矩形的性质(一)

合集下载

矩形(一)教案

矩形(一)教案

AA A A
D DD D
OOOO
BBB
CCCC
四边形
两组对边 分别平行
平行 四边形
一个角是 直角
矩形
矩形的定义:
有一个角是直角的平行四边形是矩形
平行四边形
有一个角 是直角
矩形
矩形是特殊的平行四边形
矩形的一般性质:
具备平行四边形所有的性质
A
D
O
B
C
边 对边平行且相等 角 对角相等,邻角互补 对角线 对角线互相平分
这是矩形所
O
特有的性质
你在矩形中还发现了哪些基本图形?
A
D
O
B
C
◆ 两对全等的等腰三角形.
A
D
O
B
C
◆ 四个全等的直角三角形.
相等的线段:
已知四边形ABCD是矩形
A
D
AOBA==CODC,=OABD==OBDC=,1AACC=B=D1 BD
O
等腰三角形有:
2
2
B
C
△OAB 、△ OBC、 △OCD 、△OAD
矩形的面积= 48
㎝2
4 若已知 ∠DOC=120°,AD=6㎝,则AC= 12

A
已知△ABC是Rt△,∠ABC=Rt∠,
BD是斜边AC上的中线

B
1 若BD=3㎝则AC= 6

D C
2 若∠C=30°,AB=5㎝,则AC= 10 BD= 5 ㎝,∠BDC= 120°
㎝,
例1:如图,矩形ABCD的两条对角线相交 于点O,∠AOB=60°,AB=4㎝,求矩形 对角线的长?
B
C
∴△ABC≌△DCB (SAS)

九年级数学(北师大版)上册教案:1.2矩形的性质与判定(1)

九年级数学(北师大版)上册教案:1.2矩形的性质与判定(1)

第一章特殊平行四边形1.2 矩形的性质与判定(一)教学目标知识与技能:了解矩形的有关概念,理解并掌握矩形的有关性质.过程与方法:经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.情感态度与价值观:培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值.重难点、关键重点:掌握矩形的性质,并学会应用.难点:理解矩形的特殊性.关键:把握平行四边形的演变过程,迁移到矩形概念与性质上来,明确矩形是特殊的平行四边形.教学准备教师准备:投影仪,收集有关矩形的图片,制作教具.学生准备:复习平行四边形性质,预习矩形这节内容.学法解析1.认知起点:已经学习了三角形、平行四边形、菱形,•积累了一定的经验的基础上学习本节课内容.2.知识线索:情境与操作→平行四边形→矩形→矩形性质.3.学习方式:观察、操作、感知其演变,以合作交流的学习方式突破难点.教学过程一、联系生活,形象感知【显示投影片】教师活动:将收集来的有关长方形图片,播放出来,让学生进行感性认识,然后定义出矩形的概念.矩形定义:有一个角是直角的平行四边形叫做矩形.(也就是小学学习过的长方形).教师活动:介绍完矩形概念后,为了加深理解,也为了继续研究矩形的性质,拿出教具.同学生一起探究下面问题:问题1:改变平行四边形活动框架,将框架夹角∠α变为90°,•平行四边形成为一个矩形,这说明平行四边形与矩形具有怎样的从属关系?(教师提问)[来源:21世纪教育网学生活动:观察教师的教具,研究其变化情况,可以发现:矩形是平行四边形的特例,属于平行四边形,因此它具有平行四边形的所有性质.[来源:学*科*网Z*X*问题2:既然它具有平行四边形的所有性质,•那么矩形是否具有它独特的性质呢?(教师提问)学生活动:由平行四边形对边平行以及刚才∠α变为90°,可以得到∠α的补角也是90°,从而得到:矩形的四个角都是直角.评析:实际上,在小学学生已经学过长方形四个角都是90°,这里学生不难理解.教师活动:用橡皮筋做出两条对角线,让学生观察这两条对角线的关系,并要求学生证明(口述).学生活动:观察发现:矩形的两条对角线相等。

矩形的认识与性质

矩形的认识与性质

矩形的认识与性质矩形是我们在日常生活中经常遇到的一种形状。

矩形具有一些独特的性质和特点,通过深入了解矩形的认识和性质,我们能够更好地应用它们在实际问题中。

一、矩形的定义和特征矩形是一种具有四条边的平面图形,其内部的四个角是直角。

矩形的特征包括:1. 四个角度都是直角;2. 相对的边是相等的,即对边互相平行且长度相等;3. 对角线相等且互相平分。

二、矩形的性质1. 对角线相等矩形的对角线相等,并且互相平分。

这意味着从一个角到另一个相对角的距离相等,可以通过这个性质来进行测量和计算。

2. 边长关系在矩形中,相对的边是相等的。

这意味着一个矩形的宽度和长度相等,或者说它的边长相等。

3. 周长和面积矩形的周长可以通过两倍的长度加上两倍的宽度来计算,即2 × (长度 + 宽度)。

而面积可以通过长度乘以宽度来计算,即长度 ×宽度。

4. 矩形的对称性矩形具有一个或多个对称轴。

比如,如果将矩形沿着它的中心水平或垂直折叠,两边会完全重合。

这是矩形对称性的体现。

5. 矩形的角度关系矩形的四个角都是直角,这是它的基本特征之一。

直角具有独特的性质,可以通过直角关系来解决实际问题。

三、矩形的应用矩形在现实生活中有广泛的应用,下面列举几个例子:1. 建筑设计矩形是建筑设计中常见的形状,例如房屋的墙壁、窗户和门等。

通过矩形的性质,我们可以计算房间的面积和周长,从而进行设计和施工。

2. 地图和测量在地图上,我们经常使用矩形来表示建筑物、土地和街道等。

通过对矩形形状的测量,我们可以计算出相应地区的面积或距离,为规划和导航提供便利。

3. 制作家具很多家具都是矩形形状的,比如桌子、书柜、床等。

通过了解矩形的特征和性质,我们可以更好地设计和制作家具,使其更稳定、美观。

4. 数学问题矩形在数学问题中也经常出现。

例如,在计算面积、周长和对角线的长度时,矩形的性质可以用来简化计算步骤,提高解题效率。

总结:矩形是我们生活中常见的形状之一,具有直角、边长相等以及对角线相等等特征。

八年级数学矩形的性质

八年级数学矩形的性质

A
D
O
P
B
C
4.已知:如图,在矩形ABCD中, 对角线相交 于点O,∠AOB=60°,AE平分∠BAD,AE 交BC于E,求∠BOE的度数. 75°
A
D
O
B
E
C
根据矩形性质2:
A
D
矩形的对角线相等. O
∵四边形ABCD是矩形. B
C
∴AC=BD 又∵0A=0C=
1
AC,OB=OD=
1
BD.
2
A2
┏C
性质2:
矩形的对角线相等.
符号语言:
∵四边形ABCD是矩形. ∴AC=BD
根据矩形性质2:
A
D
矩形的对角线相等.
O
∵四边形ABCD是矩形. B
C
∴AC=BD
又∵0A=0C= 1 AC,OB=OD= 1 BD.
2
2
∴OA=OB=OC=OD.
注: 矩形被两条对角线分成的四个小三角形
都是等腰三角形,并且面积相等.
∴OA=OB=OC=OD.
O
结论:
B
C
直角三角形斜边上的中线等于斜边的一半.
归纳: 直角三角形的性质: (1)直角三角形的两个锐角互余. (2)直角三角形两条直角边的平方和等于斜边的 平方. (3)直角三角形斜边上的中线等于斜边的一半.
例3 如图矩形ABCD的对角线AC、BD相交
于点O,E为矩形ABCD外一点,AE⊥CE,
那么BE⊥DE吗?
为什么?
解题思路:
E
由OE=OA=OC
A
D
得到OE=OB=OD 再得到∠BED=90°
O
B
C

什么是矩形_矩形的性质

什么是矩形_矩形的性质

什么是矩形_矩形的性质矩形是一种平面图形,包括长方形与正方形,那么你对矩形了解多少呢?以下是由店铺整理关于什么是矩形的内容,希望大家喜欢!什么是矩形矩形(rectangle)是一种平面图形,包括长方形与正方形。

是特殊的平行四边形,因为平行四边形具有不稳定性,所以当改变一个内角大小,而不改变各边长并仍保证为平行四边形矩形至直角时,便有了矩形。

所以矩形的四个角都是直角,同时矩形的两组对边分别相等,对角相等,邻角互补,对角线相等且互相平分,故两条对角线可以将一个矩形分为四个面积相等的等腰三角形,而且在平面内任一点到其两对角线端点的距离的平方和相等。

还有我们知道,在任意四边形中,顺次连接各边中点,所得图形即为平行四边形{可用中位线定理证明}。

而在一个对角线互相垂直的四边形中,顺次连接各边中点,所得图形即为矩形。

判定矩形一般有3种基本方法:1.有一个角是直角的平行四边形是矩形{定义判定法}2.有三个角是直角的四边形是矩形3.对角线相等的平行四边形{即对角线相等且互相平分的四边形}是矩形矩形的判定1.一个角是直角的平行四边形是矩形。

2.对角线相等的平行四边形是矩形。

3.三个内角都是直角的四边形是矩形。

说明:矩形和正方形都是平行四边形。

平行四边形的定义在矩形上仍然适用。

矩形的性质(1)矩形的定义:有一个角是直角的平行四边形是矩形.(2)矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.(3)由矩形的性质,可以得到直角三角形的一个重要性质,直角三角形斜边上的中线等于斜边的一半.矩形判定应用例1:已知ABCD的对角线AC和BD相交于点O,△AOB是等边三角形,AB=4.求这个平行四边形的面积。

分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形(如图个4-37),再利用勾股定理计算边长,从而得到面积为例2:已知:如图4-38在ABCD中,M为BC中点,∠MAD=∠MDA.求证:四边形ABCD是矩形.分析:根据定义去证明一个角是直角,由△ABM≌DCM(SSS)即可实现。

自学初中数学资料-矩形及其性质矩形(1)

自学初中数学资料-矩形及其性质矩形(1)

自学资料一、矩形及其性质【知识探索】1.有一个角是直角的平行四边形叫做矩形,也是长方形.2.矩形的性质:(1)矩形的四个角都是直角;(2)矩形的两条对角线相等.【说明】(1)矩形具有平行四边形的所有性质;(2)矩形既是中心对称图形,又是轴对称图形.对称中心是其对角线的交点,对称轴是每组对边的垂直平分线.【错题精练】例1.如图,已知矩形ABCD的对角线AC的长为10cm,连结矩形各边中点E、F、G、H得四边形EFGH,则四边形EFGH的周长为()cm.第1页共7页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训A. 20;B. ;C. ;D. 25.例2.已知:如图,矩形ABCD中,AC与BD交于O点,若点E是AO的中点,点F是OD的中点.求证:BE=CF.例3.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积例4.如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF的面积为__________ .第2页共7页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【举一反三】1.如图,在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE于F,连接DE.证明:DF=DC2.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.3.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.4.如图,矩形ABCD的对角线AC的中点为O,过点O作OE⊥BC于点E,连接OD,已知AB=6,BC=8,则四边形OECD的周长为__________ .第3页共7页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训5.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=__________ 度二、矩形的判定【知识探索】1.矩形的判定:(1)对角线相等的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.【错题精练】例1.如图,在▱ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线与点E,连接BD,EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=50∘,则当∠BOD=°时,四边形BECD是矩形.例2.已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.第4页共7页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【举一反三】1.已知,如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连结CF.(1)求证:四边形ADCF是平行四边形;(2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.2.已知:如图,AB=AC,AE=AF,且∠EAB=∠FAC,EF=BC.求证:四边形EBCF是矩形.1.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.2.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()第5页共7页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训A. △AFD≌△DCEB. AF=ADC. AB=AFD. BE=AD﹣DF3.如图,在平行四边形ABCD中,AB≠BC,连接AC,AE是∠BAD的平分线,交边DC的延长线于点F.(1)证明:CE=CF;(2)若∠B=60°,BC=2AB,试判断四边形ABFC的形状,并说明理由.(如图2所示)4.如图,在直线MN上和直线MN外分别取点A、B,过线段AB的中点作CD平行于MN,分别与∠MAB与∠NAB的平分线相交于点C、D.求证:四边形ACBD是矩形.5.如图,在▱ABCD中,E是DC边的中点,且EA=EB.求证:▱ABCD是矩形.6.下列说法中,错误的是()第6页共7页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训A. 平行四边形的对角线互相平分B. 对角线互相平分的四边形是平行四边形C. 菱形的对角线互相垂直D. 对角线互相垂直的四边形是菱形第7页共7页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训。

华东师大版数学八年级下册19.1.1矩形的性质优秀教学案例

华东师大版数学八年级下册19.1.1矩形的性质优秀教学案例
五、案例亮点
1.生活情境导入:通过引入生活中常见的矩形实例,让学生在真实的情境中感受和认识矩形,激发学生的学习兴趣,提高学生的学习积极性。
2.探究式教学:引导学生通过观察、操作、探究等活动,自主发现和证明矩形的性质,培养学生的空间想象能力、逻辑思维能力和创新能力,使学生真正成为学习的主人。
3.小组合作学习:组织学生进行小组合作,鼓励学生互相倾听、互相帮助,培养学生的团队协作精神和沟通能力,提高学生的社会责任感。
(二)过程与方法
本节课的过程与方法目标是培养学生的空间想象能力、逻辑思维能力和创新能力。具体包括:
1.通过对生活中的矩形实例观察,培养学生的空间想象能力。
2.通过自主探究和小组合作,培养学生的逻辑思维能力。
3.通过解决实际问题,培养学生的创新能力。
为了达到这些目标,我在教学中采用了探究式教学法,让学生在观察、操作、探究的过程中,发现问题、解决问题,从而培养学生的空间想象能力、逻辑思维能力和创新能力。
华东师大版数学八年级下册19.1.1矩形的性质优秀教学案例
一、案例背景
矩形作为基本的几何图形之一,在华东师大版数学八年级下册第19.1.1节中,学生需要掌握矩形的性质。本节课主要内容是引导学生探究矩形的性质,包括矩形的定义、矩形的对边相等、矩形的对角相等以及矩形的四个角都是直角。
在制定本节课的教学案例时,我以学生已有的知识基础和认知能力为出发点,结合课程标准的要求,设计了以下教学目标:
(四)反思与评价
反思与评价是本节课的重要教学策略。具体包括:
1.在每个教学环节结束后,我引导学生进行反思,让学生回顾自己的学习过程,思考自己学到了什么,还有什么需要改进的地方。
2.在反思的过程中,我鼓励学生积极表达自己的观点和思考,培养学生的表达能力和发展学生的个性。

(4)1.2矩形的判定和性质(1)

(4)1.2矩形的判定和性质(1)

D BCA ODBCAODB CAO北师大版九年级上数学科导学案(4)课题:1.1 矩形的性质与判定(1) 主备: 审核:初三备课组班级 姓名 学号 家长签名教学目标:1.理解掌握矩形的性质和直角三角形的性质3 2.灵活应用矩形的性质进行有关的计算 一、 知识回顾(可做小测)1. 菱形的边长是2 cm ,一条对角线的长是23cm,则另一条对角线的长是2. 菱形的一边与两条对角线所构成两角之比为5∶4,则它的各内角度数为_______。

2、如图,AD 是△ABC 的角平分线.DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F ,四边 形AEDF 是菱形吗?说明你的理由。

(写在上面空白处) 二. 预习交流(课前完成)阅读第11—13页,回答: 1. 定义:有一个角______的平行四边形是矩形.数学语言表示:∵在□ABCD 中,∠A=______∴□ABCD 是矩形2.矩形性质:(1)具有平行四边形的所有性质:a b c 等 (2)边 (3)角:对角 邻角 (4)对角线: (5)矩形还具有对称性:是___ 对称图形,它有___ 条对称轴; 又是___ 对称图形,它的对称中心是 .3.已知:如图,在矩形ABCD 中,∠ABC=90°对角线AC 与BD 相较于点O. 求证: (1)∠ABC=∠BCD=∠CDA=∠DBA=90°;(2)AC=BD 证明:小结:定理:1.矩形的四个角都是直角。

2.矩形的对角线相等。

三.互助探究(先各自独立完成,再师友互助)1.P12)B A O EDC BAD BCA OEDCBA2.如图,在矩形ABCD 中,对角线AC 与BD 相较于O 点,已知∠AOD=120°,AB=2.5, 求这个矩形对角线的长。

四.分层提高1、 已知:如图,在矩形ABCD 中,对角线AC 与BD 相较于点O ,AB=6,OA=4. 求BD 与AD 的长。

2、 一个矩形的对角线的长为6,对角线与一边的夹角是45°,求这个矩形的各边长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩形的性质(一)
一、教学目标:
1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.
2.会初步运用矩形的概念和性质来解决有关问题.
3.渗透运动联系、从量变到质变的观点.
二、重点、难点
1.重点:矩形的性质.
2.难点:矩形的性质的灵活应用.
三、例题的意图分析
例1是教材P104的例1,它是矩形性质的直接运用,它除了用以巩固所学的矩形性质外,对计算题的格式也起了一个示范作用.例2与例3都是补充的题目,其中通过例2的讲解是想让学生了解:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法;(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式.并能通过例2、例3的讲解使学生掌握解决有关矩形方面的一些计算题目与证明题的方法.
四、课堂引入
1.展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?
2.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)
3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义.
矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).
矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象.
【探究】在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.
①随着∠α的变化,两条对角线的长度分别是怎样变化的?
②当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?
操作,思考、交流、归纳后得到矩形的性质.
矩形性质1矩形的四个角都是直角.
矩形性质2矩形的对角线相等.
如图,在矩形ABCD 中,AC 、BD 相交于点O ,由性质2有AO=BO=CO=DO=
2
1AC=21BD .因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.
五、例习题分析
例1 (教材P104例1)已知:如图,矩形ABCD 的两条对角线相交于点O ,∠AOB=60°,AB=4cm ,求矩形对角线的长.
分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这
个特性和已知,可得△OAB 是等边三角形,因此对角线的长度可求.
解:∵ 四边形ABCD 是矩形,
∴ AC 与BD 相等且互相平分.
∴ OA=OB .
又 ∠AOB=60°,
∴ △OAB 是等边三角形.
∴ 矩形的对角线长AC=BD = 2OA=2×4=8(cm ).
例2(补充)已知:如图 ,矩形 ABCD ,AB 长8 cm ,对角线比AD 边长4 cm .求AD 的长及点A
到BD 的距离AE 的长.
分析:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利
用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法.
略解:设AD=xcm ,则对角线长(x+4)cm ,在Rt △ABD 中,由勾股定理:222)4(8+=+x x ,解得
x=6. 则 AD=6cm .
(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式: AE×DB = AD×AB ,解得 AE = 4.8cm .
例3(补充) 已知:如图,矩形ABCD 中,E 是BC 上一点,DF ⊥AE 于F ,若AE=BC . 求证:CE =EF .
分析:CE 、EF 分别是BC ,AE 等线段上的一部分,若AF =BE ,则问题解决,而证明AF =BE ,只要证明△ABE ≌△DFA 即可,在矩形中容易构造全等的直角三角形.
证明:∵ 四边形ABCD 是矩形,
∴ ∠B=90°,且AD ∥BC . ∴ ∠1=∠2.
∵DF⊥AE,∴∠AFD=90°.
∴∠B=∠AFD.又AD=AE,
∴△ABE≌△DFA(AAS).
∴AF=BE.
∴EF=EC.
此题还可以连接DE,证明△DEF≌△DEC,得到EF=EC.
六、随堂练习
1.(填空)
(1)矩形的定义中有两个条件:一是,二是.
(2)已知矩形的一条对角线与一边的夹角为30°,则矩形两条对角线相交所得的四个角的度数分别为、、、.
(3)已知矩形的一条对角线长为10cm,两条对角线的一个交角为120°,则矩形的边长分别为cm,cm,cm,cm.
2.(选择)
(1)下列说法错误的是().
(A)矩形的对角线互相平分(B)矩形的对角线相等
(C)有一个角是直角的四边形是矩形(D)有一个角是直角的平行四边形叫做矩形
(2)矩形的对角线把矩形分成的三角形中全等三角形一共有().
(A)2对(B)4对(C)6对(D)8对
3.已知:如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠AOD=120°,求∠AEO的度数.
七、课后练习
1.(选择)矩形的两条对角线的夹角为60°,对角线长为15cm,较短边的长为().
(A)12cm (B)10cm (C)7.5cm (D)5cm
2.在直角三角形ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.
3.已知:矩形ABCD中,BC=2AB,E是BC的中点,求证:EA⊥ED.
4.如图,矩形ABCD中,AB=2BC,且AB=AE,求证:∠CBE的度数.。

相关文档
最新文档