页岩气评价

合集下载

页岩气评价标准

页岩气评价标准

页岩气评价标准据张金川教授页岩气有经济价值的开发必备条件:(1)岩石组成一般为30-50%的粘土矿物、15-25%的粉砂质(石英颗粒);(2)泥地比不小于50%;(3)有机碳含量一般小于30%;(4)TOC:底限0.3%,一般不小于2%;(5)Ro:0.4%-2.2%,高可至4.0%;(6)净厚度:不小于6m;一般在30m以上。

(7)岩石物性:Ф≤10%,Ф含气= 1-5%,K取决于裂缝发育程度;(8)吸附气含量:吸附态20% -90%之间,一般50%±;(9)含气量:1-10m3/t;(10)经济开发深度:不大于3800(4000)m页岩气成藏并具有工业价值的基本条件是:气藏埋藏较浅且泥页岩厚度较大, 母质丰富且生气强度较大以及裂缝发育等。

据侯读杰教授TOC:一般>4%,有机碳含量大于3%;( 据Burnaman (2009) TOC一般不小于2% ) Ro:一般在1.1%以上,Ro为1.1%~3.0%厚度:高有机质丰度泥岩(Corg>3.0%)连续厚度15m以上,如有机质丰度低,则须提高其厚度值;矿物含量:石英、方解石、长石等矿物含量大于25%岩石物性:Ф≤10%,Ф含气= 1-5%,K取决于裂缝发育程度;地层含气:广泛的饱含气性,吸附态一般>40%;深度:<4000MTOC含量、富有机质页岩厚度与有机质成熟度被认为是决定页岩气区带经济可行性的关键因素(Rokosh et al,2009)。

聂海宽内部控制因素:TOC:具有工业价值的页岩气藏TOC>1% ,随着开采技术的进步,有机碳下限值可能会降低至0.3%;(Schmoker 认为产气页岩的有机碳含量(平均)下限值大约为2%;Bowker 则认为获得一个有经济价值的勘探目标有机碳下限值为2. 5% ~ 3%。

)成熟度:变化范围较大,一般>0.4%厚 度:具有良好页岩气开发商业价值的页岩厚度下限为9 m;据李延钧教授等页岩埋深:小于3000m,深于3000m 作为资源潜力区页岩单层厚度:大于30 m有机碳含量(TOC):2.0% 以上硅质含量:>35%,易于形成微裂缝;储层物性:K≥ 10-3mD、Ф≥4%有机质成熟度(Ro):1.4%-3.0%李教授根据以上六项页岩气评价指标提出了页岩气分级评价标准如下图所示:据Rimrock Energy, 2008 页岩气优选标准1ft=0.3048M How we look for in a gas shale? (Rimrock Energy, 2008)Burnaman(2009)认为:对于页岩气的形成而言,拥有高TOC的页岩的连续厚度至少为45m(150ft)。

页岩气地质综合评价和目标

页岩气地质综合评价和目标

页岩气地质综合评价和目标页岩气地质综合评价与目标优选的重要性及方法页岩气作为一种清洁、高效的能源资源,日益受到全球。

在页岩气开发过程中,地质综合评价和目标优选是至关重要的环节。

本文将概述页岩气地质综合评价和目标优选的方法,以及它们在页岩气开发中的重要性。

页岩气地质综合评价主要包括对地质条件、气藏特征、含气量、压力、温度等因素的评价。

这些因素之间相互关联、相互影响,需要进行全面综合的分析。

地质条件评价主要包括对盆地、地层、构造等条件的分析,以及对沉积环境、岩石矿物组分等的研究。

这些因素对页岩气的生成、储集和封存具有重要影响。

气藏特征评价主要页岩储层的物性参数、微观孔隙结构、吸附和解吸性能等。

这些特征与页岩气的开采方式和经济性密切相关。

含气量评价是页岩气地质综合评价的核心,包括对储层含气量、单位面积含气量、含气饱和度等的计算与评估。

含气量直接决定了页岩气的开发价值和经济效益。

压力和温度评价在页岩气地质综合评价中也具有重要意义。

压力评价可以帮助了解储层的压力分布和流体性质,为开发方案的设计提供依据。

温度评价则有助于判断储层的成熟度和生气史,为资源量的估算提供参考。

目标优选是在全面综合评价的基础上,根据一定的原则和方法,筛选出具有开发潜力和经济效益的页岩气藏作为开发目标。

目标优选主要包括以下步骤:建立评价体系:根据页岩气地质综合评价的要素,建立一套评价体系,明确各要素的评价标准和权重。

数据收集与分析:收集相关数据,包括地质、地球物理、钻探等数据,进行分析和处理,为评价提供依据。

模型构建:运用适当的数学模型和计算机技术,如数值模拟、人工智能等,对页岩气藏的开发潜力进行模拟预测。

综合评价与优选:根据评价体系和模型预测结果,对各目标进行综合评价,筛选出具有开发潜力和经济效益的目标。

方案制定:针对优选出的目标,制定具体的开发方案和技术路线,为后续的开发工作提供指导。

通过页岩气地质综合评价和目标优选,我们可以得到一系列结果。

页岩气评价标准

页岩气评价标准

页岩气评价标准据张金川教授页岩气有经济价值的开发必备条件:(1)岩石组成一般为30-50%的粘土矿物、15-25%的粉砂质(石英颗粒);(2)泥地比不小于50%;(3)有机碳含量一般小于30%;(4)TOC:底限0.3%,一般不小于2%;(5)Ro:0.4%-2.2%,高可至4.0%;(6)净厚度:不小于6m;一般在30m以上。

(7)岩石物性:Ф≤10%,Ф含气=1-5%,K取决于裂缝发育程度;(8)吸附气含量:吸附态20%-90%之间,一般50%±;(9)含气量:1-10m3/t;(10)经济开发深度:不大于3800(4000)m页岩气成藏并具有工业价值的基本条件是:气藏埋藏较浅且泥页岩厚度较大,母质丰富且生气强度较大以及裂缝发育等。

据侯读杰教授TOC:一般>4%,有机碳含量大于3%;(据Burnaman(2009)TOC一般不小于2%)Ro:一般在1.1%以上,Ro为1.1%~3.0%厚度:高有机质丰度泥岩(Corg>3.0%)连续厚度15m以上,如有机质丰度低,则须提高其厚度值;矿物含量:石英、方解石、长石等矿物含量大于25%岩石物性:Ф≤10%,Ф含气=1-5%,K取决于裂缝发育程度;地层含气:广泛的饱含气性,吸附态一般>40%;深度:<4000MTOC含量、富有机质页岩厚度与有机质成熟度被认为是决定页岩气区带经济可行性的关键因素(Rokosh et al,2009)。

聂海宽内部控制因素:TOC:具有工业价值的页岩气藏TOC>1%,随着开采技术的进步,有机碳下限值可能会降低至0.3%;(Schmoker认为产气页岩的有机碳含量(平均)下限值大约为2%;Bowker则认为获得一个有经济价值的勘探目标有机碳下限值为2.5%~3%。

)成熟度:变化范围较大,一般>0.4%厚度:具有良好页岩气开发商业价值的页岩厚度下限为9m;据李延钧教授等页岩埋深:小于3000m,深于3000m作为资源潜力区页岩单层厚度:大于30m有机碳含量(TOC):2.0%以上硅质含量:>35%,易于形成微裂缝;储层物性:K≥10-3mD、Ф≥4%有机质成熟度(Ro):1.4%-3.0%李教授根据以上六项页岩气评价指标提出了页岩气分级评价标准如下图所示:据Rimrock Energy,2008页岩气优选标准1ft=0.3048M= How we look for in a gas shale?(Rimrock Energy,2008)Burnaman(2009)认为:对于页岩气的形成而言,拥有高TOC的页岩的连续厚度至少为45m(150ft)。

页岩气地质特征及选区评价

页岩气地质特征及选区评价

页岩气地质特征及选区评价页岩气是一种以页岩为主要储层,通过先进的水平钻井和压裂技术开发出来的天然气,其地质特征主要包括储层、控矿构造和含气性等方面。

为了更好地评价页岩气的开发潜力,需要对其选区进行全面综合评价。

储层特征是评价一块页岩气选区开发潜力的重要指标之一,一般分为物性、成分和孔隙结构三个方面。

物性指储层的密度、孔隙度、渗透率、压缩系数等物理特性;成分指储层的有机质含量、有机质类型、排泄类型等化学特性;孔隙结构指储层孔隙的大小、形态和连通性等。

页岩气储层的物性特征通常表现为低渗透率、低孔隙度、低渗透性和高岩石压缩系数等,需要通过水平井和压裂技术进行有效地刺激和提高产能。

在早期选区评价中,通过钻井获取的储层岩心、测井资料和岩相描述等信息,可以较为全面地识别储层特征,但随着技术的不断进步,地震勘探、微地震监测和地下水力学等新技术也被应用于储层特征评价,提高了评价的可靠性。

控矿构造是指影响页岩气储层形成、聚集和保存的因素,主要包括构造、沉积环境和地质历史等方面。

选区评价中要全面分析控矿构造的特点,了解地质构造对页岩气聚集和分布的影响,进而确定开发策略和方案。

页岩气储层的聚集规律一般与构造沉降相对稳定、受构造变形较小、沉积相相对一致的地层区域有较好的相关性。

因此,通过对构造形态、沉积相和断裂发育等方面的综合分析,可以确定最有利于开发的区域。

含气性是指含气岩石在压力释放时所释放的气体,也是评价选区开发潜力的重要指标之一。

含气性受储层岩石物性和构造背景的影响较大,具体表现为含气压力、含气饱和度和气体组成等方面。

页岩气开发中,矿区内不同井的含气性差异较大,需要通过大量的数据采集和分析,针对不同地层与井段开展智能化优化生产。

综上所述,页岩气地质特征及选区评价涉及多个学科领域的知识,需要开展全面而系统的研究和应用,才能更好地确立合适的开发方案和科学的管理策略。

页岩气储层评价(斯伦贝谢公司)

页岩气储层评价(斯伦贝谢公司)

页岩气储层评价斯伦贝谢DCS 2010年5月汇报提纲页岩气藏特征 页岩气储层评价技术 实例2 5/18/2010页岩气藏普遍特点有机质含量丰富 烃源岩 含吸附和游离状态气体 超低渗 (~100 nD, 0.0001 mD) 低孔 (~ 5%) 含气量大 采收率变化大 生产寿命长( 30-50 年). (Barnett页岩气田开采寿命可达80~100年) 游离状态天然气的含量变化于20%-85%之间 增产措施:水平井、多级压裂页岩气藏普遍特点有机含量丰富的页岩 烃源岩 含吸附和游离状态气体 超低渗 (~100 nD, 0.0001 mD) 低孔 (~ 5%) 含气量大 采收率变化大 和单井产量低 生产寿命长( 30-50 年). (Barnett页岩气田开采寿命可达80~100年) 游离状态天然气的含量变化于20%-85%之间 增产措施:水平井、多级压裂采收率 (%) 全球常规气储量:6,300 tcf/178.4万亿方 全球页岩气储量:16,112tcf/456万亿方 中国页岩气储量:3528tcf/99.9万亿方 引:BP Statistical Review of World Energy, June 2008A O/NA L BA B L O/NAAntrim (Michigan) Barnett (Texas) Lewis (New Mexico) Ohio/New Albany页岩气藏普遍特点有机含量丰富的页岩 烃源岩 含吸附和游离状态气体 超低渗 (~100 nD, 0.0001 mD) 低孔 (~ 5%) 含气量大 采收率变化大 和单井产量低 生产寿命长( 30-50 年). (Barnett页岩气田开采寿命可达80~100年) 游离状态天然气的含量变化于20%-85%之间 增产措施:水平井、多级压裂页岩气藏岩性的特点狭义:页岩中的天然气 广义:致密细碎屑岩中所含有并可采出的 天然气致密砂岩和常规油气藏粘土质质和 粉砂 含 砂质Double_shale_interim_14_segment_001骨架组成增加 量的硅质页岩油气藏钙质干酪根特性干酪根特征• • • • • • •吸附甲烷气能力强 不能溶解于水 不属于孔隙的一部分 低密度 (1.1 to 1.4 g/cm3) 通常较高的自然伽玛值 低的光电吸收指数(0.28) 较高的中子孔隙度 (30 to 60 pu)气体特征游离气—存储于孔隙中 吸附气—吸附于干酪根或微孔 隙表面• •有机质含量页岩气藏的有机碳含量最低 标准原则上应大于2.0 %。

页岩气评价指标与方法

页岩气评价指标与方法

一、页岩气评价指标
一、页岩气评价指标
页岩气评价指标主要包括地质指标、物理指标和化学指标。
一、页岩气评价指标
1、地质指标:主要包括页岩层厚度、有机质含量、有机质成熟度、岩石矿物 组成、裂缝发育情况等。这些指标主要用于评价页岩气资源的潜力,为后续的开 发工作提供依据。
一、页岩气评价指标
2、物理指标:主要包括孔隙度、渗透率、含气量、储层压力等。这些指标直 接关系到页岩气的开采难度和经济效益,是页岩气评价的关键指标之一。
四、未来展望
4、强化实验与现场应用研究:实验和现场应用研究是验证和优化评价指标与 方法的重要环节。未来研究将更加注重实验与现场数据的收集和分析,通过不断 优化现有评价体系和方法,提高其在实践中的应用效果和指导价值。
四、未来展望
5、加强国际合作与交流:页岩气资源在全球范围内的分布和应用具有广泛前 景,加强国际合作与交流可以促进信息共享、技术和经验传播,对于推动页岩气 评价指标与方法研究的深入发展具有积极意义。
二、页岩气评价方法
3、物理模拟方法:主要包括物理实验和模拟实验等。通过物理模拟实验,可 以深入了解页岩气的生成、运移和聚集规律,为页岩气评价提供更为可靠的依据。
二、页岩气评价方法
在选择评价方法时,需要考虑不同方法的适用范围和优缺点,结合实际进行 评价方法的选择和优化。
三、影响因素
三、影响因素
三、影响因素
3、工艺因素:主要包括钻井工程、地球物理勘探、实验室分析等工艺技术。 这些技术的精度和质量直接关系到页岩气评价的准确性和可靠性。
三、影响因素
为了提高页岩气评价的准确性和科学性,需要考虑多因素综合评价,将各种 因素进行全面分析和比较,得出更为可靠的评价结果。
四、未来展望

页岩气资源储量计算与评价技术要求(试行)(意见征求稿)

页岩气资源储量计算与评价技术要求(试行)(意见征求稿)

附件页岩气资源/储量计算与评价技术要求(试行)(征求意见稿)2012年7月目次前言1 范围2 规范性引用标准3 总则4 术语和定义5 页岩气地质储量计算6 地质储量计算参数确定7 未发现原地资源量估算8 技术可采储量计算9 经济评价和经济可采储量计算10 储量综合评价附录A(规范性附录)页岩气储量计算参数名称、符号、单位及取值有效位数的规定附录B(规范性附录)页岩气探明地质储量计算关于储层的基本井控要求附录C(规范性附录)页岩气田储量规模和品位等分类页岩气资源/储量计算与评价技术要求(试行)1 范围本要求规定了页岩气资源/储量分类分级及定义、储量计算方法、储量评价的技术要求。

本要求适用于地面钻井开发时的页岩气资源/储量计算,适用于页岩气的资源勘查、储量计算、开发设计及报告编写;可以作为页岩气矿业权转让、证券交易以及其他公益性和商业性矿业活动中储量评估的依据。

2 规范性引用文件下列标准中的条款通过本要求的引用而成为本要求的条款。

凡是注日期的引用标准,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本要求,然而,鼓励根据本要求达成协议的各方研究是否使用这些文件的最新版本。

凡是不注日期的引用标准,其最新版本适用于本要求。

GB/T 19492—2004石油天然气资源/储量分类D Z/T 0217—2005石油天然气储量计算规范D Z/T 0216—2002煤层气资源/储量规范SY/T 5386-2000石油探明储量计算细则(裂缝性油气藏部分)SY/T 6098-2000天然气可采储量计算方法GB/T 19559—2008 煤层气含量测定方法GB/T 13610—2003 《气体组分分析方法》SY/T 5895-93石油工业常用量和单位(勘探开发部分)3 总则3.1 页岩气资源/储量分类体系采用GB/T 19492—2004 《石油天然气资源/储量分类》分类体系。

3.2 从页岩气田发现直至气田废弃的各个勘探开发阶段,油气田的经营者,应根据勘探开发阶段,依据地质、工程资料的变化和技术经济条件的变化,分阶段适时进行储量计算、复算、核算和结算。

论述页岩气综合地质评价的主要内容与方法

论述页岩气综合地质评价的主要内容与方法

论述页岩气综合地质评价的主要内容与方法
页岩气综合地质评价的主要内容与方法涉及以下几个方面:
1.岩石地质学评价:主要包括页岩储层的岩性、岩石组分、孔隙结构、孔隙度、渗透率等特征的分析与评价。

常用方法包括岩石薄片观察、扫描电镜分析、X射线衍射等技术。

2.地球物理资料评价:包括测井、地震等地球物理资料的分析与解释,确定页岩储层的厚度、岩性、韵律、裂缝发育情况等。

常用方法有测井解释、地震地层解释、地震反演等。

3.储层物性评价:主要研究页岩储层的物性参数,包括比表面积、微观孔隙特征、气体吸附、气体解吸等。

常用方法有气体吸附实验、N2吸附测定、等温吸附实验等。

4.地质工程评价:与页岩气开发与生产相关的地质工程参数的评价,如渗透率、孔隙压力、水压裂缝性能等。

常用方法包括数值模拟、岩心脆性测试、渗流试验等。

5.资源量评估:评估页岩气地质储量量与可采程度,以及页岩气资源的潜力等。

常用方法有静态储量评估、动态储量评估等。

综合地质评价通常需要借助多个学科知识和技术手段,包括岩石学、地球物理学、地球化学、地质工程等,通过野外调查、实验分析、数据处理和解释等多种方法来研究页岩储层特征、物性参数以及资源量等,以为页岩气开发和生产提供科学依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

页岩气1 世界页岩气发展现状1.1 世界页岩气资源据不完全统计, 全球页岩气资源量为456.24×1012m3, 超过全球常规天然气资源量( 436.1×1012m3 ), 主要分布在北美、中亚、中国、拉美、中东、北非和前苏联(表1)。

美国是目前探明页岩气资源最多的国家, 现已探明近30个页岩气盆地, 其中7 个高产盆地的页岩气资源量为80.84 ×1012m3, 可采储量为18.38 ×1012m3。

中国页岩气资源比较丰富, 经初步估算, 主要盆地和地区的页岩气资源量约为15×1012~ 30×1012m3,中值23.5×1012m3。

1.2 页岩气勘探开发现状北美是全球目前唯一实现页岩气商业化开采的地区。

美国页岩气开采最早可追溯到1821年,但当时由于产量较小没有得到重视, 直到20世纪80年代中期, 由于水平钻完井技术和水力压裂技术的进步, 使得页岩气的生产进入大规模发展阶段。

截至2008年底, 美国已完钻页岩气井约42 000口,产量首次超过煤层气, 达到507×108m3,占美国天然气总产量的10% , 预计2015年页岩气产量可达2 800 ×108m3。

产能较高的有Barnett、Fayetteville、Haynesville、Marcellus、Woodford、Antrmi和New A lbany7套页岩, 分别位于FortWorth盆地、Arkoma 盆地、North Louisiana盆地、美国东北部地区、俄克拉荷马州中南部、Michigan 盆地和Illinois盆地。

加拿大紧随美国之后开展了页岩气方面的勘探和开发试验。

据加拿大非常规天然气协会( GSUG)初步估计, 加拿大页岩气地质储量超过40.7×1012m3, 主要分布于西南部的British Columbia、Alberta 和Saskatchewan 地区, 东南部Quebec、Ontario等地区也有少量分布。

GSUG认为, 西部(包括British Columbia 北部Bowse盆地) Colorado页岩段、侏罗系及古生界页岩和东南部的泥盆系页岩具有开发潜力。

近年来在加拿大东部Quebec地区的页岩气勘探取得重大突破,研究表明, 人们所熟知的Utica页岩资源丰度高达10.17 × 108m3, 可以和美国著名的Barnett页岩相媲美, 除此以外, 还在Utica页岩下面发现了一套厚达1500~ 2 000 m的Lorraine硅质页岩, 这套页岩的资源丰度可能为20.82×108m3,是Utica页岩的2倍多, 显示了该区良好的页岩气勘探前景。

据不完全统计, 加拿大现有页岩气钻井60余口, 年产量约31× 108m3 /a。

北美地区页岩气勘探的巨大成功, 引起了世界各国的广泛关注, 德国、匈牙利、波兰、瑞士、英国、澳大利亚以及印度等国也纷纷开展页岩气的勘探与开发试验。

中国自2004年起, 由国土资源部油气资源战略研究中心与中国地质大学(北京)合作开展了页岩气资源的研究工作。

通过对比湖南、四川等8省市成藏条件后, 认为重庆市渝南和东南地区广泛分布下寒武统、下志留统、中二叠统3套地层, 许多地区有形成大规模页岩气的可能。

自2005年起, 中国石油( CNPC )开展了页岩气方面的研究工作, 一是通过对以往资料的分析, 证实了页岩气确实在国内广泛存在, 二是加强与国外的合作。

如2007年10月中国石油天然气集团公司与美国新田石油公司签署了/ 威远地区页岩气联合研究0协议, 2009年11月与壳牌公司签订/四川盆地富顺) 永川区块页岩气联合评价协议0。

值得一提的是, 2008年11月由中国石油勘探开发研究院设计实施的中国首口页岩气取心浅井在四川宜宾顺利完钻, 设计200m 的井深取心154 m, 并进行了大量的分析测试。

中国石化近年来也已设立页岩气专题研究组,并在全国范围内开展了页岩气藏潜力评价及有利地区优选工作。

中国海油( CNOOC )也于2010年成立了专门的页岩气专题研究组, 主要从事南方地区页岩气藏潜力评价和区带优选工作。

2009年8月17日, 中国首个页岩气开发项目在重庆綦江启动, 标志着中国正式开始了新型能源页岩气的勘探与开发。

2009年8月27日,中国研究人员在重庆市境内的北部县区(秦岭褶皱带南端)肉眼观察并发现了页岩气的直接存在。

2 页岩气特点页岩气与深盆气、煤层气一样都属于“持续式”聚集的非常规天然气。

所谓页岩气( Shale Gas) 系指富含有机质、成熟的暗色泥页岩或高碳泥页岩中由于有机质吸附作用或岩石中存在着裂缝和基质孔隙, 使之储集和保存了一定具商业价值的生物成因和热解成因天然气。

页岩气系统具有典型的自生自储特性。

2. 1 页岩产气机理与赋存形式天然气在页岩中的生成、吸附与溶解逃离, 具有与煤层气大致相同的机理过程。

如图2所示, 通过生物作用或热成熟作用所产生的天然气首先满足有机质和岩石颗粒表面吸附的需要, 此时所形成的页岩气主要以吸附状态赋存于页岩内部。

当吸附气量与溶解的逃逸气量达到饱和时, 富裕的页岩气解吸进入基质孔隙。

随着天然气的大量生成, 页岩内压力升高, 出现造隙及排出, 游离状天然气进入页岩裂缝中并聚积。

图2裂缝页岩气生成模式( 据李明潮 ,1996, 有修改) 页岩岩性多为沥青质或富含有机质的暗色、黑色泥页岩和高碳泥页岩类, 岩石组成一般包括30%~ 50%的粘土矿物、15% ~ 25%的粉砂质( 石英颗粒) 和4%~ 30%的有机质。

正是由于页岩具有这样的特性, 所以页岩中的天然气具有多种存在方式,主要包括了2 种形式, 即游离态( 大量存在于页岩孔隙和裂缝中) 和吸附态( 大量存在于粘土矿物、有机质、干酪根颗粒及孔隙表面上) , 其中吸附态存在的天然气占天然气赋存总量的20% ( Barnett Shale) 到85%( Lew is Shale)。

2. 2 页岩气成因前人对美国5 大页岩气盆地页岩气的成因研究表明, 页岩气可以通过以下2 种途径演变而来。

第1 种途径: 热裂解成因气。

页岩中热成因气的形成有3 个途径( 图3) :①干酪根分解成气体和沥青; ②沥青分解成油和气体( 步骤1 和步骤2 为初次裂解) ; ③油分解成气体、高含碳量的焦炭或者沥青残余物( 二次裂解) 。

最后一个步骤主要取决于系统中油的残余量和储层的吸附作用。

美国ForWorth 盆地的Barnett 页岩气就是通过来源于干酪根热降解和残余油的二次裂解 , 主要以残余油的二次裂解为主, 正因为如此, 使得Barnett 页岩气具有较大资源潜力。

第2 种途径: 生物成因气。

一般指页岩在成岩的生物化学阶段直接由细菌降解而成的气体, 也有气藏经后期改造而成的生物气。

如美国密歇根盆地的Antrim 页岩气是干酪根成熟过程中所产生的热降解气和产甲烷菌新陈代谢活动中所产生的生物成因气, 以后者为主。

其原因可能是发育良好的裂缝系统不仅使天然气和携带大量细菌的原始地层水进入Antrim 页岩内, 而且来自上覆更新统冰川漂移物中含水层的大气降水也同时侵入, 有利于细菌甲烷的形成。

图3 Barnet t 页岩热成因气形成途径示意2. 3 页岩气生产一般来说, 页岩气井产量少, 压力低。

页岩气井具有很长的生产寿命, 主要有2 种原因:①解吸气。

这种气体能在压力下降时释放出来; ②天然气主要来自其他层段, 这些层段靠页岩中垂直裂缝网络与主要层段相连通。

页岩气井的产气量一开始( 前5a) 较高, 主要是由于井眼瞬间连通的裂缝网络内游离气体和连通孔隙内的气体容易进入井眼造成的。

但随之缓慢减至一低水平, 并维持10~ 30 a 不变,所产气主要是来自页岩基质扩散和解析出的气体。

3 页岩气形成条件分析3. 1 沉积环境较快的沉积条件和封闭性较好的还原环境是黑色页岩形成的重要条件。

沉积速率较快可以使得富含有机质页岩在被氧化破坏之前能够大量沉积下来, 而水体缺氧可以抑制微生物的活动性, 减小其对有机质的破坏作用。

如For t Wo rth 盆地Barnett 组富有机质黑色页岩沉积于深水( 120~ 215 m) 前陆盆地, 具有低于风暴浪基面和低氧带( OMZ) 的缺氧) 厌氧特征, 与开放海沟通有限。

3. 2 有效厚度众所周知, 广泛分布的泥页岩是形成页岩气的重要条件。

同时, 沉积有效厚度是保证足够的有机质及充足的储集空间的前提条件, 页岩的厚度越大,页岩的封盖能力越强, 有利于气体的保存, 从而有利于页岩气成藏。

美国5 大页岩气勘探开采区的页岩净厚度为9.14~ 91. 44 m, 其中产气量较高的Barnet t 页岩和Lew is 页岩的平均厚度在30. 48 m以上。

3. 3 总有机碳含量( T OC)总有机碳含量是烃源岩丰度评价的重要指标,也是衡量生烃强度和生烃量的重要参数。

有机碳含量随岩性变化而变化, 对于富含粘土的泥页岩来说,由于吸附量很大, 有机碳含量最高, 因此, 泥页岩作为潜力源岩的有机含量下限值就愈高, 而当烃源岩的有机质类型愈好, 热演化程度高时, 相应的有机碳含量下限值就低。

对泥质油源岩中有机碳含量的下限标准, 目前国内外的看法基本一致, 为0. 4% ~0. 6% , 而泥质气源岩有机碳含量的下限标准则有所不同。

大量研究结果表明, 气态烃分子小, 在水中的溶解能力强, 易于运移, 气源岩有机碳含量的下限标准要比油源岩低得多。

美国5 大页岩气系统页岩总有机碳含量较高, 分布范围大( 0. 5% ~ 25%) , 可分为2 类, Ant rim 页岩和New A lbany 页岩的T OC含量较高, 一般分布于0. 3%~ 25% 之间; 而Ohio 页岩、Barnet t 页岩和Lew is 页岩的TOC 含量在0. 45%~ 4. 7% 之间。

3. 4 干酪根类型和成熟度众所周知, 在不同的沉积环境中, 由不同来源有机质形成的干酪根, 其组成有明显的差别, 其性质和生油气潜能也有很大差别。

因此, 研究干酪根的类型( 性质) 是油气地球化学的一项重要内容, 也是评价干酪根生油、生气潜力的基础。

干酪根类型是衡量有机质产烃能力的参数, 不同类型的干酪根同时也决定了产物以油为主还是以气为主。

一般来说,Ñ型干酪根和Ò型干酪根以生油为主, Ó型干酪根则以生气为主。

纵观美国页岩气盆地的页岩干酪根类型, 主要以Ñ型干酪根与Ò型干酪根为主, 也有部分Ó型干酪根, 而且不同干酪根类型的页岩都生成了数量可观的气, 有理由相信, 干酪根类型并不是决定产气量的关键因素。

相关文档
最新文档