45.矩形(基础)知识讲解
《特殊平行四边形》全章复习与巩固(基础)知识讲解

《特殊平行四边形》全章复习与巩固(基础)【学习目标】1. 理解矩形、菱形的概念,探索并证明矩形、菱形的性质定理,以及它们的判定定理.2. 理解正方形的概念,探索并掌握正方形的对称性及其他有关性质,以及一个四边形是正方形的条件.3.会初步综合应用特殊平行四边形的知识,解决一些简单的实际问题. 【知识网络】【要点梳理】 要点一、矩形1.定义:有一个角是直角的平行四边形叫做矩形. 2.性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形.3.面积:宽=长矩形 S4.判定:(1) 有一个角是直角的平行四边形是矩形. (2)对角线相等的平行四边形是矩形. (3)有三个角是直角的四边形是矩形. 要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半. 要点二、菱形1. 定义:有一组邻边相等的平行四边形叫做菱形. 2.性质:(1)具有平行四边形的一切性质; (2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形.3.面积:2对角线对角线高==底菱形⨯⨯S4.判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形; (3)四边相等的四边形是菱形.要点三、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形. 2.性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形; (6)中心对称图形,轴对称图形.3.面积:=S 正方形边长×边长=12×对角线×对角线 4.判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形; (3)对角线相等的菱形是正方形; (4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形; (6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】 类型一、矩形1、(常州期末)如图,在△ABC 中,AB=AC ,D 为BC 的中点,AE ∥BC ,DE ∥AB . 试说明: (1)AE=DC ;(2)四边形ADCE 为矩形.【思路点拨】(1)根据已知条件可以判定四边形ABDE 是平行四边形,则其对边相等:AE=BD .结合中点的性质得到AE=CD ;(2)依据“对边平行且相等”的四边形是平行四边形判定四边形ADCE 是平行四边形,又由“有一内角为直角的平行四边形是矩形”证得结论. 【答案与解析】证明:(1)如图,∵AE∥BC,∴AE∥BD.又∵DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD.∵D为BC的中点,∴BD=DC,∴AE=DC;(2)∵AE∥CD,AE=BD=DC,即AE=DC,∴四边形ADCE是平行四边形.又∵AB=AC,D为BC的中点,∴AD⊥CD,∴平行四边形ADCE为矩形.【总结升华】本题考查了等腰三角形的性质,矩形的判定与性质以及平行四边形的性质.此题也可以根据“对角线相等的平行四边形是矩形”来证明(2)的结论.2、如图所示,在矩形ABCD中,AB=6,BC=8.将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处,求EF的长.【思路点拨】要求EF的长,可以考虑把EF放入Rt△AEF中,由折叠可知CD=CF,DE=EF,易得AC=10,所以AF=4,AE=8-EF,然后在Rt△AEF中利用勾股定理求出EF的值.【答案与解析】解:设EF=x,由折叠可得:DE=EF=x,CF=CD=6,又∵在Rt△ADC中,22AC+=.6810∴ AF =AC -CF =4,AE =AD -DE =8-x . 在Rt △AEF 中,222AE AF EF =+, 即222(8)4x x -=+,解得:x =3 ∴ EF =3 【总结升华】在矩形折叠问题中往往根据折叠找出相等的量,然后把未知边放在合适的直角三角形中,再利用勾股定理进行求解. 举一反三: 【变式】把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB = 3cm ,BC = 5cm ,则重叠部分△DEF 的面积是__________2cm .【答案】5.1.提示:由题意可知BF =DF ,设FC =x ,DF =5-x ,在Rt △DFC 中,222DC FC DF +=,解得x =85,BF =DE =3.4,则DEF 1=DE AB 2S ⨯△=12×3.4×3=5.1.类型二、菱形3、(遵义)在Rt△ABC 中,∠BAC=90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF∥BC 交BE 的延长线于点F . (1)求证:△AEF≌△DEB; (2)证明四边形ADCF 是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.【答案与解析】(1)证明:①∵AF∥BC,∴∠AFE=∠DBE,∵E 是AD 的中点,AD 是BC 边上的中线, ∴AE=DE,BD=CD , 在△AFE 和△DBE 中,,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵,∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)解:设菱形DC边上的高为h,∴RT△ABC斜边BC边上的高也为h,∵BC==,∴DC=BC=,∴h==,菱形ADCF的面积为:DC•h=×=10.【总结升华】运用菱形的性质可以证明线段相等、角相等、线段的平行及垂直等问题,关键是要记住它们的判定和性质.举一反三:【变式】用两张等宽的纸带交叉重叠地放在一起,重合的四边形ABCD是菱形吗?如果是菱形请给出证明,如果不是菱形请说明理由.【答案】四边形ABCD是菱形;证明:由AD∥BC,AB∥CD得四边形ABCD是平行四边形,过A,C两点分别作AE⊥BC于E,CF⊥AB于F.∴∠CFB=∠AEB=90°.∵AE=CF(纸带的宽度相等)∠ABE=∠CBF,∴Rt△ABE≌Rt△CBF,∴AB=BC,∴四边形ABCD是菱形.4、如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.下列结论:①EG⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG=12(BC-AD),⑤四边形EFGH是菱形.其中正确的个数是()A.1 B.2 C.3 D.4【答案】C;【解析】解:∵E、F、G、H分别是BD、BC、AC、AD的中点,∴EF=12CD,FG=12AB,GH=12CD,HE=12AB,∵AB=CD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,∴①EG⊥FH,正确;②四边形EFGH是矩形,错误;③HF平分∠EHG,正确;④当AD∥BC,如图所示:E,G分别为BD,AC中点,∴连接CD,延长EG到CD上一点N,∴EN=12BC,GN=12AD,∴EG=12(BC-AD),只有AD∥BC时才可以成立,而本题AD与BC很显然不平行,故本小题错误;⑤四边形EFGH是菱形,正确.综上所述,①③⑤共3个正确.故选C.【总结升华】本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形是解答本题的关键.类型三、正方形5、如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P 作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【思路点拨】(1)问通过证明三角形全等来证明角相等;(2)先证明四边形MPND是矩形,再证明一组邻边相等,从而证明四边形MPND是正方形.【答案与解析】证明:(1) ∵BD平分∠ABC,∴∠ABD=∠CBD.又∵BA=BC,BD=BD,∴△ABD≌△CBD.∴∠ADB=∠CDB.(2) ∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,又∵∠ADC=90°,∴四边形MPND是矩形.∵∠ADB=∠CDB,PM⊥AD,PN⊥CD,∴PM=PN.∴四边形MPND是正方形.【总结升华】熟记正方形的判定定理,有一组邻边相等的矩形是正方形.6、如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由.【思路点拨】AE=EF.根据正方形的性质推出AB=BC,∠BAD=∠HAD=∠DCE=90°,推出∠HAE=∠CEF,根据△HEB是以∠B为直角的等腰直角三角形,得到BH=BE,∠H=45°,HA=CE,根据CF平分∠DCE推出∠H=∠FCE,根据ASA证△HAE≌△CEF即可得到答案.【答案与解析】探究:AE=EF证明:∵△BHE为等腰直角三角形,∴∠H=∠HEB=45°,BH=BE.又∵CF平分∠DCE,四边形ABCD为正方形,∴∠FCE=12∠DCE=45°,∴∠H=∠FCE.由正方形ABCD知∠B=90°,∠HAE=90°+∠DAE=90°+∠AEB,而AE⊥EF,∴∠FEC=90°+∠AEB,∴∠HAE=∠FEC.由正方形ABCD知AB=BC,∴BH-AB=BE-BC,∴HA=CE,∴△AHE≌△ECF (ASA),∴AE=EF.【总结升华】充分利用正方形的性质和题目中的已知条件,通过证明全等三角形来证明线段相等.举一反三:【变式1】如图所示,E、F、G、H分别是四边形ABCD各边中点,连接EF、FG、GH、HE,则四边形EFGH为________形.(1)当四边形满足________条件时,四边形EFGH是菱形.(2)当四边形满足________条件时,四边形EFGH是矩形.(3)当四边形满足________条件时,四边形EFGH是正方形.在横线上填上合适的条件,并说明你所填条件的合理性.【答案】四边形EFGH为平行四边形;解:(1)AC=BD,理由:如图①,四边形ABCD的对角线AC=BD,此时四边形EFGH为平行四边形,且EH=12BD,HG=12AC,得EH=GH,故四边形EFGH为菱形.(2)AC⊥BD,理由:如图②,四边形ABCD的对角线互相垂直,此时四边形EFGH为平行四边形.易得GH⊥BD,即GH⊥EH,故四边形EFGH为矩形.(3)AC=BD且AC⊥BD,理由:如图③,四边形ABCD的对角线相等且互相垂直,综合(1)(2)可得四边形EFGH为正方形.本题是以平行四边形为前提,加上对角线的特殊条件来判定特殊的平行四边形,加上邻边相等为菱形,加上对角线互相垂直为矩形,综合得到正方形.【变式2】(黄冈)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.【答案】65°.提示:∠ABE=90°-20°=70°,由正方形的性质知,∠BAC=45°,∴∠AEB=180°-45°-70°=65°,由正方形的对称性可知,∠AED=∠AEB=65°.【巩固练习】一.选择题1.如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是()A.8 B.6 C.4 D.22.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°3.(武进区一模)如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为()A.32B232.75D24. 在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是().A.测量对角线是否相互平分 B.测量两组对边是否分别相等C.测量一组对角是否都为直角 D.测量其中三角形是否都为直角5.正方形具备而菱形不具备的性质是()A. 对角线相等;B. 对角线互相垂直;C. 每条对角线平分一组对角;D. 对角线互相平分.6.矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为()A.16 B.12 C.24 D.207.(桂林模拟)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB上一动点,过点D 作DE⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是()A.5 B.4.8 C.4.6 D.4.48. 如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为()A.16a B.12a C.8a D.4a二.填空题9.如图,Rt△ABC中,∠C=90°,AC=BC=6,E是斜边AB上任意一点,作EF⊥AC于F,EG⊥BC于G,则矩形CFEG的周长是_______.10.矩形的两条对角线所夹的锐角为60 ,较短的边长为12,则对角线长为__________. 11.如图,菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为______.12.如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CB的中点,则OE的长等于_______.13.如图, 有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角形的直角顶点落在点A,两条直角边分别与CD交于点F,与CB的延长线交于点E,则四边形AECF的面积是 _________.cm,对角线AC=4cm,则菱形的边长是______cm.14.已知菱形ABCD的面积是12215.菱形ABCD中,AE垂直平分BC,垂足为E,AB=4cm.那么,菱形ABCD的面积是________,对角线BD的长是_________.16.(昆明校级期中)如图,将两条宽度都为3的纸条重叠在一起,使∠ABC=60°,则四边形ABCD的面积为________.三.解答题17.如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.18.(无棣县期中)如图,在△ABC中,AB=AC,AD是△ABC的角平分线,作AE∥BC,CE∥AD,AE、CE交于点E.(1)证明:四边形ADCE是矩形.(2)若DE交AC于点O,证明:OD∥AB且OD=AB.19.(崂山区一模)已知:如图,E是正方形ABCD的对角线BD上的点,连接AE、CE.(1)求证:AE=CE;(2)若将△ABE沿AB对折后得到△ABF;当点E在BD的何处时,四边形AFBE是正方形?请证明你的结论.20. 已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.(1)求证:BE = DF;(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.【答案与解析】一.选择题1.【答案】C;【解析】根据矩形的对角线相等且互相平分可得AO=BO=CO=DO,进而得到等腰三角形.2.【答案】B;【解析】连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=CD,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.3.【答案】D;4.【答案】D;5.【答案】A;6.【答案】B;【解析】根据矩形性质求出AO=BO=4,得出等边三角形AOB,求出AB,即可求出答案.7.【答案】B;【解析】解:如图,连接CD.∵∠ACB=90°,AC=6,BC=8,∴AB==10,∵PE⊥AC,PF⊥BC,∠C=90°,∴四边形CFDE是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时,线段EF的值最小,此时,S△ABC=BC•AC=AB•CD,即×8×6=×10•CD,解得CD=4.8,∴EF=4.8.故选B.8.【答案】C;【解析】OE=a,则AD=2a,菱形周长为4×2a=8a.二.填空题9.【答案】12;【解析】推出四边形FCGE 是矩形,得出FC =EG ,FE =CG ,EF∥CG,EG∥CA,求出∠BEG =∠B,推出EG =BG ,同理AF =EF ,求出矩形CFEG 的周长是CF +EF +EG +CG =AC +BC ,代入求出即可. 10.【答案】24;11.【答案】).2,22(+;【解析】过D 作DH ⊥OC 于H ,则CH =DH =2,所以D 的坐标为).2,22(+ 12.【答案】4;【解析】根据菱形的性质得出OA =OC ,根据三角形的中位线性质得出OE =12AB ,代入求出即可.13.【答案】16;【解析】证△ABE ≌△ADF ,四边形AECF 的面积为正方形ABCD 的面积. 14.【答案】13; 【解析】设BD =x ,1412,62x x ⨯==,所以边长=222313+=. 15.【答案】832cm ;43cm ;【解析】由题意知△ABC 为等边三角形,AE =23,面积为832cm ,BD =2AE = 43cm .16.【答案】6.【解析】∵纸条的对边平行,即AB∥CD,AD∥BC,∴四边形ABCD 是平行四边形, ∵两张纸条的宽度都是3,∴S 四边形ABCD =AB×3=BC×3, ∴AB=BC,∴平行四边形ABCD 是菱形,即四边形ABCD 是菱形. 如图,过A 作AE⊥BC,垂足为E , ∵∠ABC=60°,∴∠BAE=90°﹣60°=30°, ∴AB=2BE,在△ABE 中,AB 2=BE 2+AE 2, 即AB 2=AB 2+32, 解得AB=2, ∴S 四边形ABCD =BC•AE=2×3=6.故答案是:6.三.解答题17.【解析】证明:∵四边形ABCD 是菱形,∴AB=BC ,∠A=∠C, ∵在△ABF 和△CBE 中,AF CE A C AB CB =⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△CBE(SAS ), ∴BF=BE . 18.【解析】 证明:(1)∵AB=AC,AD 是△ABC 的角平分线,∴AD⊥BC,且BD=CD , ∵AE∥BC,CE∥AD,∴四边形ADCE 是平行四边形, ∴四边形ADCE 是矩形;(2)∵四边形ADCE 是矩形, ∴OA=OC,∴OD 是△ABC 的中位线,∴OD∥AB 且OD=12AB. 19.【解析】(1)证明:∵四边形ABCD 是正方形,∴AB=CB ,∠BAD=∠ABC=90°,∠ABE=∠CBE=45°, 在△ABE 和△CBE 中,,∴△ABE ≌△CBE (SAS ), ∴AE=CE .(2)解:点E 在BD 的中点时,四边形AFBE 是正方形;理由如下:由折叠的性质得:∠F=∠AEB ,AF=AE ,BF=BE , ∵∠BAD=90°,E 是BD 的中点, ∴AE=BD=BE=DE , ∵AE=CE ,∴AE=BE=CE=DE=AF=BF ,∴四边形AFBE 是菱形,E 是正方形ABCD 对角线的交点, ∴AE ⊥BD ,∴∠AEB=90°,∴四边形AFBE是正方形.20.【解析】证明:(1)∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°.∵AE = AF,∴Rt RtABE ADF△≌△.∴BE=DF.(2)四边形AEMF是菱形.∵四边形ABCD是正方形,∴∠BCA =∠DCA=45°,BC=DC.∵BE=DF,∴BC-BE=DC-DF. 即CE=CF.∴OE=OF.∵OM=OA,∴四边形AEMF是平行四边形.∵AE=AF,∴平行四边形AEMF是菱形.A DB EFOC。
手把手教你判定矩形和正方形,详解教案

一、教案基本信息1. 《手把手教你判定矩形和正方形,详解教案》2. 课时安排:每课时45分钟3. 教学对象:八年级数学4. 教学目标:使学生掌握矩形和正方形的判定方法,提高学生的几何思维能力二、教学内容1. 第一节:矩形的判定1.1 判定一个四边形为矩形的条件1.2 矩形的性质1.3 矩形在实际生活中的应用2. 第二节:正方形的判定2.1 判定一个四边形为正方形的条件2.2 正方形的性质2.3 正方形在实际生活中的应用3. 第三节:矩形和正方形的异同3.1 矩形和正方形的共同点3.2 矩形和正方形的不同点3.3 矩形和正方形在实际生活中的应用4. 第四节:矩形和正方形的判定练习4.1 判断题练习4.2 选择题练习4.3 解答题练习5. 第五节:总结与拓展5.1 本节课的主要知识点回顾5.2 矩形和正方形的实际应用案例分析5.3 拓展思考:如何判断一个四边形是否为菱形三、教学方法1. 采用讲解法,让学生掌握矩形和正方形的判定方法及性质2. 利用多媒体展示矩形和正方形的实际应用案例,增强学生的实践能力3. 通过练习题,巩固所学知识,提高学生的解题能力4. 组织小组讨论,让学生分享学习心得,培养学生的合作精神四、教学评价1. 课后作业:布置有关矩形和正方形的练习题,检验学生掌握程度2. 课堂表现:观察学生在课堂上的参与程度、提问回答情况等3. 小组讨论:评估学生在小组讨论中的表现,包括分享心得、合作态度等五、教学资源1. PPT课件:制作有关矩形和正方形的判定方法、性质及应用的PPT课件2. 练习题:准备判断题、选择题和解答题等练习题,用于巩固所学知识3. 多媒体设备:电脑、投影仪等,用于展示PPT课件和实际应用案例4. 教学手册:提供相关知识点和案例分析,方便学生课后复习和拓展学习六、第六节:矩形的对角线6.1 矩形对角线的长度6.2 矩形对角线的性质6.3 矩形对角线在实际生活中的应用七、第七节:正方形的对角线7.1 正方形对角线的长度7.2 正方形对角线的性质7.3 正方形对角线在实际生活中的应用八、第八节:矩形和正方形的对称性8.1 矩形的对称性8.2 正方形的对称性8.3 矩形和正方形的对称性在实际生活中的应用九、第九节:矩形和正方形的面积计算9.1 矩形的面积计算9.2 正方形的面积计算9.3 矩形和正方形的面积计算在实际生活中的应用十、第十节:综合应用与拓展10.1 矩形和正方形在建筑学中的应用10.2 矩形和正方形在平面设计中的应用10.3 拓展思考:如何将矩形和正方形的知识运用到其他领域十一、教学内容1. 第十一节:菱形的判定11.1 判定一个四边形为菱形的条件11.2 菱形的性质11.3 菱形在实际生活中的应用十二、教学内容1. 第十二节:平行四边形的判定12.1 判定一个四边形为平行四边形的条件12.2 平行四边形的性质12.3 平行四边形在实际生活中的应用十三、教学内容1. 第十三节:矩形、正方形、菱形、平行四边形的比较13.1 矩形、正方形、菱形、平行四边形的共同点13.2 矩形、正方形、菱形、平行四边形的不同点13.3 矩形、正方形、菱形、平行四边形在实际生活中的应用十四、教学内容1. 第十四节:几何图形的综合练习14.1 判断题练习14.2 选择题练习14.3 解答题练习十五、教学内容1. 第十五节:总结与拓展15.1 本节课的主要知识点回顾15.2 几何图形在实际应用案例分析15.3 拓展思考:如何将几何图形的知识运用到其他领域十一、第十一节:菱形的判定与性质11.1 判定一个四边形为菱形的条件11.2 菱形的性质11.3 菱形的实际应用十二、第十二节:平行四边形的判定与性质12.1 判定一个四边形为平行四边形的条件12.2 平行四边形的性质12.3 平行四边形的实际应用十三、第十三节:矩形、正方形、菱形、平行四边形的比较13.1 矩形、正方形、菱形、平行四边形的共同点13.2 矩形、正方形、菱形、平行四边形的不同点13.3 矩形、正方形、菱形、平行四边形的实际应用十四、第十四节:几何图形的综合练习14.1 判断题练习14.2 选择题练习14.3 解答题练习十五、第十五节:总结与拓展15.1 本节课的主要知识点回顾15.2 几何图形在实际应用案例分析15.3 拓展思考:如何将几何图形的知识运用到其他领域重点和难点解析本文主要介绍了矩形、正方形、菱形、平行四边形四种几何图形的判定方法、性质及实际应用。
中考数学复习矩形【培优讲练】

9.4.1 矩形同步培优讲练综合知识点1:矩形的定义有一个角是直角的平行四边形叫做矩形.知识点2:矩形的性质1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.知识点3:矩形的判定1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.一、矩形性质的认识【例1】下列性质中矩形不一定具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形【例2】关于矩形,下列说法错误的是()A.四个角相等B.对角线相等C.四条边相等D.对角线互相平分【例3】下列说法中能判定四边形是矩形的是()A .有两个角为直角的四边形B .对角线互相平分的四边形C .对角线相等的四边形D .四个角都相等的四边形二、利用矩形的性质求角度【例1】如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB C D '''的位置,若旋转角为20︒,则1∠为( )A .100︒B .110︒C .120︒D .130︒【例2】如图,在矩形ABCD 中,对角线AC ,BD 交于点O .若60AOB ∠=︒,则OCB ∠的度数为( )A .30°B .35°C .40°D .45°【例3】如图,在矩形ABCD 中,AC ,BD 相交于点O ,AE 平分BAD ∠交BC 于E ,若30DAO ∠=︒,则BEO ∠的度数为( )A .45︒B .60︒C .65︒D .75︒三、利用矩形的性质求线段【例1】如图,在矩形COED 中,点D 的坐标是()3,4,则CE 的长是( ).A .3B .4C .5D .6【例2】如图,在矩形ABCD 中,2AB =,3BC =,点E 在BC 边上,且1BE =,F 为AB 边上的一个动点,连接EF ,以EF 为边作等边EFG ,且点G 在矩形ABCD 内,连接CG ,则CG 的最小值为( )A .3B .2C .1 D【例3】如图,在ABC 中,3AB =,4AC =,5BC =,P 为边BC 上一动点,PE AB ⊥于E ,PF AC ⊥于F ,M 为EF 中点,则AM 的最小值为__.四、利用矩形的性质求面积【例1】如图,矩形ABCD 中,4=AD ,10AB =,点E 为直线AB 的一点,连EC ,平移EC 至DF ,连接DE 、CF ,则四边形DECF 的面积是( )A .15B .40C .20D .30【例2】如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF //BC ,分别交AB ,CD 于点E ,F ,连接PB ,.PD 若2AE =,8.PF =则图中阴影部分的面积为______.【例3】如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则S △ECF 的值为____.五、矩形有关的折叠问题【例1】如图,矩形ABCD 中,AB =4,AD =6,点E 为AD 中点,点P 为线段AB 上一个动点,连接EP ,将△APE 沿PE 折叠得到△FPE ,连接CE ,DF ,当线段DF 被CE 垂直平分时,AF 则线的长为_______.【例2】如图,有一张矩形纸条ABCD,AB=10cm,BC=3cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'上.在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为_____cm.【例3】如图,在长方形ABCD中,点M为CD中点,将△MBC沿BM翻折至△MBE,若∠AME=α,∠ABE=β,则α与β之间的数量关系为________.△,C D'与AB交于点E,若【例4】如图,将长方形纸片ABCD沿BD所在直线折叠,得到BC D'∠=︒,则2125∠的度数为_________.六、矩形的判定 解答题【例1】如图,ABC ∆中,AC BC =,CD AB ⊥于点D ,四边形DBCE 是平行四边形.求证:四边形ADCE 是矩形.【例2】如图,在ABC ∆中,//AE BC ,AB AC =,D 为BC 中点,AE BD =.(1)求证:四边形AEBD 是矩形.(2)连接CE 交AB 于点F ,若30ABE ∠=︒,2AE =,直接写出EC 的长.【例3】问题情境:在综合实践课上,老师让同学们探究“平面直角坐标系中的旋转问题”,如图,在平面直角坐标系中,四边形AOBC 是矩形,()0,0O ,点()5,0A ,点()0,3B .操作发现:以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(1)如图,当点D 落在BC 边上时,求点D 的坐标;(2)继续探究:如图,当点D 落在线段BE 上时,AD 与BC 交于点H ,求证:ADB AOB ≌;≠,将ABC沿AC翻折至AB C',连接B D'.【例4】在平行四边形ABCD中,AB BC'=;(1)求证:B E DE'∥;(2)求证:B D AC(3)在平行四边形ABCD中,已知:460,,将ABC沿AC翻折至AB C',连接B D'.若以BC B=∠=︒A、C、D、B'为顶点的四边形是矩形,求AC的长.BC=.对角线AC的垂直平分线分别交AB、CD于点【例5】已知:如图,在矩形ABCD中,4AB=,2E、F.求线段CF的长.【例6】如图①,四边形ABCD是一张矩形纸片,AD =1,AB =5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN相交于点K,得到△MNK,如图①.(1)当点M与点A重合(如图②),且∠BMN=15°时,求△MNK的面积;(2)请你利用备用图探究怎样能够能够使折叠出△MNK的面积最大,最大值是多少【例7】如图,在矩形ABCD中,AB=6,BC=8,动点E从点A出发,沿边AD,DC向点C运动,A,D关于直线BE的对称点分别为M,N,连接MN.(1)如图,当E在边AD上且DE=2时,求∠AEM的度数.(2)当N在BC延长线上时,求DE的长,并判断直线MN与直线BD的位置关系,说明理由.(3)当直线MN恰好经过点C DE的长.1.如图,在长方形ABCD中,连接AC,以A为圆心,适当长为半径画弧,分别交AD,AC于点E,F,分别以E,F为圆心,大于12EF的长为半径画弧,两弧在DAC∠内交于点H,画射线AH交DC于点M.若68ACB∠=︒,则DMA∠的大小为()A.34︒B.56︒C.66︒D.68︒2.如图,矩形ABCD 中,3AB =,两条对角线,AC BD 所夹的钝角为120︒,则对角线BD 的长为( )A .3B .6C .D .103.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE BD ⊥,垂足为点E ,若2EAC CAD ∠=∠,则BAE ∠的度数为( )A .20︒B .22.5︒C .30︒D .45︒4.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点O 作OE BD ⊥,交AD 于点E ,若20ACB ∠=︒,则AOE ∠的大小为__________.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于O ,DE AC ⊥于E ,:1:2EDC EDA ∠∠=,则ODE ∠的度数是___________.6.如图,将矩形ABCD 绕点A 顺时针旋转35︒,得到矩形AB C D ''',则α∠=______.︒.7.如图,四边形ABCD 为矩形,则∠ABC =________;若OA =5,则BD =________.8.如图,延长矩形ABCD 边BC 至点E ,使CE BD =,连接AE ,如果40ADB ∠=︒,则E ∠=______.9.如图,平面直角坐标系中,长方形OABC ,点A ,C 分别在y 轴,x 轴的正半轴上,6OA =,3OC =,45DOE ∠=︒,OD ,OE 分别交BC ,AB 于点D ,E ,且2CD =,则点E 坐标为______.9.4.1 矩形同步培优讲练综合知识点1:矩形的定义有一个角是直角的平行四边形叫做矩形.知识点2:矩形的性质1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.知识点3:矩形的判定1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.一、矩形性质的认识【例1】下列性质中矩形不一定具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形【答案】B【解析】解:A、矩形的对角线互相平分,故此选项不符合题意;B、矩形的对角线不一定互相垂直,故此选项符合题意;C、矩形的对角线相等,故此选项不符合题意;D、矩形既是轴对称图形又是中心对称图形,故此选项不符合题意;故选:B.【例2】关于矩形,下列说法错误的是()A.四个角相等B.对角线相等C.四条边相等D.对角线互相平分【答案】C【解析】解:矩形的性质为四个角相等,对角线相等,对角线互相平分,故选:C .【例3】下列说法中能判定四边形是矩形的是( )A .有两个角为直角的四边形B .对角线互相平分的四边形C .对角线相等的四边形D .四个角都相等的四边形【答案】D【解析】解:A 、有3个角为直角的四边形是矩形,故错误;B 、对角线互相平分的四边形是平行四边形,故错误;C 、对角线相等的平行四边形,故错误;D 、四个角都相等的四边形是矩形,故正确;故选:D .二、利用矩形的性质求角度【例1】如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB C D '''的位置,若旋转角为20︒,则1∠为()A .100︒B .110︒C .120︒D .130︒【答案】B【解析】解:设C D ''与BC 交于点E ,如图所示.∵旋转角为20︒,∴20DAD '∠=︒,∴9070BAD DAD ''∠=︒-∠=︒.∵360BAD B BED D '''∠+∠+∠+∠=︒,∴360709090110BED '∠=︒-︒-︒-︒=︒,∴1110BED '∠=∠=︒.故选:B .【例2】如图,在矩形ABCD 中,对角线AC ,BD 交于点O.若60AOB ∠=︒,则OCB ∠的度数为( )A .30°B .35°C .40°D .45° 【答案】A【解析】解:∵四边形ABCD 是矩,∠AOB =60°,∴∠BCD =90°,∠COD =60°,OC =OD =1122AC BD =, ∴△COD 是等边三角形,∴∠OCD =60°,∴∠OCB =90°﹣∠OCD =30°,故选:A .【例3】如图,在矩形ABCD 中,AC ,BD 相交于点O ,AE 平分BAD ∠交BC 于E ,若30DAO ∠=︒,则BEO ∠的度数为( )A .45︒B .60︒C .65︒D .75︒【答案】D【解析】解:∵四边形ABCD 是矩形,∴∠BAD=∠ABC=90°,OA=12AC ,OB=12BD ,AC=BD , ∴OA=OB ,∵AE 平分∠BAD ,∴∠BAE=∠DAE=45°,∴△ABE 是等腰直角三角形,∴AB=BE ,∵∠DAO=30°,∴∠EAO=15°,∴∠BAO=45°+15°=60°,∴△AOB 是等边三角形,∴∠ABO=60°,OB=AB ,∴∠OBE=90°-60°=30°,OB=BE ,∴∠BEO=12×(180°-30°)=75°. 故选:D .三、利用矩形的性质求线段【例1】如图,在矩形COED 中,点D 的坐标是()3,4,则CE 的长是( ).A .3B .4C .5D .6【答案】C【解析】 解:四边形COED 是矩形, CE OD ∴=,点D 的坐标是()3,4,5OD ∴=,5CE ∴=,故选:C .【例2】如图,在矩形ABCD 中,2AB =,3BC =,点E 在BC 边上,且1BE =,F 为AB 边上的一个动点,连接EF ,以EF 为边作等边EFG ,且点G 在矩形ABCD 内,连接CG ,则CG 的最小值为( )A .3B .2C .1 D【答案】B【解析】解:如图,以EC 为边作等边三角形ECH ,过点H 作HN BC ⊥于N ,HM AB ⊥于M ,又∵90ABC ∠=︒,∴四边形MHNB 是矩形,∴MH BN =,∵1BE =,2AB =,3BC =,∴2EC =,∵EHC △是等边三角形,HN EC ⊥,∴2EC EH ==,1EN NC ==,60HEC ∠=︒,∴2BN MH ==,∵FGE △是等边三角形,∴FE FG =,60FEG HEC ∠=︒=∠,∴FEH GEC ∠=∠,在FEH △和GEC 中,FE GE FEH GEC HE EC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS FEH GEC ≌,∴FH GC =,∴当FH AB ⊥时,FH 有最小值,即GC 有最小值,∴点F 与点M 重合时,2FH HM ==,故选B .【例3】如图,在ABC 中,3AB =,4AC =,5BC =,P 为边BC 上一动点,PE AB ⊥于E ,PF AC ⊥于F ,M 为EF 中点,则AM 的最小值为__.【答案】65【解析】解:如图,连接AP ,3AB =,4AC =,5BC =,90EAF ∴∠=︒,PE AB ⊥于E ,PF AC ⊥于F ,∴四边形AEPF 是矩形,EF ∴,AP 互相平分.且EF AP =,EF ∴,AP 的交点就是M 点.当AP 的值最小时,AM 的值就最小,∴当⊥AP BC 时,AP 的值最小,即AM 的值最小.1122AP BC AB AC ⋅=⋅, AP BC AB AC ∴⋅=⋅,3AB =,4AC =,5BC =,534AP ∴=⨯,125AP ∴=, 65AM ∴=; 故答案为:65.四、利用矩形的性质求面积【例1】如图,矩形ABCD 中,4=AD ,10AB =,点E 为直线AB 的一点,连EC ,平移EC 至DF ,连接DE 、CF ,则四边形DECF 的面积是( )A .15B .40C .20D .30【答案】B【解析】解:已知平移EC 至DF ,则EC DF ∥,EC DF =四边形CEDF 是平行四边形,则122410402CEDF CED S S CD DA CD DA ==⨯⨯⨯==⨯= 故选:B .【例2】如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF//BC ,分别交AB ,CD 于点E ,F ,连接PB ,.PD 若2AE =,8.PF =则图中阴影部分的面积为______.【答案】16【解析】解:作PM AD ⊥于M ,交BC 于N .则有四边形AEPM ,四边形DFPM ,四边形CFPN ,四边形BEPN 都是矩形,ADC ABC SS ∴=,AMP AEP S S =,PBE PBN S S =,PFD PDM S S =,PFC PCN S S =, ADC AMP PFC ABC AEP PCN S S S S S S ∴--=--,即BEPN DFPM S S =矩形矩形, 12882DFP PBE S S ∴==⨯⨯=, 8816S ∴=+=阴影,故答案为:16【例3】如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则S △ECF 的值为____.【答案】10825【解析】如图,连接BF ,,∵BC=6,点E 为BC 的中点,∴BE=3, 又∵AB=4,∴,由折叠可知:BF ⊥AE (对应点的连线必垂直于对称轴),∴BH=431255 AB BEAE•⨯==,∴BF=245,∵EF=BE=CE,∴∠BFC=90°,根据勾股定理可得:185,S△ECF=12S△BCF=12×12×185×245=10825,故答案为:108 25.五、矩形有关的折叠问题【例1】如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,DF,当线段DF被CE垂直平分时,AF则线的长为_______.【答案】18 5【解析】解:连接AF交PE于O,连接DF,∵矩形ABCD,∴BC=AD=6,CD=AB=4,∵线段DF被CE垂直平分时,∴CF=CD=4,ED=EF,∵将△APE沿PE折叠得到△FPE,∴PE是线段AF的垂直平分线,∴AE=EF,AF=2OA,∴AE=ED=EF,∵AD=AE+ED=6,∴AE=ED=EF=3,设AP=x,则PF=AP=x,BP=4-x,PC=PF+FC=x+4,∵PC2=BP2+BC2,即(x+4)2=(4-x)2+62∴x=94,∵154 =,∴1122PE AO PA AE=,即115193 2424AO⨯=⨯⨯,解得:AO=95,∴AF=2AO=185.故答案为185.【例2】如图,有一张矩形纸条ABCD,AB=10cm,BC=3cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'上.在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为_____cm.1【解析】如图1中,当点M与A重合时,AE=EN,设AE=EN=xcm,在Rt△ADE中,则有x2=32+(9﹣x)2,解得x=5,∴DE=10﹣1-5=4(cm),如图2中,当点M运动到MB′⊥AB时,DE′的值最大,DE′=10﹣1﹣3=6(cm),如图3中,当点M运动到点B′落在CD时,NB'=DB′(即DE″)=10﹣1=(9(cm),∴点E的运动轨迹E→E′→E″,运动路径=EE′+E′B′=6﹣4+6﹣(91)(cm).1.【例3】如图,在长方形ABCD中,点M为CD中点,将△MBC沿BM翻折至△MBE,若∠AME=α,∠ABE=β,则α与β之间的数量关系为________.【答案】3290βα-=︒【解析】如图,延长BE 交AD 于点N ,设BN 交AM 于点O .∵四边形ABCD 是矩形,∴∠D=∠C=90°,AD=BC ,∵DM=MC ,∴△ADM ≌△BCM(SAS),∴∠DAM=∠CBM ,∵△BME 是由△MBC 翻折得到,∴∠CBM=∠EBM=12(90°−β),∵∠DAM=∠MBE ,∠AON=∠BOM ,∴∠OMB=∠ANB=90°−β,在△MBE 中,∵∠EMB+∠EBM=90°,∴α+(90°−β)+12(90°−β)=90°,整理得:3β−2α=90°故答案为:3β−2α=90°【例4】如图,将长方形纸片ABCD 沿BD 所在直线折叠,得到BC D '△,C D '与AB 交于点E ,若125∠=︒,则2∠的度数为_________.【答案】40︒【解析】解:在矩形ABCD 中,90C ∠=︒,AB CD ∥,∴190CBD ∠+∠=︒,1ABD ∠=∠,125∠=︒,∴65CBD ∠=︒,25ABD ∠=︒,由折叠可知:2ABD CBD ∠+∠=∠,∴2652540CBD ABD ∠=∠-∠=︒-︒=︒.故答案为:40︒.六、矩形的判定 解答题【例1】如图,ABC ∆中,AC BC =,CD AB ⊥于点D ,四边形DBCE 是平行四边形.求证:四边形ADCE 是矩形.【答案】见解析【解析】证明:AC BC =,CD AB ⊥,90ADC ∴∠=︒,AD BD =.在DBCE 中,//EC BD ,EC BD =,//EC AD ∴,EC AD =.∴四边形ADCE 是平行四边形.又90ADC ∠=︒,∴四边形ADCE 是矩形.【例2】如图,在ABC ∆中,//AE BC ,AB AC =,D 为BC 中点,AE BD =.(1)求证:四边形AEBD 是矩形.(2)连接CE 交AB 于点F ,若30ABE ∠=︒,2AE =,直接写出EC 的长.【答案】见解析【解析】(1)证明://AE BD ,AE BD =,∴四边形AEBD 是平行四边形,AB AC =,D 为BC 的中点,AD BC ∴⊥,90ADB ∴∠=︒,∴四边形AEBD 是矩形.(2)解:四边形AEBD 是矩形,90AEB DBE ∴∠=∠=︒,2BD AE ==,30ABE ∠=︒,BE ∴==24BC BD =,EC ∴=,【例3】问题情境:在综合实践课上,老师让同学们探究“平面直角坐标系中的旋转问题”,如图,在平面直角坐标系中,四边形AOBC 是矩形,()0,0O ,点()5,0A ,点()0,3B .操作发现:以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(1)如图,当点D 落在BC 边上时,求点D 的坐标;(2)继续探究:如图,当点D 落在线段BE 上时,AD 与BC 交于点H ,求证:ADB AOB ≌;【答案】(1)()1,3D (2)证明见解析【解析】(1)解:∵()5,0A ,()0,3B ,∴5OA =,3OB =,∵四边形AOBC 是矩形,∴3AC OB ==,5OA BC ==,90OBC C ∠=∠=︒,∵矩形ADEF 是由矩形AOBC 旋转得到,∴5AD AO ==,在Rt ADC 中,4CD =,∴1BD BC CD =-=,∴()1,3D .(2)证明:四边形ADEF 是矩形,90ADE ∴∠=︒,点D 在线段BE 上,90ADB ∴∠=︒,由旋转的性质得:AD AO =,在Rt ADB 和Rt AOB △中,AB AB AD AO =⎧⎨=⎩, ∴()Rt Rt HL ADB AOB ≅.【例4】在平行四边形ABCD 中,AB BC ≠,将ABC 沿AC 翻折至AB C ',连接B D '.(1)求证:B E DE '=;(2)求证:B D AC '∥;(3)在平行四边形ABCD 中,已知:460BC B =∠=︒,,将ABC 沿AC 翻折至AB C ',连接B D '.若以A 、C 、D 、B '为顶点的四边形是矩形,求AC 的长.【答案】(1)见解析(2)见解析(3)【解析】(1)证明:∵四边形ABCD 是平行四边形,∴AD BC AD BC =,∥,∴EAC ACB ∠=∠,由折叠的性质可知ACB ACB BC B C ''∠=∠=,,∴EAC ACB '∠=∠,BC AD '=,∴AE CE =,∴B C CE AD AE '-=-,即B E DE '=;(2)证明:∵B E DE '=, ∴()11802CB D B DA B ED '''∠=∠=︒-∠, 同理可得()11802EAC ECA AEC ∠=∠=︒-∠, ∵AEC B ED '∠=∠,∴ACB CB D ''∠=∠,∴B D AC '∥;(3)解:分两种情况:①如图1所示:∵四边形ACDB 是矩形,∴90CAB '∠=︒,∴90BAC ∠=︒,∵=60B ∠︒,∴30ACB ∠=︒, ∴122AB BC ==,∴AC②如图2所示:∵四边形ACB D '是矩形,∴90ACB '∠=︒,∴90ACB ∠=︒,∵460BC B =∠=︒,,∴30BAC ∠=︒,∴28AB AC ==,∴AC综上所述:AC 的长为【例5】已知:如图,在矩形ABCD 中,4AB =,2BC =.对角线AC 的垂直平分线分别交AB 、CD 于点E 、F .求线段CF 的长.【答案】52CF =【解析】解:连接AF ,如图所示:∵四边形ABCD 是矩形,∴42CD AB AD BC ====,,∵EF 是AC 的垂直平分线,∴AF CF =,设CF x =,则4DF CD CF x =-=- ,在Rt ADF 中,222AF DF DA +=,即22224x x =+-(),解得:x =52, ∴52CF =【例6】如图①,四边形ABCD 是一张矩形纸片,AD =1,AB =5.在矩形ABCD 的边AB 上取一点M ,在CD 上取一点N ,将纸片沿MN 折叠,使MB 与DN 相交于点K ,得到△MNK ,如图①.(1)当点M 与点A 重合(如图②),且∠BMN=15°时,求△MNK 的面积;(2)请你利用备用图探究怎样能够能够使折叠出△MNK 的面积最大,最大值是多少【答案】(1)△MNK 的面积为1 (2)△MNK 的面积最大值为1.3【解析】(1)解:∵四边形ABCD 是矩形,∴在图1、图2中,DNAB ,∴∠DNM=∠BMN ,又∵折叠,∴∠BMN =∠KMN ,∴∠KMN=∠KNM ,∴NK=MK ,∵△MNK 的面积S=12NK•AD=12NK ,∴S=12MK ,图2中,由折叠知,∠KAN=∠NAB=15°,∵DN AB ,∴∠KNA=∠NAB,∴∠KNA=∠KAN=15°,KA=KN,∴在Rt ADK中,∠DKA=30°,KA=2AD=2∴△MNK的面积S=12NK•AD=12NK,∴S=12AK=1;(2)有以下两种情况:情况一:如图3,将矩形纸片对折,使点B与D重合,此时点K也与D重合.设MK=MB=x,则AM=5-x.由勾股定理得:12+ (5-x)2=x2,解得,x=2.6,即MD= ND= 2.6,∴S△MNK= S△ACK=12×1×2.6 =1.3;情况二:如图4,将矩形纸片沿对角线AC对折,此时折痕即为AC.设MK=AX= CK=x,则DK=5-x,同理可得MK=NK=2.6,∴S△MNK= S△ACK=12×1×2.6 =1.3,∴△MNK的面积最大值为1.3.【例7】如图,在矩形ABCD中,AB=6,BC=8,动点E从点A出发,沿边AD,DC向点C运动,A,D关于直线BE的对称点分别为M,N,连接MN.(1)如图,当E在边AD上且DE=2时,求∠AEM的度数.(2)当N 在BC 延长线上时,求DE 的长,并判断直线MN 与直线BD 的位置关系,说明理由.(3)当直线MN 恰好经过点C 时,求DE 的长.【答案】(1)∠AEM =90° (2)MN BD ∥,理由见解析 (3)DE 的长为【解析】(1)解:如图1,∵DE =2,∴AE =AB =6,∵四边形ABCD 是矩形,∴∠A =90°,∴∠AEB =∠ABE =45°.由对称性知∠BEM =45°,∴∠AEM =90°.(2)解:如图2,∵AB =6,AD =8,∴BD =10,∵当N 落在BC 延长线上时,BN =BD =10,∴CN =2.设DE EN x ==,则6CE x =-,∵222CE CN EN +=,解得:103x =, ∴103DE EN ==. ∵BM =AB =CD ,MN =AD =BC ,∴Rt Rt (H )L BMN DCB ≌,∴∠DBC =∠BNM ,∴MN BD ∥;(3)分类讨论:①如图3,当E 在边AD 上时,∴∠BMC =90°,∴MC =.∵BM =AB =CD ,∠DEC =∠BCE ,∴△BCM ≌△CED(AAS),∴DE =MC =②如图4,当点E 在边CD 上时,∵BM =6,BC =8,∴MC =∴8CN MN MC =-=-设DE EN y ==,则6CE y =-,∴222(6)(8y y -=-+,解得:y =∴DE =综上所述,DE 的长为1.如图,在长方形ABCD 中,连接AC ,以A 为圆心,适当长为半径画弧,分别交AD ,AC 于点E ,F ,分别以E ,F 为圆心,大于12EF 的长为半径画弧,两弧在DAC ∠内交于点H ,画射线AH 交DC 于点M .若68ACB ∠=︒,则DMA ∠的大小为( )A .34︒B .56︒C .66︒D .68︒【答案】B【解析】 解:四边形ABCD 是长方形,90,D AD BC ∴∠=︒, 68DAC ACB ∴∠=∠=︒,由题意可知,AM 平分DAC ∠,1342DAM DAC ∴∠=∠=︒, 9056DMA DAM ∴∠=︒-∠=︒,故选:B .2.如图,矩形ABCD 中,3AB =,两条对角线,AC BD 所夹的钝角为120︒,则对角线BD 的长为( )A .3B .6C .D .10【答案】B【解析】解:在矩形ABCD 中,OA OB =,∵两条对角线,AC BD 所夹的钝角为120︒ 60AOB ∠∴=︒,AOB ∴是等边三角形,3OB AB ∴==,2236BD OB ∴==⨯=.故选:B .3.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE BD ⊥,垂足为点E ,若2EAC CAD ∠=∠,则BAE ∠的度数为( )A .20︒B .22.5︒C .30︒D .45︒【答案】B【解析】 解:四边形ABCD 是矩形,AC BD ∴=,OA OC =,OB OD =,OA OB OD ∴==,即AOB 、AOD △均为等腰三角形, OAD ODA ∠=∠∴,OAB OBA ∠=∠,AOE ∠是等腰AOD △的一个外角,2AOE OAD ODA OAD ∴∠=∠+∠=∠,2EAC CAD ∠=∠,EAO AOE ∠∠∴=,AE BD ⊥,90AEO ∴∠=︒,即AEO △是等腰直角三角形,45AOE ∴∠=︒,()()111801804567.522OAB OBA AOB ∴∠=∠=︒-∠=︒-︒=︒, 67.54522.5BAE OAB OAE ∴∠=∠-∠=︒-︒=︒,故选:B .4.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点O 作OE BD ⊥,交AD 于点E ,若20ACB ∠=︒,则AOE ∠的大小为__________.【答案】50︒【解析】∵四边形ABCD 是矩形,OA OB OC OD ∴===,20ACB ∠=︒,20OBC OCB ∴∠=∠=︒,40AOB OBC OCB ∴∠=∠+∠=︒,OE BD ⊥,904050AOE BOE AOB ∴∠=∠-∠=︒-︒=︒,故答案为:50︒.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于O ,DE AC ⊥于E ,:1:2EDC EDA ∠∠=,则ODE ∠的度数是___________.【答案】30︒【解析】【解答】解:∵:1:2EDC EDA ∠∠=,90EDC EDA ∠+∠=︒,∴30EDC ∠=︒,60EDA ∠=︒,∵DE OC ⊥,∴9060DCE EDC ∠︒=︒-∠=,∵四边形ABCD 是矩形,∴OA OD OC ==,∴ODC 是等边三角形,∵DE OC ⊥, ∴1302ODE CDE ODC ∠=∠=∠=︒, 故答案为:30︒.6.如图,将矩形ABCD 绕点A 顺时针旋转35︒,得到矩形AB C D ''',则α∠=______.︒【答案】125 【解析】解:将矩形ABCD 绕点A 顺时针旋转35︒得到矩形AB C D ''',∴903555BAD ∠=︒-︒='︒,∵360BAD ABC AD C α∠+∠+∠'+='∠'︒,∴360909055125α∠=︒-︒-︒-︒=︒,故答案为:125.7.如图,四边形ABCD 为矩形,则∠ABC=________;若OA=5,则BD=________.【答案】 90︒ 10【解析】∵四边形ABCD 是矩形,OA=5,∴ABC ∠=90︒,210BD AC OA ===,故答案为:9010︒,. 8.如图,延长矩形ABCD 边BC 至点E ,使CE BD =,连接AE ,如果40ADB ∠=︒,则E ∠=______.【答案】20°【解析】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=40°,即∠E=20°,故答案为:20°.9.如图,平面直角坐标系中,长方形OABC,点A,C分别在y轴,x轴的正半轴上,6OA=,3OC=,45DOE∠=︒,OD,OE分别交BC,AB于点D,E,且2CD=,则点E坐标为______.【答案】6,6 5⎛⎫ ⎪⎝⎭【解析】解:过点E作EF OD⊥,过点F作FN OC⊥,并延长NF交AB延长线于点M,如下图:则90EFO FNO ∠=∠=︒,∴90OFN EFM ∠+∠=︒,90OFN FON ∠+∠=︒ ∴FON EFM ∠=∠在矩形OABC 中,//AB OC ,63OA BC OC AB ====, ∴90M FNO ∠=∠=︒∴四边形BCNM 为矩形∴6MN BC ==,//CD MN ,BM CN = ∴AM ON =∵45DOE ∠=︒∴EFO △为等腰直角三角形,EF OF =∴FON EFM △≌△∴MF ON =,EM FN =设MF ON x ==,则6EM FN x ==-,(,6)F x x - 设直线OD 解析式为y kx =由题意可知(3,2)D ,代入y kx =得,32k =,解得23k =, 又∵点(,6)F x x -在直线OD 上,∴263x x -= 解得185x =,即181255AM ON FN EM ====, ∴65AE AM EM =-=∴点E 坐标为6,65⎛⎫ ⎪⎝⎭故答案为6,65⎛⎫ ⎪⎝⎭。
中考专题复习——矩形菱形正方形

中考专题复习第二十一讲矩形菱形正方形【基础知识回顾】一、矩形:1、定义:有一个角是角的平行四边形叫做矩形2、矩形的性质:⑴矩形的四个角都⑵矩形的对角线3、矩形的判定:⑴用定义判定⑵有三个角是直角的是矩形⑶对角线相等的是矩形【名师提醒:1、矩形是对称图形,对称中心是,矩形又是对称图形,对称轴有条2、矩形被它的对角线分成四个全等的三角形和两对全等的三角形3、矩形中常见题目是对角线相交成600或1200角时,利用直角三角形、等边三角形等图形的性质解决问题】二、菱形:1、定义:有一组邻边的平行四边形叫做菱形2、菱形的性质:⑴菱形的四条边都⑵菱形的对角线且每条对角线3、菱形的判定:⑴用定义判定⑵对角线互相垂直的是菱形⑶四条边都相等的是菱形【名师提醒:1、菱形既是对称图形,也是对称图形,它有条对称轴,分别是2、菱形被对角线分成四个全等的三角形和两对全等的三角形3、菱形的面积可以用平行四边形面积公式计算,也可以用两对角线积的来计算4、菱形常见题目是内角为1200或600时,利用等边三角形或直角三角形的相关知识解决的题目】三、正方形:1、定义:有一组邻边相等的是正方形,或有一个角是直角的是正方形2、性质:⑴正方形四个角都都是角,⑵正方形四边条都⑶正方形两对角线、且每条对角线平分一组内角3、判定:⑴先证是矩形,再证⑵先证是菱形,再证【名师提醒:1、菱形、正方形具有平行四边形的所有性质,正方形具有以上特殊四边形的所有性质。
这四者之间的关系可表示为:2、正方形也既是对称图形,又是对称图形,有条对称轴3、几种特殊四边形的性质和判定都是从、、三个方面来看的,要注意它们的区别和联系】【重点考点例析】考点一:与矩形有关的折叠问题例1 (2016•泸州)如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=105cm,且tan∠EFC=34,那么该矩形的周长为()A.72cm B.36cm C.20cmD.16cm对应训练1.(2016•湖州)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则ADAB的值为()A.12B.33C.23D.22考点二:和菱形有关的对角线、周长、面积的计算问题例2 (2016•泉州)如图,菱形ABCD的周长为85,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO= ,菱形ABCD的面积S= .对应训练2.(2016•凉山州)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14B.15C.1 D.17考点三:和正方形有关的证明题例3 (2016•湘潭)在数学活动课中,小辉将边长为2和3的两个正方形放置在直线l 上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.思路分析:(1)根据正方形的性质可得AO=CO ,OD=OF ,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF ,再利用“边角边”证明△AOD 和△COF 全等,根据全等三角形对应边相等即可得证;(2)与(1)同理求出CF=AD ,连接DF 交OE 于G ,根据正方形的对角线互相垂直平分可得DF ⊥OE ,DG=OG=12OE ,再求出AG ,然后利用勾股定理列式计算即可求出AD . 解:(1)AD=CF .理由如下:在正方形ABCO 和正方形ODEF 中,AO=CO ,OD=OF ,∠AOC=∠DOF=90°, ∴∠AOC+∠COD=∠DOF+∠COD ,即∠AOD=∠COF ,在△AOD 和△COF 中,AO CO AOD COF OD OF =⎧⎪∠=∠⎨⎪=⎩,∴△AOD ≌△COF (SAS ), ∴AD=CF ;(2)与(1)同理求出CF=AD ,如图,连接DF 交OE 于G ,则DF ⊥OE ,DG=OG=12OE ,∵正方形ODEF 的边长为2,∴OE=2×2=2,∴DG=OG=12OE=12×2=1, ∴AG=AO+OG=3+1=4,在Rt △ADG 中,AD=22224117AG DG +=+=,∴CF=AD=17.点评:本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的应用,(1)熟练掌握正方形的四条边都相等,四个角都是直角,对角线相等且互相垂直平分是解题的关键,(2)作辅助线构造出直角三角形是解题的关键.对应训练3.(2016•三明)如图①,在正方形ABCD 中,P 是对角线AC 上的一点,点E 在BC 的延长线上,且PE=PB .(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= 度.3.(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,∵在△BCP和△DCP中,BC DCBCP DCPPC PC=⎧⎪∠=∠⎨⎪=⎩,∴△BCP≌△DCP(SAS);(2)证明:由(1)知,△BCP≌△DCP,∴∠CBP=∠CDP,∵PE=PB,∴∠CBP=∠E,∴∠DPE=∠DCE,∵∠1=∠2(对顶角相等),∴180°-∠1-∠CDP=180°-∠2-∠E,即∠DPE=∠DCE,∵AB∥CD,∴∠DCE=∠ABC,∴∠DPE=∠ABC;(3)解:与(2)同理可得:∠DPE=∠ABC,∵∠ABC=58°,∴∠DPE=58°.故答案为:58.考点四:四边形综合性题目例4 (2016•资阳)在一个边长为a(单位:cm)的正方形ABCD中,点E、M分别是线段AC,CD上的动点,连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N.(1)如图1,当点M与点C重合,求证:DF=MN;(2)如图2,假设点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以2cm/s速度沿AC向点C运动,运动时间为t(t>0);①判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由.②连结FM、FN,△MNF能否为等腰三角形?若能,请写出a,t之间的关系;若不能,请说明理由.思路分析:(1)证明△ADF≌△DNC,即可得到DF=MN;易证△MND ∽△DFA,∴ND DMAF AD=,即ND a tat aa t-=-,得ND=t.∴ND=CM=t,AN=DM=a-t.若△MNF为等腰三角形,则可能有三种情形:(I)若FN=MN,则由AN=DM知△FAN≌△NDM,∴AF=DM,即ata t-=t,得t=0,不合题意.∴此种情形不存在;(II)若FN=FM,由MN⊥DF知,HN=HM,∴DN=DM=MC,∴t=12a,此时点F与点B重合;(III)若FM=MN,显然此时点F在BC边上,如下图所示:易得△MFC≌△NMD,∴FC=DM=a-t;又由△NDM∽△DCF,∴DN DCDM FC=,即t aa t FC=-,∴FC=()a a tt-.∴()a a tt-=a-t,∴t=a,此时点F与点C重合.综上所述,当t=a或t=12a时,△MNF能够成为等腰三角形.点评:本题是运动型几何综合题,考查了相似三角形、全等三角形、正方形、等腰三角形、命题证明等知识点.解题要点是:(1)明确动点的运动过程;(2)明确运动过程中,各组成线段、三角形之间的关系;(3)运用分类讨论的数学思想,避免漏解.对应训练4.(2016•营口)如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD=43,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值.4.解:(1)①BF=AD ,BF ⊥AD ;②BF=AD ,BF ⊥AD 仍然成立,证明:∵△ABC 是等腰直角三角形,∠ACB=90°,∴AC=BC ,∵四边形CDEF 是正方形,∴CD=CF ,∠FCD=90°,∴∠ACB+∠ACF=∠FCD+∠ACF ,即∠BCF=∠ACD ,在△BCF 和△ACD 中BC ACBCF ACD CF CD=⎧⎪∠=∠⎨⎪=⎩,∴△BCF ≌△ACD (SAS ),∴BF=AD ,∠CBF=∠CAD ,又∵∠BHC=∠AHO ,∠CBH+∠BHC=90°,∴∠CAD+∠AHO=90°,∴∠AOH=90°,∴BF ⊥AD ;(2)证明:连接DF ,∵四边形CDEF 是矩形,∴∠FCD=90°,又∵∠ACB=90°,∴∠ACB=∠FCD∴∠ACB+∠ACF=∠FCD+∠ACF ,即∠BCF=∠ACD ,∵AC=4,BC=3,CD=43,CF=1,∴34BC CF AC CD ==,∴△BCF ∽△ACD ,∴∠CBF=∠CAD ,又∵∠BHC=∠AHO ,∠CBH+∠BHC=90°∴∠CAD+∠AHO=90°,∴∠AOH=90°,∴BF⊥AD,∴∠BOD=∠AOB=90°,∴BD2=OB2+OD2,AF2=OA2+OF2,AB2=OA2+OB2,DF2=OF2+OD2,∴BD2+AF2=OB2+OD2+OA2+OF2=AB2+DF2,∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB2=AC2+BC2=32+42=25,∵在Rt△FCD中,∠FCD=90°,CD=43,CF=1,∴DF2=CD2+CF2=(43)2+12=259,∴BD2+AF2=AB2+DF2=25+259=2509.【聚焦山东中考】1.(2016•威海)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF2.(2016•枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.3-1B.3-5C.5+1D.5-13.(2016•临沂)如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是.4.(2016•烟台)如图,正方形ABCD的边长为4,点E在BC上,四边形EFGB也是正方形,以B为圆心,BA长为半径画AC,连结AF,CF,则图中阴影部分面积为.5.(2016•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+3.其中正确的序号是(把你认为正确的都填上).6.(2016•济宁)如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.6.(1)证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,ABE DAFAB ADBAE D∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE≌△DAF(ASA),∴AF=BE;(2)解:MP与NQ相等.理由如下:如图,过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,则与(1)的情况完全相同.7.(2016•青岛)已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM ≌△DCM ;(2)判断四边形MENF 是什么特殊四边形,并证明你的结论;(3)当AD :AB= 时,四边形MENF 是正方形(只写结论,不需证明)8.(2016•淄博)矩形纸片ABCD 中,AB=5,AD=4.(1)如图1,四边形MNEF 是在矩形纸片ABCD 中裁剪出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是多少?说明理由;(2)请用矩形纸片ABCD 剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD 中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).8.解:(1)正方形的最大面积是16.设AM =x (0≤x ≤4),则MD =4-x .∵四边形MNEF 是正方形,∴MN =MF ,∠AMN +∠FMD =90°.∵∠AMN +∠ANM =90°,∴∠ANM =∠FMD .∵在△ANM 和△DMF 中A D ANM FMD MN FM ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ANM ≌△DMF (AAS ).∴DM =AN .∴S 正方形MNEF =MN 2=AM 2+AN 2,=x2+(4-x)2,=2(x-2)2+8∵函数S正方形MNEF=2(x-2)2+8的开口向上,对称轴是x=2,在对称轴的左侧S随x的增大而减小,在对称轴的右侧S随x的增大而增大,∵0≤x≤4,∴当x=0或x=4时,正方形MNEF的面积最大.最大值是16.(2)先将矩形纸片ABCD分割成4个全等的直角三角形和两个矩形如图1,然后拼成如图2的正方形.9.(2016•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.9.解:(1)完成图形,如图所示:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,【备考真题过关】一、选择题1.(2016•铜仁地区)下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形2.(2016•宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等3.(2013•随州)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是()A.25B.20C.15D.104.(2016•重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.2cm D.1cm 5.(2016•南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12B.24C.123D.1636.(2016•巴中)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD 的周长是()A.24B.16C.43D.237(2016•茂名)如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AC 的长是()A.2B.4C.2 3D.438.(2016•成都)如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为()A.1B.2C.3D.4 9.(2016•包头)如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.3S1=2S210.(2016•扬州)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC 于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°11.(2016•绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=()A.2825cm B.2120cm C.2815cm D.2521cm12.(2016•雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.A.2B.3C.4D.5二、填空题13.(2016•宿迁)如图,一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α为------度时,两条对角线长度相等.14.(2016•淮安)若菱形的两条对角线分别为2和3,则此菱形的面积是.15.(2013•无锡)如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CD的中点,则OE的长等于.16.(2016•黔西南州)如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为.17.(2016•攀枝花)如图,在菱形ABCD中,DE⊥AB于点E,cosA=35,BE=4,则tan ∠DBE的值是.18.(2016•南充)如图,正方形ABCD的边长为2,过点A作AE⊥AC,AE=1,连接BE,则tanE= .19.(2016•苏州)如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若1CGGB k=,则ADAB=用含k的代数式表示).20.(2016•哈尔滨)如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AB于E,若BC=4,△AOE的面积为5,则sin∠BOE的值为.21.(2016•北京)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.22.(2016•南京)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF= cm.23.(2016•舟山)如图,正方形ABCD的边长为3,点E,F分别在边AB、BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P所经过的路程为.24.(2016•桂林)如图,已知线段AB=10,AC=BD=2,点P是CD 上一动点,分别以AP 、PB 为边向上、向下作正方形APEF 和PHKB ,设正方形对角线的交点分别为O 1、O 2,当点P 从点C 运动到点D 时,线段O 1O 2中点G 的运动路径的长是 .25.(2016•荆州)如图,将矩形ABCD 沿对角线AC 剪开,再把△ACD 沿CA 方向平移得到△A 1C 1D 1,连结AD 1、BC 1.若∠ACB=30°,AB=1,CC 1=x ,△ACD 与△A 1C 1D 1重叠部分的面积为s ,则下列结论:①△A 1AD 1≌△CC 1B ;②当x=1时,四边形ABC 1D 1是菱形;③当x=2时,△BDD 1为等边三角形;④s=38(x -2)2 (0<x <2); 其中正确的是 (填序号).三、解答题26.(2016•南通)如图,AB=AC ,AD=AE ,DE=BC ,且∠BAD=∠CAE .求证:四边形BCDE 是矩形.26.证明:∵∠BAD=∠CAE ,∴∠BAD -∠BAC=∠CAE -∠BAC ,∴∠BAE=∠CAD ,∵在△BAE 和△CAD 中AE AD BAE CAD AB AC =⎧⎪∠=∠⎨⎪=⎩∴△BAE ≌△CAD (SAS ), ∴∠BEA=∠CDA ,BE=CD ,∵DE=BC ,∴四边形BCDE 是平行四边形,∵AE=AD ,∴∠AED=∠ADE ,∵∠BEA=∠CDA ,∴∠BED=∠CDE ,∵四边形BCDE 是平行四边形,∴BE ∥CD ,∴∠CDE+∠BED=180°,∴∠BED=∠CDE=90°,∴四边形BCDE 是矩形.27.(2016•广州)如图,四边形ABCD 是菱形,对角线AC 与BD相交于O ,AB=5,AO=4,求BD 的长.27.解:∵四边形ABCD 是菱形,对角线AC 与BD 相交于O ,∴AC ⊥BD ,DO=BO ,∵AB=5,AO=4,∴BO=2254-=3,∴BD=2BO=2×3=6.28.(2013•厦门)如图所示,在正方形ABCD 中,点G 是边BC 上任意一点,DE ⊥AG ,垂足为E ,延长DE 交AB 于点F .在线段AG 上取点H ,使得AG=DE+HG ,连接BH .求证:∠ABH=∠CDE .28.证明:如图,在正方形ABCD 中,AB=AD ,∠ABG=∠DAF=90°,∵DE ⊥AG ,∴∠2+∠EAD=90°,又∵∠1+∠EAD=90°,∴∠1=∠2,在△ABG 和△DAF 中, 1 290AB AD ABG DAF =⎧⎪=⎨⎪∠=∠=︒⎩,∴△ABG ≌△DAF (ASA ),∴AF=BG ,AG=DF ,∠AFD=∠BGA ,∵AG=DE+HG ,AG=DE+EF ,∴EF=HG ,在△AEF 和△BHG 中,AF BG AFD BGA EF HG =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BHG (SAS ),∴∠1=∠3,∴∠2=∠3,∵∠2+∠CDE=∠ADC=90°,∠3+∠ABH=∠ABC=90°,∴∠ABH=∠CDE .29.(2013•黔东南州)如图,在正方形ABCD 中,点M 是对角线BD 上的一点,过点M 作ME ∥CD 交BC 于点E ,作MF ∥BC 交CD 于点F .求证:AM=EF .29.证明:过M 点作MQ ⊥AD ,垂足为Q ,作MP 垂足AB ,垂足为P ,∵四边形ABCD 是正方形,∴四边形MFDQ 和四边形PBEM 是正方形,四边形APMQ 是矩形,∴AP=QM=DF=MF ,PM=PB=ME ,∵在△APM 和△FME 中,AP MF APM FME PM ME =⎧⎪∠=∠⎨⎪=⎩, ∴△APM ≌△FME (SAS ), ∴AM=EF .30.(2016•铁岭)如图,△ABC 中,AB=AC ,AD 是△ABC 的角平分线,点O 为AB 的中点,连接DO 并延长到点E ,使OE=OD ,连接AE ,BE .(1)求证:四边形AEBD 是矩形;(2)当△ABC 满足什么条件时,矩形AEBD 是正方形,并说明理由.30.(1)证明:∵点O 为AB 的中点,连接DO 并延长到点E ,使OE=OD ,∴四边形AEBD 是平行四边形,∵AB=AC ,AD 是△ABC 的角平分线,∴AD ⊥BC ,∴∠ADB=90°,∴平行四边形AEBD 是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC ,AD 是△ABC 的角平分线,∴AD=BD=CD ,∵由(1)得四边形AEBD 是矩形,∴矩形AEBD 是正方形.31.(2016•南宁)如图,在菱形ABCD 中,AC 为对角线,点E 、F 分别是边BC 、AD 的中点.(1)求证:△ABE ≌△CDF ;(2)若∠B=60°,AB=4,求线段AE 的长.31.解:(1)∵四边形ABCD 是菱形,∴AB=BC=AD=CD ,∠B=∠D ,∵点E 、F 分别是边BC 、AD 的中点,∴BE=DF ,在△ABE 和△CDF 中,∵AB CD B D BE DF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△CDF (SAS );(2)∵∠B=60°,∴△ABC 是等边三角形,∵点E 是边BC 的中点,∴AE ⊥BC ,在Rt △AEB 中,∠B=60°,AB=4,sin60°=4AE AE AB =, 解得AE=23.32.(2016•贵阳)已知:如图,在菱形ABCD 中,F 是BC 上任意一点,连接AF 交对角线BD 于点E ,连接EC .(1)求证:AE=EC ;(2)当∠ABC=60°,∠CEF=60°时,点F 在线段BC 上的什么位置?说明理由.32.(1)证明:如图,连接AC ,∵BD 也是菱形ABCD 的对角线,∴BD 垂直平分AC ,∴AE=EC ;(2)解:点F 是线段BC 的中点.理由如下:在菱形ABCD 中,AB=BC ,又∵∠ABC=60°,∴△ABC 是等边三角形,∴∠BAC=60°,∵AE=EC ,∠CEF=60°,∴∠EAC=12∠BAC=30°, ∴AF 是△ABC 的角平分线,∵AF 交BC 于F ,∴AF 是△ABC 的BC 边上的中线,∴点F 是线段BC 的中点.33.(2016•曲靖)如图,点E 在正方形ABCD 的边AB 上,连接DE ,过点C 作CF ⊥DE 于F ,过点A 作AG ∥CF 交DE 于点G .(1)求证:△DCF ≌△ADG .(2)若点E 是AB 的中点,设∠DCF=α,求sinα的值.33.(1)证明:在正方形ABCD 中,AD=DC ,∠ADC=90°,∵CF ⊥DE ,∴∠CFD=∠CFG=90°,35.(2016•绥化)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为22,对角线AE,DF相交于点O,连接OC.求OC的长度.35.证明:(1)∵∠BAC=90°,∠ABC=45°,线段PA绕点P逆时针旋转90°得到线段PE,在直线BA上取点F,使BF=BP,且点F与点E在BC同侧,连接EF,CF.(1)如图 ,当点P在CB延长线上时,求证:四边形PCFE是平行四边形;(2)如图 ,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由;(3)在(2)的条件下,四边形PCFE的面积是否有最大值?若有,请求出面积的最大值及此时BP长;若没有,请说明理由.36.解:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠PBA=90°∵在△PBA和△FBC中,AB BCPBA ABCBP BF=⎧⎪∠=∠⎨⎪=⎩,∴△PBA≌△FBC(SAS),∴PA=FC,∠PAB=∠FCB.∵PA=PE,∴PE=FC.∵∠PAB+∠APB=90°,∴∠FCB+∠APB=90°.∵∠EPA=90°,∴∠APB+∠EPA+∠FPC=180°,即∠EPC+∠PCF=180°,∴EP∥FC,∴四边形EPCF是平行四边形;(2)结论:四边形EPCF是平行四边形,∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠CBF=90°∵在△PBA和△FBC中,AB BCPBA ABCBP BF=⎧⎪∠=∠⎨⎪=⎩,∴△PBA≌△FBC(SAS),∴PA=FC,∠PAB=∠FCB.∵PA=PE,。
“矩形大法”

“矩形大法”我们主要从三个方面和大家交流:一:“矩形大法”的提出背景二:“矩形大法”的基本构造三:“矩形大法”的实例应用一、矩形大法”的提出背景问题:我们如何刻画一个角大小呢?是的,角的大小有两种刻画方法:一种是传统的、人人皆知的度数刻画法;另一种是常被我们忽略的边长刻画法(即三角函数值)。
如果两个角的大小是用度数体现的,那么这两个角的和与差的度数能够非常容易地计算出来。
但如果两个角的大小是采用边长(即三角函数值)刻画的,那么两个角的和或差的大小是多少呢?自然,这两个角和与差的大小也只能采用三角函数值刻画。
也许学习数学的人第一反应是马上想到高中的两角和与差的三角公式。
但现在讨论的背景是初中数学教学因此我们要回避用高中数学知识。
首先要提的是南通2014年的28题第三问:不知大家第一次看到这道题的第一反应是什么?能否在短时间中用传统方法解决?看到两角和差关系这样的条件想到什么?本题它有比较巧妙的求法,但要发现,还是需要一定的时间的。
这里涉及到两角和差关系,需要说明的是,命题人员绝非希望你采用高中“两角和与差的三角公式”去解决问题,这是由于:⑴他们当初没有意识到采用这样的思考方法是合理的,而且只要方法得当,的确能够解决问题。
⑵即使意识到了,他们认为因为初中不具备这样的知识,有这样的想法却因为不具备的能力,从而无法解决原问题。
⑶最关键的原因是,由于命题人员想出了构思极为巧妙,常人很难想到的解法。
于是,这样的考题在不知不觉中出现了,而且通常情况下,这样的考题必定处于试卷中的难题位置.那如果我们能有比较好的方法去破解这个和差关系,那不就可以不花多少时间直接攻破此题了呢!再譬如2016盐城的中考题第3问:这题给出的答案也比较复杂,我想学生在短时间里容易找到点P的位置却不易求出点P坐标。
那么这题究竟如何成功破解呢?而类似这样的问题不管小题,大题,其实在中考中是比较多的。
现在的问题是,有些题目构思非常巧妙,但采用“因果确定法”思考,面临的困难就是:已知两个角的大小(边长刻画),最后只有在解决了这两个角的和或差的问题后,才能真正解决原问题。
华东师大初中数学八年级下册矩形(提高)知识讲解

矩形(提高)【学习目标】1. 理解矩形的概念.2. 掌握矩形的性质定理与判定定理.【要点梳理】【高清课堂特殊的平行四边形(矩形)知识要点】要点一、矩形的定义有一个角是直角的平行四边形叫做矩形.要点诠释:矩形定义的两个要素:①是平行四边形;②有一个角是直角.即矩形首先是一个平行四边形,然后增加一个角是直角这个特殊条件.要点二、矩形的性质矩形的性质包括四个方面:1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.要点诠释:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线可将矩形分成完全全等的两部分.(2)矩形也是轴对称图形,有两条对称轴(分别通过对边中点的直线).对称轴的交点就是对角线的交点(即对称中心).(3)矩形是特殊的平行四边形,矩形具有平行四边形的所有性质,从而矩形的性质可以归结为从三个方面看:从边看,矩形对边平行且相等;从角看,矩形四个角都是直角;从对角线看,矩形的对角线互相平分且相等.要点三、矩形的判定矩形的判定有三种方法:1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.要点诠释:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形.要点四、直角三角形斜边上的中线的性质直角三角形斜边上的中线等于斜边的一半.要点诠释:(1)直角三角形斜边上的中线的性质是矩形性质的推论.性质的前提是直角三角形,对一般三角形不可使用.(2)学过的直角三角形主要性质有:①直角三角形两锐角互余;②直角三角形两直角边的平方和等于斜边的平方;③直角三角形中30°所对的直角边等于斜边的一半.(3)性质可以用来解决有关线段倍分的问题.【典型例题】类型一、矩形的性质1、如图所示,已知四边形ABCD是矩形,△PBC和△QCD都是等边三角形,且点P在矩形上方,点Q在矩形内.求证:(1)∠PBA=∠PCQ=30°;(2)PA=PQ.【思路点拨】(1)矩形的四个内角都等于90°,利用条件△PBC 和△QCD 都是等边三角形,容易求得∠PBA 和∠PCQ 度数;(2)利用(1)的结论以及矩形的性质进一步证明△PAB ≌△PQC(SAS),从而证得PA =PQ .【答案与解析】证明:(1)∵ 四边形ABCD 是矩形,∴ ∠ABC =∠BCD =90°.∵ △PBC 和△QCD 是等边三角形,∴ ∠PBC =∠PCB =∠QCD =60°,∴ ∠PBA =∠ABC -∠PBC =30°,∠PCD =∠BCD -∠PCB =30°.∴∠PCQ =∠QCD -∠PCD =30°,故∠PBA =∠PCQ =30°(2)∵ 四边形ABCD 是矩形,∴ AB =DC .∵ △PBC 和△QCD 是等边三角形,∴ PB =PC ,QC =DC =AB .∵ AB =QC ,∠PBA =∠PCQ ,PB =PC .∴ △PAB ≌△PQC ,∴ PA =PQ .【总结升华】利用矩形的性质,可以得到许多的结论,在解题时,针对问题列出有用的结论作论据即可.举一反三:【变式】如图所示,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B '处,点A 落在点A '处.(1)求证:B E BF '=;(2)设AE =a ,AB =b ,BF =c ,试猜想a b c 、、之间有何等量关系,并给予证明.【答案】证明:(1)由折叠可得B FE BFE '∠=∠.∵ AD ∥BC , ∴ B EF BFE B FE ''∠=∠=∠,∴ B E B F ''=,∴ B E BF '=.(2)猜想222a b c +=.理由:由题意,得A E AE a '==,A B AB b ''==.由(1)知B E BF c '==.在A B E ''△中,∵ 90A '∠=°,A E a '=,A B b ''=,B E c '=,∴ 222a b c +=.2、如图所示,矩形ABCD 中,AC 、BD 相交于O ,AE 平分∠BAD 交BC 于E ,∠CAE =15°,求∠BOE 的度数.【思路点拨】∠BOE 在△BOE 中,易知∠OBE =30°,直接求∠BOE 有困难,转为考虑证BO=BE .由AE 平分∠BAD 可求∠BAE =45°得到AB =BE ,进一步可得等边△AOB .有AB =OB .证得BO=BE.【答案与解析】解:∵四边形ABCD是矩形,∴∠DAB=∠ABC=90°,AO=12AC,BO=12BD,AC=BD.∴ AO=BO.∵ AE平分∠BAD,∴∠BAE=45°.∴∠AEB=90°-45°=45°=∠BAE.∴ BE=AB.∵∠CAE=15°,∴∠BAO=60°.∴△ABO是等边三角形.∴ BO=AB,∠ABO=60°.∴ BE=BO,∠OBE=30°.∴∠BOE=18030752-=°°°.【总结升华】矩形被每条对角线分成两个直角三角形,被两条对角线分成四个等腰三角形,因此矩形中的计算问题可以转化到直角三角形和等腰三角形中去解决.类型二、矩形的判定3、(2015•连云港二模)如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.(1)求证:△ABE≌△ACD;(2)求证:四边形BCDE是矩形.【思路点拨】(1)利用SAS证得两个三角形全等即可;(2)要证明四边形BCED为矩形,则要证明四边形BCED是平行四边形,且对角线相等.【答案与解析】(1)证明:∵∠BAD=∠CAE,∴∠EAB=∠DAC,在△ABE和△ACD中∵AB=AC,∠EAB=∠DAC,AE=AD∴△ABE≌△ACD(SAS);(2)∵△ABE≌△ACD,∴BE=CD,又DE=BC,∴四边形BCDE为平行四边形.∵AB=AC,∴∠ABC=∠ACB∵△ABE≌△ACD,∴∠ABE=∠ACD,∴∠EBC=∠DCB∵四边形BCDE为平行四边形,∴EB∥DC,∴∠EBC+∠DCB=180°,∴∠EBC=∠DCB=90°,四边形BCDE 是矩形.【总结升华】本题主要考查矩形的判定,证明对角线相等的平行四边形是矩形,解题的关键是熟练掌握矩形的判定方法.举一反三:【变式】(2016•云南模拟)如图,已知四边形ABCD 是平行四边形,并且∠A =∠D.(1)求证:四边形ABCD 是矩形.(2)点E 是AB 边的中点,F 为AD 边上一点,∠1=2∠2,若CE=4,CF=5,求DF 的长.【答案】(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A +∠D=180°,又∠A =∠D,∴∠A =∠D =90°,∴四边形ABCD 是矩形;(2)解:延长DA ,CE 交于点G ,∵四边形ABCD 是矩形,∴∠DAB=∠B=90°,AD ∥BC ,∴∠GAE =90°,∠G=∠ECB ,∵E 是AB 的中点,∴AG=BE ,在△AGE 和△BCE 中,G ECBGAE B AE BE ∠=∠∠=∠=⎧⎪⎨⎪⎩∴△AGE ≌△BCE (AAS ) ∴AG=BC , 设DF=x ,则22222CD CF DF CG DG =-=-即()2222585x x -=-+ 解得:75x =,即75DF =. 类型三、直角三角形斜边上的中线的性质4、如图所示,BD 、CE 是△ABC 两边上的高,G 、F 分别是BC 、DE 的中点.求证:FG ⊥DE .【答案与解析】证明:连接EG 、DG ,∵ CE 是高,∴ CE ⊥AB .∵ 在Rt △CEB 中,G 是BC 的中点,∴ EG =12BC ,同理DG =12BC . ∴ EG =DG .又∵ F 是ED 的中点,∴ FG ⊥DE .【总结升华】直角三角形斜边中线的性质是依据矩形的对角线互相平分且相等推出来的.根据这个性质.又可以推出直角三角形的斜边上的中线把直角三角形分成了两个等腰三角形.温馨提示:若题目中给出直角三角形斜边上的中点,常设法用此性质解决问题. 举一反三:【高清课堂 特殊的平行四边形(矩形) 例11】【变式】如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB =2,BC =1,运动过程中,点D 到点O 的最大距离为( )152【答案】A ;解:如图,取AB 的中点E ,连接OE 、DE 、OD ,∵OD≤OE+DE ,∴当O 、D 、E 三点共线时,点D 到点O 的距离最大,此时,∵AB=2,BC =1,∴OE=AE =12AB =1,DE ==,∴OD 1.。
矩形的判定

第一章特殊平行四边形3.正方形的性质与判定(二)本节课设计了六个教学环节:第一环节:情景引入;第二环节:运用巩固;第三环节:猜想结论,分组验证;第四环节:学以致用;第五环节:课堂小结;第六环节:布置作业。
第一环节:情景引入活动内容:问题:将一张长方形纸对折两次,然后剪下一个角,打开,怎样剪才能剪出一个正方形?(学生动手折叠、思考、剪切)活动目的:因为正方形的两条对角线把它分成四个全等的等腰直角三角形,把折痕作对角线,这时只需剪一个等腰直角三角形,打开即是正方形,因此只要保证剪口线与折痕成45°角即可。
活动的注意事项:部分学生在动手操作时,会剪出菱形,教师要引导学生思考:正方形是特殊的矩形和菱形,因此想得到一个正方形,可以在矩形的基础上强化边的条件得到,也可以在菱形的基础上强化角的条件得到,而折痕是正方形的对角线,所以本环节要从对角线的角度考虑,即对角线要垂直相等且平分,学生很自然的会想到需要剪一个等腰直角三角形,因此只要保证剪口线与折痕成45°角即可,本节课的第一个教学难点迎刃而解。
本环节中教师可以鼓励操作快的学生帮助有困难的学生,请同学到讲台前讲解自己的做法和判断依据,顺势引导学生总结出正方形的判定定理:1.对角线相等的菱形是正方形。
2.对角线垂直的矩形是正方形。
3.有一个角是直角的菱形是正方形。
教师可以课件展示下面的框架图,复习巩固平行四边形、矩形、菱形、正方形之间的关系。
此框架图给出了正方形的判别条件,先判定一个四边形是平行四边形,再判定这个平行四边形是矩形,然后再判定这个矩形是菱形;或者先判定一个四边形是菱形,再判定这个菱形是矩形。
由于判定平行四边形、矩形、菱形的方法各异,所给出的条件不一样,所以判定一个四边形是不是正方形的具体条件相应可作变化,在应用时要仔细辨别后才可以作出判断。
第二环节:运用巩固活动内容:活动目的:通过例2,复习巩固平行四边形、菱形、矩形、正方形的性质与判定定理,让学生尝试综合运用特殊四边形的性质和判定解决问题。
矩形的性质和判定复习总结

ACBD一、复习回顾基础知识矩形的定义:有一个角是直角的平行四边形。
矩形的性质: 矩形的四个角都是直角;矩形的对角线平分且相等。
AC=BD 矩形判定定理: 1.有一个角是直角的平行四边形叫做矩形。
2.对角线相等的平行四边形是矩形。
3.有三个角是直角的四边形是矩形。
直角三角形斜边上的中线等于斜边的一半。
巩固练习(1)下列性质中,矩形具有而平行四边形不一定具有的是( )A 、对边相等B 、对角相等C 、对角线相等D 、对边平行(2)矩形ABCD 中,对角线AC 、BD 相交于O ,∠AOB =60°,AC =10cm ,则AB =___________cm ,BC =___________cm .(3)在△ABC 中,∠C =90°,AC =5,BC =3,则AB 边上的中线CD =___________. (4)矩形的对角线长为,132两条邻边之比是2∶3,则矩形的周长是___________. (5)如图,E 为矩形纸片ABCD 的BC 边上一点,将纸片沿AE 向上折叠,使点B 落在DC 边上的F 点处.若△AFD 的周长为9,△ECF 的周长为3,则矩形ABCD 的周长为___________.(6).矩形ABCD 被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86cm ,对角线是13cm ,那么矩形的周长是____________二、经典例题、针对训练、延伸训练例1.已知:如图,在矩形ABCD 中,AE ⊥BD 于E ,BE ∶ED =1∶3,从两条对角线的交点O 作OF ⊥AD 于F ,且OF =2,求BD 的长.例2.已知:如图,在□ABCD 中,AQ 、BN 、CN 、DQ 分别是∠DAB 、∠ABC 、∠BCD 、∠CDA 的平分线,AQ 与BN 相交于P ,CN 与DQ 相交于M ,试说明四边形MNPQ 是矩形.例3.已知:如图,在四边形ABCD中,AC、BD互相平分于点O,∠AEC=∠BED=90°.求证:四边形ABCD 是矩形.例4.如图,在矩形ABCD中,AC、BD相交于O,AE平分∠BAD,交BC于E,若∠CAE=15°,求∠BOE的度数.例5.如图,直角坐标平面中,四边形OABC为矩形,点A、B的坐标分别为(3,0),(3,4). 动点M、N分别从O、B同时出发,以每秒1个单位的速度运动. 其中,点M沿OA向终点A运动,点N沿BC向终点C运动. 过点N作NP⊥BC,交AC于P,连结MP. 已知动点运动了x秒.(1)P点的坐标为(,);(用含x的代数式表示)(2)试求△MPA面积的最大值,并求此时x的值.OHEF DCAB(3)请你探索:当x 为何值时,△MPA 是一个等腰三角形?你发现了几种情况?请写出你的研究成果.针对训练:1、在矩形ABCD 中,1=AB ,3=AD ,AF 平分DAB ∠,过C 点作BD CE ⊥于E ,延长AF 、EC交于点H 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩形(基础)
撰稿:康红梅 责编:吴婷婷
【学习目标】
1. 理解矩形的概念.
2. 掌握矩形的性质定理与判定定理.
【要点梳理】
【高清课堂 特殊的平行四边形(矩形) 知识要点】
要点一、矩形的定义
有一个角是直角的平行四边形叫做矩形.
要点诠释:矩形定义的两个要素:①是平行四边形;②有一个角是直角.即矩形首先是
一个平行四边形,然后增加一个角是直角这个特殊条件.
要点二、矩形的性质
矩形的性质包括四个方面:
1.矩形具有平行四边形的所有性质;
2.矩形的对角线相等;
3.矩形的四个角都是直角;
4.矩形是轴对称图形,它有两条对称轴.
要点诠释:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线
可将矩形分成完全全等的两部分.
(2)矩形也是轴对称图形,有两条对称轴(分别通过对边中点的直线).对
称轴的交点就是对角线的交点(即对称中心).
(3)矩形是特殊的平行四边形,矩形具有平行四边形的所有性质,从而矩形
的性质可以归结为从三个方面看:从边看,矩形对边平行且相等;从角
看,矩形四个角都是直角;从对角线看,矩形的对角线互相平分且相等.
要点三、矩形的判定
矩形的判定有三种方法:
1.定义:有一个角是直角的平行四边形叫做矩形.
2.对角线相等的平行四边形是矩形.
3.有三个角是直角的四边形是矩形.
要点诠释:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判
定平行四边形是矩形.
要点四、直角三角形斜边上的中线的性质
直角三角形斜边上的中线等于斜边的一半.
要点诠释:(1)直角三角形斜边上的中线的性质是矩形性质的推论.性质的前提是直角
三角形,对一般三角形不可使用.
(2)学过的直角三角形主要性质有:①直角三角形两锐角互余;②直角三
角形两直角边的平方和等于斜边的平方;③直角三角形中30°所对的
直角边等于斜边的一半.
(3)性质可以用来解决有关线段倍分的问题.
【典型例题】
类型一、矩形的性质
1、如图所示,在矩形ABCD中,E、F分别是
BC、AD上的点,且BE=DF.
求证△ABE≌△CDF.
【思路点拨】:由矩形的性质可得AB=CD,∠B=∠D=90°,然后用它们作条件证明△ABE
≌△CDF.
【答案与解析】
证明:∵ 四边形ABCD是矩形.
∴ AB=CD,∠B=∠D=90°
在△ABE和△CDF中
90ABCDBDBEDF°
∴ △ABE≌△CDF(SAS)
【总结升华】矩形的性质常用于求线段的长度与角的度数,在解题过程中应根据题目选择不
同的性质来加以应用.
举一反三:
【高清课堂 特殊的平行四边形(矩形) 例7】
【变式】如图,Rt△ABC中,∠C=90°,AC=3,BC=4,点P为AB边上任一点,过P分别
作PE⊥AC于E,PF⊥BC于F,则线段EF的最小值是 _________ .
【答案】;
提示:因为ECFP为矩形,所以有EF=PC.PC最小时是直角三角形斜边上的高.
类型二、矩形的判定
2、已知:平行四边形ABCD中,E、F分别是
AB、CD的中点,连接AF、CE.
(1)求证:△BEC≌△DFA;
(2)连接AC,若CA=CB,判断四边形AECF是什么特殊四边形?并证明你的结论.
【答案与解析】
证明:(1)∵四边形ABCD是平行四边形,
∴AB=CD,∠B=∠D,BC=AD.
∵E、F分别是AB、CD的中点,
∴BE=12AB,DF=12CD.
∴BE=DF.
∴△BEC≌△DFA.
(2)四边形AECF是矩形.
∵四边形ABCD是平行四边形,
∴AB∥CD,且AB=CD.
∵E、F分别是AB、CD的中点,
∴BE=12AB,DF=12CD.
∴AE∥CF且AE=CF.
∴四边形AECF是平行四边形.
∵CA=CB,E是AB的中点,
∴CE⊥AB,即∠AEC=90°.
∴四边形AECF是矩形.
【总结升华】要证明△BEC和△DFA全等,主要运用判定定理(边角边);四边形AECF是矩
形,先证明四边形AECF是平行四边形,再证这个平行四边形对角线相等或者有一个角是直
角.
举一反三:
【变式】如图,在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形.
求证:四边形ADCE是矩形.
【答案】
证明:∵四边形ABDE是平行四边形,
∴AE∥BC,AB=DE,AE=BD
∵D为BC的中点,
∴CD=BD
∴CD∥AE,CD=AE
∴四边形ADCE是平行四边形
∵AB=AC
∴AC=DE
∴平行四边形ADCE是矩形.
3、如图所示,YABCD四个内角的角平分线
分别交于点E、F、G、H.
求证:四边形EFGH是矩形.
【思路点拨】AE、BE分别为∠BAD、∠ABC的角平分线,由于在YABCD中,∠BAD+∠ABC=
180°,易得∠BAE+∠ABE=90°,不难得到∠HEF=90°,同理可得∠H=∠F=90°.
【答案与解析】
证明:在YABCD中,AD∥BC,
∴ ∠BAD+∠ABC=180°,
∵ AE、BE分别平分∠BAD、∠ABC,
∴ ∠BAE+∠ABE=12∠BAD+12∠ABC=90°.
∴ ∠HEF=∠AEB=90°.
同理:∠H=∠F=90°.
∴ 四边形EFGH是矩形.
【总结升华】 (1)利用角平分线、垂线得到90°的角,选择“有三个直角的四边形是矩形”
来判定.(2)本题没有涉及对角线,所以不会选择利用对角线来判定矩形.
类型三、直角三角形斜边上的中线的性质
4、(2012•佳木斯)如图,△ABC中,AB=
AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE
的周长为( )
A.20 B.12 C.14 D.13
【答案】C;
【解析】
解:∵AB=AC,AD平分∠BAC,BC=8,
∴AD⊥BC,CD=BD=12BC=4,
∵点E为AC的中点,
∴DE=CE=12AC=5,
∴△CDE的周长=CD+DE+CE=4+5+5=14.
【总结升华】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线
合一的性质,熟记性质并准确识图是解题的关键.
举一反三:
【变式】如图所示,已知平行四边形ABCD,AC、BD相交于点O,P是平行四边形ABCD外一
点,且∠APC=∠BPD=90°.求证:平行四边形ABCD是矩形.
【答案】
解:连接OP.
∵ 四边形ABCD是平行四边形.
∴ AO=CO,BO=DO,
∵ ∠APC=∠BPD=90°,
∴ OP=12AC,OP=12BD,
∴ AC=BD.
∴ 四边形ABCD是矩形.