卡边长为16cm,∵长方形信封,长宽之比为3:2,面积为420cm2,∴信封长3cm,宽为2cm,∵3>16,∴放不进去.22.【解答】解:(1)根据,其中d=8(km),∴t2=,∵t>0,∴t=(h),答:这场雷雨大约能持续h;(2)根据,其中t=2h,∴d2=3600,∵d>0,∴d=60(km),答:这场雷雨区域的直径大约是60km.23.【解答】解:(1)x=0.1,y=10;故答案为:0.1,10;(2)规律是:被开方数的小数点向左或向右每移动两位开方后所得的结果相应的也向左或向右移动1位;故答案为:被开方数的小数点向左或向右每移动两位开方后所得的结果相应的也向左或向右移动1位;①=17.32,=0.1732,故答案为:17.32,0.1732;②=560,故答案为:560.24.【解答】解:(1)①若a﹣b>0,则a>b;②若a﹣b=0,则a=b;③若a﹣b<0,则a<b.故答案为:>,=,<;(2)﹣===,∵192=361>198,∴19>,∴19﹣>0.∴>0,∴>.。

人教版数学七年级下册-第六章《实数》单元测试(含答案)

第六章《实数》单元测试姓名:班级:座号:一、单选题(共8题;共32分)1. 9的算术平方根是()A. 81B. ±81C. 3D. ±32. -8的立方根是()A. B. C.D.3.在,1.01001000100001,2 ,3.1415,- ,,0,,这些数中,无理数共有()A. 2个B. 3个C. 4个D. 5个4.下列说法中错误的是( )A. 0的算术平方根是0B. 36的平方根为±6C.D. -4的算术平方根是-25.已知a2=25, =7,且|a+b|=a+b,则a﹣b的值为()A. 2或12B. 2或﹣12C. ﹣2或12D. ﹣2或﹣126.,则a与b的关系是()A. B. a与b相等 C. a与b互为相反数 D. 无法判定7.下列计算或说法:①±3都是27的立方根;②=a;③的立方根是2;④=±4,其中正确的个数是()A. 1个B. 2个C. 3个 D. 4个8.下列六种说法正确的个数是()①无限小数都是无理数;②正数、负数统称实数;③无理数的相反数还是无理数;④无理数与无理数的和一定还是无理数;⑤无理数与有理数的和一定是无理数;⑥无理数与有理数的积一定仍是无理数.A. 1B. 2C. 3 D . 4二、填空题(共24分)1.算术平方根等于本身的实数是________.2.﹣125的立方根是________.3.比较大小:﹣π________﹣3.14(选填“>”、“=”、“<”).4.某正数的平方根是n+l和n﹣5,则这个数为________.5.已知一个正数的两个平方根是x﹣7和3x﹣1,则x的值是________.6.方程(x﹣1)3﹣8=0的根是 ________7.若=2﹣x,则x的取值范围是________;若3+ 的小数部分是m,3﹣的小数部分是n,则m+n=________.三、求下列各式中x的值(共10分)(1)(2x﹣1)2=9 (2)2x3﹣6=四、解答题(共10分)1.已知某数的平方根是a+3和2a﹣15,求1﹣7a的立方根。

人教版初中七年级数学下册第六单元《实数》经典练习题(含答案解析)(1)

一、选择题1.给出下列各数①0.32,②227,③π,⑤0.2060060006(每两个6之间依次多个0), ) A .②④⑤B .①③⑥C .④⑤⑥D .③④⑤D解析:D【分析】无理数就是无限不循环小数.初中范围内学习的无理数有:π,开方开不尽的数,以及像0.1010010001…,等有这样规律的数.由此逐一判断即可得答案.【详解】①0.32是有限小数,是有理数, ②227是分数,是有理数, ③π是无限循环小数,是无理数,⑤0.2060060006(每两个6之间依次多个0)是无限循环小数,是无理数,,是整数,是有理数,综上所述:无理数是③④⑤,故选:D .【点睛】此题主要考查了无理数的定义,初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数;熟练掌握定义是解题关键. 2.下列各数中,无理数有( )3.14125127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个D解析:D【分析】 直接根据无理数的定义直接判断得出即可.【详解】π,2.32232223共3个.故选D .【点睛】本题考查了无理数的定义,正确把握无理数的定义:无限不循环小数是无理数进而得出是解题关键.3.观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,则81+82+83+84+…+82 017的和的个位数字是( )A .2B .4C .6D .8D解析:D【分析】根据规律可得底数为8的幂的个位数字依次为8,4,2,6,以4个为周期,个位数字相加为0. 2017除以4余数是1,故得到和的个位数字是8.【详解】解:2017÷4=504…1,循环了504次,还有1个个位数字为8,所以81+82+83+84+…+82017的和的个位数字是504×0+8=8.故选:D .【点睛】本题主要考查了数字的变化类,尾数的特征,得到底数为8的幂的个位数字的循环规律是解决本题的突破点.4.下列命题中,①81的平方根是9;±2;③−0.003没有立方根;④−64的立方根为±4; )A .1B .2C .3D .4A 解析:A【分析】根据平方根的定义对①②进行判断;根据立方根的定义对③④进行判断;根据命题的定义对⑤进行判断.【详解】解:81的平方根是±9,所以①错误;±2,所以②正确;-0.003有立方根,所以③错误;−64的立方根为-4,所以④错误;⑤正错误.故选:A .【点睛】本题考查了立方根和平方根的应用,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.5.下列实数中,是无理数的为( )A .3.14B .13CD 解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A.3.14是有限小数,属于有理数;B.13是分数,属于有理数;3,是整数,属于有理数.故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.,则571.34的平方根约为( )A .239.03B .±75.587C .23.903D .±23.903D 解析:D【分析】根据被开方数小数点向右移动两位,其算术平方根向右移动一位及平方根的定义求解即可.【详解】解:∵,∴,故选:D .【点睛】本题主要考查算术平方根与平方根,解题的关键是掌握被开方数小数点向右移动两位,其算术平方根向右移动一位和平方根的定义.7.下列实数中,属于无理数的是( )A .3.14B .227CD .πD 解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、3.14是小数,是有理数,故A 选项错误;B 、227是有限小数,是有理数,故B 选项错误;C =2是整数,是有理数,故C 选项错误.D 、π是无理数,故D 选项正确故选:D .【点睛】本题考查了无理数的定义,无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.下列命题中真命题的个数( )①无理数包括正无理数、零和负无理数;②经过直线外一点有且只有一条直线与已知直线平行;③和为180°的两个角互为邻补角;④49的算术平方根是7;⑤有理数和数轴上的点一一对应;⑥垂直于同一条直线的两条直线互相平行.A .4B .3C .2D .1D 解析:D【分析】根据无理数、平行公理、邻补角、算术平方根、实数与数轴、平行线的判定逐个判断即可得. 【详解】①无理数包括正无理数和负无理数,此命题是假命题;②经过直线外一点有且只有一条直线与已知直线平行,此命题是真命题;③和为180︒的两个角不一定互为邻补角,此命题是假命题;④497=的算术平方根是7,此命题是假命题;⑤实数和数轴上的点一一对应,此命题是假命题;⑥在同一平面内,垂直于同一条直线的两条直线互相平行,此命题是假命题; 综上,真命题的个数是1个,故选:D .【点睛】本题考查了无理数、平行公理、邻补角、实数与数轴等知识点,熟练掌握各定义与公理是解题关键.9.我们定义新运算如下:当m n ≥时,m 22n m n =-;当m n <时,m 3n m n =-.若5x =,则(3-)(6x -)x 的值为( ) A .-27B .-47C .-58D .-68C 解析:C【分析】根据新定义法则判断35-<,65≥,根据新定义内容分别代入计算即可.【详解】当5x =时,∵35-<,∴3- 5=()33527532--=--=-, ∵65≥,∴625625361026=-⨯=-=,则(3-)(6x -)x =322658--=-.故选:C .【点睛】本题考查新定义运算,掌握新定义运算技巧,理解题意为解题关键.10.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左向右数第(n ﹣2)个数是( )(用含n 的代数式表示)A 21n -B 22n -C 23n -D 24n - B解析:B【分析】 观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n-1行的数据的个数,再加上n-2得到所求数的被开方数,然后写出算术平方根即可.【详解】解:前(n ﹣1)行的数据的个数为2+4+6+…+2(n ﹣1)=n (n ﹣1),所以,第n (n 是整数,且n ≥3)行从左到右数第n ﹣2个数的被开方数是n (n ﹣1)+n ﹣2=n 2﹣2,所以,第n (n 是整数,且n ≥3)行从左到右数第n ﹣222n -.故选:B .【点睛】本题考查了算术平方根,观察数据排列规律,确定出前(n-1)行的数据的个数是解题的关键.二、填空题11.(1)小明解方程2x 1x a 332-+=-去分母时,方程右边的−3忘记乘6,因而求出的解为x=2,则原方程正确的解为多少? (2)设x ,y 是有理数,且x ,y 满足等式2x 2y 2y 1742++=-x-y 的值.(1)x =−13;(2)(2)x-y 的值为9或-1【分析】(1)将错就错把x =2代入计算求出a 的值即可确定出正确的解;(2)根据题意可以求得xy 的值从而可以求得x−y 的值【详解】(1)把x =2代入2解析:(1)x =−13;(2)(2)x-y 的值为9或-1.【分析】(1)将错就错把x =2代入计算求出a 的值,即可确定出正确的解;(2)根据题意可以求得x 、y 的值,从而可以求得x−y 的值.【详解】(1)把x =2代入2(2x−1)=3(x +a )−3中得:6=6+3a−3,解得:a =1, 代入方程得:2x 1x 1332-+=-, 去分母得:4x−2=3x +3−18,解得:x =−13;(2)∵x 、y 是有理数,且 x ,y 满足等式2x 2y 17++=-∴22174x y y ⎧+=⎨=-⎩, 解得,54x y =⎧⎨=-⎩或54x y =-⎧⎨=-⎩, ∴当x =5,y =−4时,x−y =5−(−4)=9,当x =−5,y =−4时,原式=−5−(−4)=−1.故x-y 的值为9或-1.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.也考查了实数. 12.求满足条件的x 值:(1)()23112x -=(2)235x -=(1);(2)【分析】(1)方程两边同除以3再运用直接开平方法求解即可;(2)方程移项后再运用直接开平方法求解即可【详解】解:(1)解得;(2)∴∴【点睛】本题考查了平方根的应用解决本题的关键是熟记解析:(1)13x =,21x =-;(2)1x =2x =-【分析】(1)方程两边同除以3,再运用直接开平方法求解即可;(2)方程移项后,再运用直接开平方法求解即可.【详解】解:(1)()23112x -= ()214x -=12x -=±解得,13x =,21x =-;(2)235x -=28x = ∴x =±∴1x =2x =-【点睛】本题考查了平方根的应用,解决本题的关键是熟记平方根的定义.13.解方程:(1)2810x -=;(2)38(1)27x +=.(1);(2)【分析】(1)移项利用平方根的性质解方程;(2)方程两边同时除以8然后利用立方根的性质解方程【详解】(1)移项得:解得:;(2)方程两边同时除以8得:∴解得:【点睛】本题考查了平方根和解析:(1)9x =±;(2)12x =. 【分析】(1)移项,利用平方根的性质解方程;(2)方程两边同时除以8,然后利用立方根的性质解方程.【详解】(1)2810x -=,移项得:281x =,解得:9x =±;(2)()38127x +=,方程两边同时除以8,得:()32718x +=, ∴312x +=, 解得:31122x =-=. 【点睛】本题考查了平方根和立方根,熟练掌握平方根和立方根的定义与性质是解题关键. 14.请你写出一个比3大且比4小的无理数,该无理数可以是:____.答案不唯一如:【分析】无限不循环小数是无理数根据无理数的三种形式解答即可【详解】设该无理数是x 由题意得∴x=10或11或12或13或14或15该无理数可以是:答案不唯一如:故答案为:答案不唯一如:【解析:【分析】无限不循环小数是无理数,根据无理数的三种形式解答即可.【详解】设该无理数是x x <<∴x=10或11或12或13或14或15,【点睛】此题考查无理数的定义,熟记定义并掌握无理数的三种形式是解题的关键.15.若|2|0a -=,则a b +=_________.5【分析】根据非负数的性质列式求出ab 的值然后相加即可【详解】解:根据题意得解得∴故答案为:5【点睛】本题考查了非负数的性质:有限个非负数的和为零那么每一个加数也必为零解析:5【分析】根据非负数的性质列式求出a 、b 的值,然后相加即可.【详解】解:根据题意得,20a -=,30b -=,解得2a =,3b =,∴235a b +=+=.故答案为:5.【点睛】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.16.若|2|0x -=,则12xy -=_____.2【分析】根据非负数的性质进行解答即可【详解】解:故答案为:2【点睛】本题考查了非负数的性质掌握几个非负数的和为0这几个数都为0是解题的关键解析:2【分析】根据非负数的性质进行解答即可.【详解】解:|2|0x -=,20x ∴-=,0x y +=,2x ∴=,2y =-, ∴112(2)222xy -=-⨯⨯-=,故答案为:2.【点睛】本题考查了非负数的性质,掌握几个非负数的和为0,这几个数都为0,是解题的关键. 17.我们知道,同底数幂的乘法法则为:•m n m n a a a +=(其中0a ≠,m ,n 为正整数),类似地我们规定关于任意正整数m ,n 的一种新运算:()()()h m n h m h n +=⋅,请根据这种新运算填空:若()213h =,则(2)h =_____;若()()10h k k =≠,那么()(2020)h n h ⋅=______(用含n 和k 的代数式表示,其中n 位正整数)【分析】通过对所求式子变形然后根据同底数幂的乘法计算即可解答本题【详解】解:∵∴∵∴故答案是:【点睛】本题考查整式的混合运算化简求值新定义解答本题的关键是明确题意利用新运算求出所求的式子的值 解析:492012n k + 【分析】 通过对所求式子变形,()()()h m n h m h n +=⋅然后根据同底数幂的乘法计算即可解答本题.【详解】解:∵()213h = ∴224(2)(11)(1)(1)339h h h h =+=⨯=⨯= ∵()()10h k k =≠∴()(2020)h n h ⋅=20202020n n k k k +⨯=. 故答案是:49,2020n k + 【点睛】本题考查整式的混合运算化简求值、新定义,解答本题的关键是明确题意,利用新运算求出所求的式子的值.18.比较大小:-2.(填“>”“=”或“<”)>【分析】两个负数比较绝对值大的反而小由此得到答案【详解】∵∴故答案为:>【点睛】此题考查实数的大小比较:负实数都比0小正实数都比0大两个负实数比较大小绝对值大的反而小解析:>【分析】两个负数比较绝对值大的反而小,由此得到答案.【详解】 ∵2<,∴2>-,故答案为:>.【点睛】此题考查实数的大小比较:负实数都比0小,正实数都比0大,两个负实数比较大小,绝对值大的反而小.19.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.或【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4※(-2)=;(-1)※1=(-1)※1※m=2※m=36当时原式可化为解得:;解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-;11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键.20.若4<5,则满足条件的整数 a 分别是_________________.18192021222324【分析】求出a 的范围是16<a <25求出16和25之间的整数即可【详解】解:∵4<<5a 为整数∴<<∴整数a 有1718192021222324共8个数故答案为:17181解析:18、19、20、21、22、23、24.【分析】求出a 的范围是16<a <25,求出16和25之间的整数即可.【详解】解:∵4<a<5,a为整数,∴16<a<25,∴整数a有17、18、19、20、21、22、23、24,共8个数,故答案为:17、18、19、20、21、22、23、24.【点睛】本题主要考查的是估算无理数的大小,夹逼法的应用是解题的关键.三、解答题21.计算下列各题-+16﹣3﹣2;(1)38(2)23+5﹣100.04(结果保留2位有效数字).2-;(2)2.6解析:(1)3【分析】(1)计算立方根、平方根,再合并即可;(2)根据实数的运算法则和顺序计算即可.【详解】-+16-3-2(1)38=-2+4-2-3=-3;-100.04(2)23+525=+-⨯23100.22≈⨯+÷-2 1.732 2.236222.6≈.【点睛】本题考查了平方根和立方根,熟练掌握相关的运算法则是解题的关键.22.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________;(2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-+ 的点,并比较它们的大小. 解析:(1)2,2-;(2)①见解析;②见解析, 350.5-+<-【分析】(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,再把N 点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a ,∵a 2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b ,∴b 2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,则M 表示的数为-3+5,看图可知,表示-0.5的N 点在M 点的右方,∴比较大小:30.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.23.观察下列各式,并用所得出的规律解决问题:(1=1.414=14.14==0.1732=1.732,=17.32…由此可见,被开方数的小数点每向右移动 位,其算术平方根的小数点向 移动 位;(2=2.236=7.071= ,= ;(3=1=10=100…小数点变化的规律是: .(4=2.154=4.642= ,= .解析:(1)两,右,一;(2)0.7071,22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54,﹣0.4642【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】(1=1.414=14=141.4…=0.1732=1.732=17.32…由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位,(2=2.236=7.071=0.7071=22.36,(3=1=10=100…小数点变化的规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵=2.154=4.642, ∴=21.54,=-0.4642.故答案为:(1)两;一;(2)0.7071;22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54;﹣0.4642【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.24.已知2x +1的算术平方根是0=4,z 是﹣27的立方根,求2x +y +z 的平方根.解析:【分析】先根据算术平方根的定义求得2x的值,再根据算术平方根的定义求出y,根据立方根的定义求z,然后代入要求的式子进行计算,最后根据平方根的定义即可得出答案.【详解】解:∵2x+1的算术平方根是0,∴2x+1=0,∴2x=﹣1,∵=4,∴y=16,∵z是﹣27的立方根,∴z=﹣3,∴2x+y+z=﹣1+16﹣3=12,∴2x+y+z的平方根是=【点睛】本题考查了平方根、算术平方根、立方根,解决本题的关键是熟记平方根、算术平方根、立方根的定义.25.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时,;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,.(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0];(3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.解析:(1)同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)﹣17;(3)适用,举例验证见解析【分析】(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加.特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值;(2)根据⊗运算的运算法则进行计算即可;(3)举例即可做出结论.【详解】解:(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值.故答案为:同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]=(﹣5)⊗(+12)=﹣17;(3)结合律仍然适用.例如[(﹣3)⊗(﹣5)]⊗(+4)=(+8)⊗(+4)=+12,(﹣3)⊗[(﹣5)⊗(+4)]=(﹣3)⊗(﹣9)=+12,所以[(﹣3)⊗(﹣5)]⊗(+4)=12=(﹣3)⊗[(﹣5)⊗(+4).故结合律仍然适用.【点睛】本题考查了新定义下的有理数的加减运算,正确理解新定义运算法则是解题的关键.26.计算:3011(2)(200422-+-- 解析:8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(200422-+-- 11822=-+- 8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.27.计算.(1)3218433⎛⎫-⨯-+- ⎪⎝⎭(2)178(4)4(5)-÷-+⨯-(3163⎫-⎪⎪⎭ (4)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦解析:(1)354;(2)-1;(3)1-;(4)9. 【分析】 (1)运用乘法分配律去括号,再进行乘法运算,最后进行加减运算即可得到答案; (2)原式首先计算乘除法选辑减去息怒可;(3)原式首先化简算术平方根和立方根,再进行加减运算即可得到答案;(4)首先计算乘方运算,再计算括号内,最后算乘法即可得到答案.【详解】解:(1)3218433⎛⎫-⨯-+- ⎪⎝⎭=33231(8)()()()44343-⨯-+-⨯+-⨯-=11624-+ =354; (2)178(4)4(5)-÷-+⨯-=17+2-20=-1;(3163⎫-⎪⎪⎭=115+()633-+-=5+0-6=-1;(4)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ =34(92)29-⨯-⨯- =3(42)2-⨯-- =3(6)2-⨯-=9. 【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键.28.阅读下面的文字,解答问题:无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来,比如π、等,而常用“……”或者“≈”1的小数部分,你同意小刚的表示方法吗?的整数部分是1,将这个数减去其整数部分,差就是小数部分.<<,即23<<,22也就是说,任何一个无理数,都可以夹在两个相邻的整数之间.根据上述信息,请回答下列问题:(1______,小数部分是_______;(2)10+10a b <+<,则a b +=_____;(34x y =+,其中x 是整数,且01y <<.求:x y -的相反数.解析:(1)3 3-;(2)25;(3)()8x y --=.【分析】(1)由34可得答案;(2)由2<3知12<<13,可求出a ,b 的值,据此求解可得;(3)得出243<-<,即可得出x ,y ,从而得出结论. 【详解】解:(1)∵9<13<16∴34,∴3;故答案为:3.(2)∵4<7<9,∴2<3∴12<<13∴a=12,b=13∴a+b=12+13=25,故答案为:25;(3<<67<<所以64474-<<-即243<-<4的整数部分为2,即2x =,426y =-=()26x y x y --=-+=-+=8=【点睛】本题考查了估算无理数的大小,解决本题的关键是熟记估算无理数的大小.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章《实数》测试卷
一、选择题(每小题3分,共30分)
1、若x 是9的算术平方根,则x 是( )
A 、3
B 、-3
C 、9
D 、81 2、下列说法不正确的是( ) A 、
251的平方根是1
5
± B 、-9是81的一个平方根 C 、的算术平方根是 D 、-27的立方根是-3
3、若a 的算术平方根有意义,则a 的取值范围是( ) A 、一切数 B 、正数 C 、非负数 D 、非零数
4、在下列各式中正确的是( )
A 、2
)2(-=-2 B
、=3 C 、16=8 D 、22=
5、估计76的值在哪两个整数之间( )
A 、75和77
B 、6和7
C 、7和8
D 、8和9
6、下列各组数中,互为相反数的组是( )
A 、-2与2
)2(- B 、-2和38- C 、-2
1与2 D 、︱-2︱和2
7、在-2,4,2,, 327-,
5
π
,这6个数中,无理数共有( ) A 、4个 B 、3个 C 、2个 D 、1个 8、下列说法正确的是( )
A 、数轴上的点与有理数一一对应
B 、数轴上的点与无理数一一对应
C 、数轴上的点与整数一一对应
D 、数轴上的点与实数一一对应 9.的立方根与的算术平方根的和是 ( )
A. B. C. D. 10、 -27的立方根为 ( )
± B. 3 D.没有立方根
二、填空题(每小题3分,共18分)
11、81的平方根是__________,的算术平方根是__________。

12、一个数的算术平方根等于它本身,则这个数应是__________。

13、38-的绝对值是__________。

14、比较大小:27____42。

15、若36.25=,6.253=,则253600=__________。

16、若10的整数部分为a ,小数部分为b ,则a =________,b =_______。

三、解答题(每题6分,共24分)
17、327-+2)3(--31- 18、33364
631125.041027-++--- 求下列各式中的x
19、4x 2-16=0 20、27(x -3)3
=-64 四、(每题7分,共21分)
21、若5a +1和a -19是数m 的平方根,求m 的值。

22、已知a 31-和︱8b -3︱互为相反数,求(ab )-2
-27 的值。

23、若:0)3
3(32=-++y x 则: x (·2014
)y 等于多少 五、(第23题7分,)
24、已知m 是313的整数部分,n 是13的小数部分,求m -n 的值。

25、若5a +1和a -19是数m 的平方根,求m 的值。

(5分)
26、已知a 31-和︱8b -3︱互为相反数,求(ab )2
-27 的值。

(5分)
27、已知2a -1的平方根是±3,3a +b -1的算术平方根是4,求a +2b 的值。

(6分)
六、求下列各式中的x 的值(4分)
19、4x 2-16=0 20、27(x -3)3
=-64
平面直角坐标系测试题
一、选择题(每小题3分,共30分)
1.如图是在方格纸上画出的小旗图案,若用(0,0)表示A 点,(0,4)表示
B 点,那么
C 点的位置可表示为( ) A .(0,3) B .(2,3) C .(3,2)
D .(3,0) 2.点B (0,3-)在( )
A .x 轴的正半轴上
B .x 轴的负半轴上
C .y 轴的正半轴上
D .y 轴的负半轴上 3.平行于x 轴的直线上的任意两点的坐标之间的关系是( )
A .横坐标相等
B .纵坐标相等
C .横坐标的绝对值相等
D .纵坐标的绝对值相等 4.下列说法中,正确的是( )
A .平面直角坐标系是由两条互相垂直的直线组成的
B .平面直角坐标系是由两条相交的数轴组成的
C .平面直角坐标系中的点的坐标是唯一确定的
D .在平面上的一点的坐标在不同的直角坐标系中的坐标相同 5.已知点P 1(-4,3)和P 2(-4,-3),则P 1和P 2( )
A .关于原点对称
B .关于y 轴对称
C .关于x 轴对称
D .不存在对称关系
6.如果点P (5,y )在第四象限,则y 的取值范围是( )
A .y >0
B .y <0
C .y ≥0
D .y ≤0
7.一个正方形在平面直角坐标系中三个顶点的坐标为(-2,-3),(-2,1),(2,1),则第四个顶点的坐标为( ) A .(2,2); B .(3,2); C .(2,-3) D .(2,3) 8.在平面直角坐标系内,把点P (-5,-2)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是( )
A .(-3,2);
B .(-7,-6);
C .(-7,2)
D .(-3,-6) 9.已知P(0,a)在y 轴的负半轴上,则Q(2
1,1a a ---+)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
二、填空题(每小题3分,共21分)
11.如果用(7,8)表示七年级八班,那么八年级七班可表示成 . 12.已知坐标平面内一点A(1,-2),若A 、B 两点关于x 轴对称,则点B 的坐标为 .
13.点A 在x 轴上,位于原点的右侧,距离坐标原点5个单位长度,则此点A 的坐标为 . 14.已知点M 在y 轴上,纵坐标为5,点P(3,-2),则△OMP 的面积是_______.
15.将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x ,-1),则xy=___________.
16.已知点A(3a +5,a -3)在二、四象限的角平分线上,则a =_____.
17.已知线段MN 平行于x 轴,且MN 的长度为5,若M (2,-2),那么点N 的坐标是______.
三、解答题(共49分)18.(5分)写出如图中“小鱼”上所标各点的坐标.
19.(6分)在平面直角坐标系中,画出点A (0,2),B (-1,0),过点A 作直
线L 1∥x 轴,过点B 作L 2∥y 轴,分析L 1,L 2上点的坐标特点,由此,你能
总结出什么规律
20.(8分)A 点坐标为(3,3),将△ABC 先向下平移4个单位得
△A ′B ′C ′,再将△A ′B ′C ′向左平移5个单位得 △A 〞B 〞C 〞。

(1)请你画出△A ′B ′C ′和△A 〞B 〞C 〞,并写出A 〞的坐标。

(2)求△A 〞B 〞C 〞的面积 21.(8分)在如图所示的平面直角坐标系中描出A (2,3),B (-3,-2),•C (4,1)三点,并用线段将A 、B 、C 三点依次连接起来得到一个几何图形,请你求出这个几何图形的面积。

22.(8分)如图,三角形PQR 是三角形ABC 经过某种变换后得到的图形,分别写出点A 与点P ,点B 与点Q ,点C 与点R 的坐标,并观察它们之间的关系,如果三角形ABC 中任意一点M 的坐标为(),b a 那么它的对应点N 的坐
标是什么
23.(8分)在平行四边形ACBO 中,AO=5,则点B 坐标为(-2,4) (1) 写出点C 坐标.(2) 求出平行四边形ACBO 面积 (6分)已知A 、B 两村庄的坐标分别为(2,2)、(7,4),一
辆汽车在轴上行驶,从原点O 出发。

(1)汽车行驶到什么位置时离A 村最近写出此点的坐标。

(2)汽车行驶到什么位置时,距离两村的和最短
A B
C。

相关文档
最新文档