2 矩形的性质与判定1 第1课时 矩形的性质
九年级数学上册 1.2 矩形的性质与判定(第1课时)教案(新版)北师大版

九年级数学上册 1.2 矩形的性质与判定(第1课时)教案(新版)北师大版九年级数学上册1.2矩形的性质与判定(第1课时)教案(新版)北师大版矩形的性质及判定教学目标(1)掌握矩形的定义,理解矩形与平行四边形的关系。
(2)理解并掌握矩形的性质定理;会用矩形的性质定理进行推导证明;(3)初步运用矩形的定义和性质解决相关问题,进一步培养学生的分析能力和教学重点矩形性质定理的证明及应用教学难点“直角三角形斜边的中线等于斜边的一半”的推导及性质定理应用的教学过程:一、创设情境,引入新课老师:展示教具(平行四边形)并演示将平行四边形转化为菱形的过程当我们给平行四边形其他特殊条件时,我们会得到其他形状吗?例如,如果平行四边形的内角变成90度,你会发现什么特殊形状?学生:长方形师:原来是大家非常熟悉的图形,他还有个高大上的名字――矩形.板书课题老师:根据前面学习的菱形和平行四边形的过程,你想了解矩形的哪些方面?学生:矩形的定义:矩形的本质生:矩形边、角、对角线的特征.生:矩形的判定.生:……二、目标展示师:出示学习目标.生:默读学习目标.三、自主学习1.自主探究老师:根据以下自学指导,自学课本第11至12页讨论前的内容。
1.定义:有些被称为矩形12.矩形是平行四边形吗?3、如图,四边形abcd是矩形,试从它的边,角,对角线,对称性上写出性质.(小组讨论)侧面:角度:对角线:对称性:4、先写出特有的性质,然后独立思考证明过程,再与课本上的证明相比较.矩形特有的性质是:..处理方法:学生将自学与小组合作相结合,通过自学、猜想和推理三个步骤掌握矩形的性质,在小组学习过程中提问,其他学生讨论并回答【设计意图】本环节知识较为简单,有前面菱形性质的研究经验,又有比较坚实的三角形全等的知识基础,此处自学应该没有障碍,因此,为培养学生的自主学习能力及增大课堂容量,将此处设计为自主学习.定义:直角平行四边形是一个矩形。
矩形的四个角是直角。
1.2矩形的性质与判定+课件+2023-2024学年北师大版数学九年级上册

C.AD=AB
D.∠BAD=∠ADC
2.如图,BO是Rt△ABC斜边上的中线,延长BO到点D,使DO=BO,
连接AD,CD.四边形ABCD是矩形吗?请说明理由.
解:四边形ABCD是矩形.理由如下:
∵BO是Rt△ABC斜边上的中线,
∴OA=OC=OB=OD.
∴四边形ABCD是平行四边形,且AC=BD.
∴DE∥AC,DF∥AB.
∴四边形AEDF是平行四边形.
又∠A=90°,
∴四边形AEDF是矩形.
典例3
如图,在□ ABCD是矩形ABCD中,∠ACB=90°,过点D作
DE⊥BC交BC的延长线于点E.求证:四边形ACED是矩形.
证明:∵四边形ABCD为平行四边形,
∴AD∥BC.
∴∠DAC=∠ACB=90°.
不一定成立的是( C )
A.AB∥CD
B.AC=BD
C.AC⊥BD
D.OA=OC
变式1
矩形具有而平行四边形不一定具有的性质是( C )
A.对角相等
B.对边相等
C.对角线相等
D.对角线互相平分
典例2
如图,在矩形ABCD中,E是CD边的中点.求证:AE=BE.
证明:∵四边形ABCD是矩形,
∴AD=BC,∠D=∠C=90°.
∴∠ABD= ∠ABC,∠ABE= ∠ABP.
∵∠ABC+∠ABP=180°,
∴∠ABD+∠ABE= ×180°=90°,
即∠DBE=90°.
∵AE⊥BE,AD⊥BD,
∴∠E=∠D=90°.
∴四边形AEBD是矩形.
1.如图,四边形ABCD的对角线AC与BD相交于点O,下列条件中,能
北师版九年级数学上册第1章2矩形的性质与判定

称
性 是中心对称图形,对称中心是对角线
的交点
矩形的任意一条对角线都把矩形分成两个全等的直角三角形,
如Rt △ ADB ≌Rt△CBD,Rt△ ABC ≌Rt △ CDA.
2.矩形的两条对角线把矩形分成四个面积相等的等腰三角形,
并且相对的两个等腰三角形全等,如S△ AOB=S △ AOD=
解题秘方:紧扣矩形定义的“两个条件”进行证明.
解题通法:根据矩形的定义判定矩形的方法
知1-练
知1-练
证明:∵ O 为AB 的中点,∴ OB=OA. 又∵ OE=OD,∴四边形AEBD 是平行四边形. ∵ AB=AC,AD 是△ABC 的角平分线,∴ AD⊥ BC. ∴∠ ADB=90°. ∴四边形AEBD 是矩形.
AB∥CD,AD∥BC AB=CD,AD=BC
角
矩形的四个 角都是直角
∵四边形ABCD 是矩形, ∴∠ DAB= ∠ DCB= ∠ ADC=∠ ABC =90°
知2-讲
图形
性质
数学表达式
对 角 线
矩形的对角 ∵四边形ABCD 是矩形,
线相等
∴ AC=BD
对
是轴对称图形,它有两条对称轴,过 每组对边中点的直线是其对称轴
第一章 特殊平行四边形
2 矩形的性质与判定
1 课时讲解 矩形的定义
矩形的性质 直角三角形斜边上中线的性质
2 课时流程 矩形的判定
逐点 导讲练
课堂 小结
作业 提升
知识点 1 矩形的定义
定义
有一个角是 直角的平行 四边形叫做
矩形
图示
知1-讲
数学表达式 ∵在ABCD 中,∠ A=90°(或∠ B=90° 或∠ C=90°或∠ D=90°),∴ ABCD 是 矩形
1.2矩形的性质与判定(第一课时)(无答案)

(3)由上述关系你能得到什么结论?
【新知归纳3】
定理:直角三角形斜边上的中线等于斜边的一半.
【合作交流3】
你能写出“直角三角形斜边上的中线等于斜边的一半”的逆命题吗?
※典型范例※
例1.如图,矩形ABCD的两条对角线相交于点O,∠AOD=120°,AB=2.5cm,求矩形对角线的长.
【巩固练习】
1. 矩形两条对角线夹角为60°,较短一边长_________,较长一边长为__________, 则此矩形对角线长为________
第1题 第4题 第5题 第7题
2.矩形具有一般平行四边形不具有的性质是( )
A.对边相互平行 B.对角线相等
C.对角线相互平分 D.对角相等
3.如果矩形的两条对角线所成的钝角是120°,那么对角线与矩形短边的长度之比为( )
【能力提升题】
1.如图,矩形 中, 为 中点,过点 的直线分别与 、 交于点 、 ,连结 交 于点 ,连结 、 ,若 , ,则下列结论;① 垂直平分 ;② ③ ;④ ,其中正确结论的个数是( ).
A. 个 B. 个 C. 个D. 个
2.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点 上.若AB=6,BC=9,则BF的长为( )
2.已知△ABC是直角三角形,∠ABC=90°,BD是斜边AC上的中线.若BD=3 cm,则AC=________cm.
【新知探究1】
【新知归纳1】
矩形的定义:
有一个内角是________的平行四边形叫矩形。
【合作交流1】
矩形是特殊的平行四边形,它具有一般平行四边形的所有性质,你能列举一些这样的性质吗?
6.直角三角形斜边上的中线等于斜边的________.
2_矩形的性质与判定_第1课时_教案1

第一章特别平行四边形2.矩形的性质与判断(一)一、学生知识状况剖析学生的知识技术基础:矩形的性质一课,是在学生掌握了三角形全等的证明、平行四边形的性质和判断,菱形的性质和判断以及具备了基本的推理能力的基础上安排的,是学习正方形的基础,学完本节课后,学生应掌握矩形的性质,会应用性质进行推理解题。
学生的活动经验基础:本节是九年级的第一章第二节的内容,这个年纪段的学生已经具备自主研究和合作学习的能力,他们喜爱着手,喜爱思虑一些有挑战性的问题,喜爱向他人展现自己的成就。
部分学生对学习数学有较强的兴趣,拥有必定的研究数学识题的能力和数学活动的经验,逻辑推理能力较强。
但大多数学生要把解题的整个过程表述完好、清楚比较困难。
二、教课任务剖析《矩形的性质与判断》一课属于初中平面几何要点知识。
本节是在学习了平行四边形的性质与判断以及菱形的基础上,在掌握了证明平行四边形有关内容及特别平行四边形的一般研究方法以后学习的,它既是平行四边形的延长,又为后边正方形的学习供给知识、方法的支持,为进一步研究其余图形确立基础。
依照新课标要求,《矩形的性质》不可以只逗留在知识教课上,而是要把经历研究图形的基天性质的过程,发展学生的基本的推理技术放在首要地点。
矩形是的平行四边形中的一种特别图形,在生活中有着宽泛的应用,所以课本好多地方以图片形式体现了矩形的“原型”,旨在唤起学生的生活经验,促使数学学习。
所以本节课的教课目的是:1.知识与技术 :(1)掌握矩形的的定义,理解矩形与平行四边形的关系。
(2)理解并掌握矩形的性质定理 ; 会用矩形的性质定理进行推导证明 ;(3)会初步运用矩形的定义、性质来解决有关问题,进一步培育学生的剖析能力.2.过程与方法:(1)经历研究矩形的看法和性质的过程,发展学生合情推理的意识;(2)经过灵巧运用矩形的性质解决有关问题,掌握几何思想方法,并浸透运动联系、从量变到质变的看法.3.感情态度与价值观:(1)在察看、丈量、猜想、归纳、推理的过程中,体验数学活动充满研究性和创建性,感觉证明的必需性,培育谨慎的推理能力,领会逻辑推理的思想价值。
2.矩形的性质与判定第1课时矩形的性质PPT课件(北师大版)

第二招 4.如图,在矩形ABCD中,对角线 相交于点O,且∠AOB=50°,则 ∠ADB= 25 °.
5.如图,在Rt△ABC中,∠ACB= 90°,CD⊥AB,AC=6,BC=8, 则CD= 4.8 .
第1课时 矩形的性质
轻松过招
第三招 6.如图,在矩形ABCD中,点E、F 在BC上,连接AE,DF,BF=CE. 求证:AE=DF.
第1课时 矩形的性质
新知导航
3.如图,在Rt△ABC中,∠ACB=90°,CD=5,CD 是AB边上的中线,则AB的长是 10 .
第1课时 矩形的性质
轻松过招
第一招
1.矩形具有而一般平行四边形不具有的性质是
(C)
A.对角线互相平分
B.邻角互补
C.对角线相等
D.对角相等
2.(202X·无锡)下列结论中,矩形具有而菱形不
一定具有的性质是( C )
A.内角和为360°
B.对角线互相平分
C.对角线相等
D.对角线互相垂直
第1课时 矩形的性质
轻松过招
3.如图,在矩形ABCD中,对角线AC,BD相交于点
O,∠ACB=30°,则∠AOB的大小为( B )
A.30°
B.60°
C.90°
D.120°
第1课时 矩形的性质
轻松过招
60 .
第1课时 矩形的性质
新知导航
知识点2:对角线相等 【例2】如图,矩形ABCD两对角线交于点O, ∠COD=120°,AC=8.求:AD、AB的长及矩形 ABCD的面积. 解:∵∠COD=120°, ∴∠DCA=30°∴在Rt△ADC中 ∵AC=8,∴AD=4,CD=4 3 , ∴AB=CD=4 3 . S矩形ABCD=AD·AB=4×4 3 =16 3
1.2 矩形的性质与判定1
1.2 矩形的性质与判定(1)
学习目标
1.能够证明与矩形有关的性质定理. 2.能够证明“直角三角形斜边上的中线等于斜边的一半”.Fra bibliotek自学指导一
1.自学内容:第11—12页议一议前的部分. 2.自学时间:5分钟. 3.自学要求: (1)能复述矩形的定义. (2)能复述矩形的性质定理及定理的证明过程. (3)完成助学知识梳理1、2、3、4
自学指导二
1.自学内容:第12--13页随堂练习上面的部分 2.自学时间:3分钟 3.自学要求: (1)能复述定理的推论. (2)能独立完成例1的解题过程. (3)能尝试应用其它方法完成例1.
自学指导二
4.自学检测: 如图,在矩形ABCD中,两条对角线相交于点 O,∠AOD=120°,AB=2.5,求这个矩形对 角线的长.
自学指导二
4.自学检测:
达标测试
达标测试
1.2矩形的性质与判定 第1课时(教案)
北师大版九年级上第一章《特殊平行四边形》《矩形的性质与判定》(第1课时)教案课题矩形的性质单元第一章学科数学年级九年级学习目标1.知识与技能了解矩形的有关概念,理解并掌握矩形的有关性质.2.过程与方法经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.3.情感态度和价值观培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值.重点掌握矩形的性质,并学会应用.难点理解矩形的特殊性.教学过程教学环节教师活动学生活动设计意图导入新课教师说:“同学们,下面几幅图片中都含有一些平行四边形。
观察这些平行四边形,你能发现它们有什么样的共同特征?”引导学生发现:是平行四边形,且它们的四个角都相等,且都等于90度. 学生看黑板,观察图片,思考老师提出的问题观察图片,思考相关问题,能够给学生清晰的思考路径讲授新课矩形的定义:有一个角是直角的平行四边形叫做矩形。
矩形是特殊的平行四边形教师:同学们,开动脑筋,想一想,矩形是特殊的平行四边形,它具有一般平行四边形的所有性质。
你能列举一些这样的性质吗?点名学生回答教师问:你认为矩形还具有哪些特殊的性质?与同伴交流。
学生讨论,点名学生回答。
教师:同学们,拿出一张矩形纸片出来,我们来动学生听讲,并思考老师问的问题小组讨论矩形的性质,并举手回答老师问题学生动手跟着老师指导的思增强学生观察,总结能力,小组讨论能力学生自己观察得出结论,能够让学生更好地掌握新知识增强同学间的互动,交流,动手手试试看。
用矩形纸片折一折,回答下列问题:1)矩形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?教师点名学生回答问题。
得出结论:矩形是轴对称图形,有两条对称轴,分别是两条对边垂直平分线,两条对称轴互相垂直. 也是中心对称图形,对称中心是对角线的交点。
教师:同学们完成任务的能力很好哦,接下来,老师要提高问题难度了,谁来帮老师和同学们从边、角、对角线方面,观察或度量猜想矩形的特殊性质. ①边:对边平行且相等(与平行四边形相同),邻边互相垂直; ②角:四个角是直角; ③对角线:相等且互相平分.教师带领学生验证猜想结论 验证结论:已知:如图,在矩形ABCD 中,∠A=90°. 求证:(1)∠A=∠B=∠C=∠D=90°路,完成任务。
2 矩形的性质与判定 第1课时2014最新北师大版
a
(1)随着∠a的变化,两条对角线的长度怎样变化的? 解析:随着∠a的变化,一条对角线在变长,一条在变短. (2)当∠a是锐角时,两条对角线的长度有什么关系? 当∠a是钝角时呢? 解析:当∠a是锐角时,过∠a的顶点的那条对角线比另一条 长;当∠a是钝角时,过∠a的顶点的那条对角线比另一条短. (3)当∠a是直角时,平行四边形变成矩形,此时两条对角
1 1 BO BD AC. 2 2
A
O
D
∴
B
C
1、矩形具有而平行四边形不具有的性质是( A ) A.对角线相等 C.对角相等 B.对边相等 D.对角线互相平分
2.(淄博·中考)如图所示,把一长方形纸片沿MN折叠后,
点D,C分别落在D′,C′的位置.若∠AMD′=36°,则∠NFD′
等于( B ) A.144° C.108°
你是否了解这种几何图形的性质呢? 这节课我们一起来学习一下吧!
思考: 1.矩形是平行四边形吗? 2.平行四边形经过怎样的变化就成为了矩形呢?
定义: 有一个内角是直角的平行四边形叫做矩形.
A O B C
∟
D
在一个平行四边形活动框架上,用两根橡皮筋分别 套在相对的两个顶点上,拉动一对不相邻的顶点,改变 平行四边形的形状.
A O D
B
C
E
解析: AC=CE. ∵四边形ABCD是矩形, ∴AC=BD, ∴AB∥CD,又CE∥DB,
A
D
O
B
C
∴四边形BECD是平行四边形, ∴BD=CE, ∴AC=CE.
E
1.矩形的四个角都是 直角. 2.矩形的对角线 相等. 3.直角三角形斜边上的中线等于 斜边的一半.
数学中的一些美丽定理具有这样的特性: 它 们极易从事实中归纳出来, 但证明却隐藏得 极深. 数学是科学之王. ——高斯
矩形的性质与判定
∴四边形DEMN是平行四边形.
∵BD=2AB,BD=2BO,∴AB=OB.又∵M是AO的中点,∴BM⊥AO. ∴∠AMB=∠EMN=90°. ∴四边形DEMN是矩形. ∵AB=5,DN=BM=EM=4,∴AM=3=MO. ∴MN=6. ∴矩形DEMN的面积为6×4=24.
理由如下: ∵△ABC 是等腰三角形且 AD⊥BC,
A
E N
∴BD = CD,
F
又∵ADCE是矩形,∴AE = CD,AE∥CD,
∴BD=AE, BD∥AE,
B
D
C
∴四边形 ABDE 是平行四边形.
探究新知
A 直角三角形斜边上的中
线等于斜边的一半。 B
符号语言:
∵ Rt△ABC,O是AC的中点
∴
BO=
(2)当AB=DC时,求证:AEFD是矩形.
B (2)证明:∵四边形ABED和四边形AFCD都是平行四边形,
E
F
C
∴DE=AB,AF=DC.
又AB=DC,
∴DE=AF.
又∵四边形AEFD是平行四边形,
A
D
四边形 判定 条件
平行四边形 有一个角是直角
对角线相等
B
O
C
判定菱形的常见思路:
四条边都相等
四边形 判定 平行四边形 一组邻边相等
条件
对角线互相垂直
菱形
随堂练习
1. 已知:如图,四边形 ABCD 由两个全等的等边三角形 ABD 和 CBD 组 成,M,N 分别是 BC 和 AD 的中点. 求证:四边形BMDN是矩形.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 矩形的性质与判定
第1课时 矩形的性质
1.掌握矩形的定义,理解矩形与平行四边形的关系.
2.理解并掌握矩形的性质定理;会用矩形的性质定理进行推导证明.(重点)
3.会初步运用矩形的定义、性质来解决有关问题,进一步培养学生的分析能力.(难点)
阅读教材P11~13,完成下列问题:
(一)知识探究
1.有______________的平行四边形叫做矩形.
2.生活中你见到过的矩形有________、________.
3.矩形是________的平行四边形,具有平行四边形的________性质.
4.矩形的________都是直角.
5.矩形的对角线________.
6.直角三角形斜边上的中线等于斜边的________.
(二)自学反馈
1.矩形是轴对称图形吗?如果是的话,它有几条对称轴?
2.请用所学的知识诊断下面的语句,若正确请在括号里打“√”,若“有病”请开药方:
(1)矩形是特殊的平行四边形,特殊之处就是有一个角是直角.( )
(2)平行四边形是矩形.( )
(3)平行四边形具有的性质(如平行四边形的对边平行且相等;平行四边形的对角相等;平行四边形的对角线互相平分)矩形也具有.( )
3.已知△ABC 是直角三角形,∠ABC =90°,BD 是斜边AC 上的中线.若BD =3 cm ,则AC =________cm.
活动1 小组讨论
例 如图,在矩形ABCD 中,两条对角线相交于点O ,∠AOD =120°,AB =2.5 cm ,求矩形对角线的长.
证明:∵四边形ABCD 是矩形,
∴AC =BD(矩形的对角线相等),OA =OC =12AC ,OB =OD =12
BD. ∴OA =OD.
∵∠AOD =120°,∴∠ODA =∠OAD =12
×(180°-120°)=30°. 又∵∠DAB =90°(矩形的四个角都是直角),
∴BD =2AB =2×2.5=5.
利用矩形的对角线相等及直角三角形的性质是解决这类问题的关键.
活动2 跟踪训练
1.矩形具有一般平行四边形不具有的性质是( )
A .对边相互平行
B .对角线相等
C .对角线相互平分
D .对角相等
2.如果矩形的两条对角线所成的钝角是120°,那么对角线与矩形短边的长度之比为( )
A.3∶2 B.2∶1 C.1.5∶1 D.1∶1
3.如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是( )
A.8 B.6 C.4 D.2
4.如图,在Rt△ABC中,∠ACB=90°,D、E为AB、AC的中点.则下列结论中错误的是( ) A.CD=AD B.∠B=∠BCD C.∠AED=90° D.AC=2DE
5.在直角三角形中,两条直角边的长分别为12和5,则斜边上的中线长为________.
6.矩形的一条对角线长10 cm,且两条对角线的一个夹角为60°,则矩形的宽为________cm.
7.如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.求证:DF=DC.
活动3 课堂小结
1.有一个角是直角的平行四边形叫做矩形.
2.矩形的四个角都是直角,矩形的对角线相等.
3.直角三角形斜边上的中线等于斜边的一半.。