膝关节生物力学_图文

合集下载

膝关节生物力学

膝关节生物力学

膝关节生物力学膝关节是人体最大、最复杂的关节。

为膝关节提供结构稳定性的关节囊和韧带特别容易受到大力矩的伤害,这些力矩可以通过作用在下肢长杠杆臂上的力产生,因此膝关节不灵活也就不足为奇了。

最常受伤的关节之一。

膝关节损伤,例如ACL 断裂,可能导致严重残疾,因为这种损伤可能会改变正常的膝关节生物力学,从而改变运动。

膝关节生物力学知识为理解损伤和关节疾病提供了重要的框架。

膝关节可能看起来像一个简单的铰链关节,屈伸旋转是股骨和胫骨之间唯一的明显运动。

然而,膝关节的运动特性很复杂,需要完整的6 个自由度(三个平移和三个旋转)才能完整地描述耦合或同时发生的关节运动膝关节旋转和平移的坐标系屈伸旋转围绕固定的股骨轴。

内-外旋转围绕固定的胫骨轴。

外展-内收是关于垂直于股骨轴和胫骨轴的轴。

关节平移沿三个坐标轴中的每一个发生。

十字连杆模型。

该模型包括两个交叉条,代表前交叉韧带和后交叉韧带(ACL、PCL)。

剩下的两个条形代表韧带的胫骨和股骨附着点。

IC,关节旋转的瞬时中心。

膝关节韧带的主要功能是稳定膝关节,控制正常的运动学,并防止可能损坏关节面的异常位移和旋转。

韧带是最重要的静态稳定器,主要由 I 型胶原蛋白组成,该成分可抵抗沿韧带长度产生的拉伸载荷;胫骨相对于股骨的内旋。

内旋使股骨髁骑在胫骨上,在十字韧带中产生张力并在关节表面产生压缩力。

C,胫股关节面之间产生的压力;T,沿前交叉韧带发展的拉伸载荷。

十字韧带作为膝关节的被动稳定具有多种功能。

十字韧带通过正常的生物力学引导膝关节,如四连杆模型所示。

前交叉韧带和后交叉韧带是胫骨相对于股骨的相应前后平移的主要约束,并且在负重屈曲过程中具有相互关系。

伴随相应的前后剪切载荷发生的胫骨内外旋转耦合部分由十字韧带控制,应被视为临床检查的一个重要方面。

此外,十字韧带作为膝关节内翻-外翻运动的辅助约束。

半月板半月板损伤被认为是运动员最常见的损伤。

半月板最初被认为是对胫股关节没有显着功能的退化结构。

《关节运动学膝关节》课件

《关节运动学膝关节》课件

运动范围和方向。这种模型对于理解膝关节的运动学特性非常重要。
02 03
动力学模型
动力学模型考虑了影响膝关节运动的各种因素,包括肌肉力、韧带张力 、关节面的摩擦力和重力等。这种模型有助于理解膝关节在不同运动状 态下的受力情况。
控制模型
控制模型关注的是膝关节运动的调节机制,包括神经控制和体液控制等 。这种模型对于理解膝关节的运动控制机制和运动障碍的病理机制具有 重要意义。
VS
挑战
尽管膝关节运动科学研究已经取得了一定 的进展,但仍面临诸多挑战,如如何更好 地理解和模拟膝关节的运动机制、如何提 高膝关节损伤的诊断和治疗水平等。
THANKS
感谢观看
膝关节运动康复训练的步骤与计划
步骤
评估、制定计划、实施、调整与评估 效果
计划
根据患者情况制定个性化的训练计划 ,包括训练方式、强度、频率等
膝关节运动康复训练的注意事项与建议
注意事项
避免过度运动、注意运动姿势的正确性、关注关节疼痛与肿 胀等不适症状
建议
保持适当的体重、加强肌肉锻炼、合理安排运动与休息时间
膝关节的生物力学特性
稳定性
膝关节的韧带和肌肉共同维护其 稳定性,防止过度屈伸和内外翻

适应性
膝关节能够适应不同的运动和负重 状态,通过肌肉和韧带的调整实现 。
耐受性
膝关节具有一定的耐受性,但过度 使用或损伤会影响其功能。
02
膝关节的运动学原理
膝关节的运动范围与方向
运动范围
膝关节的运动范围主要包括屈曲和伸展,正常屈曲范围为0-120度,伸展范围 为0-15度。
《关节运动学膝关 节》ppt课件
contents
目录
• 膝关节简介 • 膝关节的运动学原理 • 膝关节的运动损伤与治疗 • 膝关节的运动康复训练 • 膝关节的运动科学研究进展

生物力学课件PPT课件

生物力学课件PPT课件

足部矫形鞋垫使用目标:
1.功能的辅助
2.影响人体结构
提供支撑基础
任何位置,特别是站立及行走时的稳定需要控制足部及下肢。
过度旋前使足部错位,失去稳定性,导致支撑基础失衡。
使用足部矫形鞋垫限制过度旋前,并且使足部保持正确位置,为下肢其它部分 提供了稳定的支撑基础。
矫正或防止畸形
由肌肉、软组织及骨骼系统异常引起的足部及下肢固定畸形可以通过矫形鞋垫 得到矫正及支撑。
剪切-摩 擦 骨骼 和关节 软骨
剪切-扭 转 骨骼 和韧带
多种负荷 骨骼、肌 腱、韧带
行走看似简单行为
这三个人体系统中任何一个的损伤都会导致正常的生长发育出现并发症。
骨骼承载肌肉及组织,用于 支撑承重活动。 骨骼 肌肉、筋膜和其 它相连组织允许 骨骼协调活动 身体的本受感觉 系统接收来自身 体和外界的反馈, 并据此协调身体 活动。
步态周期中距下关节错位可导致足部和小腿在整 个活动过程中错位。
平均斜轴方向为矢平面42o
(± 4°变化)。
如大于42o = 高足弓 如小于42o = 低足弓
协调三平面的运动 被称为旋前和旋后。
旋前 中间的 既不是 旋前也不 是旋后 旋后 足部内收,跖 屈和内翻
内收
两种运动贯穿于负 重活动始终。
足部外展、背屈 和外翻
双下肢不等长: 长腿膝关节弯曲 长腿膝反张. 单侧膝外翻 单侧长腿旋前 结构性短肢的单侧旋后
步骤五&六:RCSP和NCSP
ICB矫形器 ( 2/3 的长度、完整长度和服装 风格)的后足部有固有5°角度, 矫形目的是限制过度的旋前—较小 的旋前角度(大约4°)可以吸收冲 击力。
RCSP和NCSP
后标线用来量测旋前的范围 胫骨和脚后跟之间靠下三分之一段等 分线 目的是为了获取旋前的范围 NCSP + RCSP = RoP (旋前的范围)

2.4膝关节生物力学运动学

2.4膝关节生物力学运动学
通过进一步运算是踢球运动时由股四头肌施加的最大力 值是3170N。现在可以做静力分析来确定胫股关节上关 节反力的值。这个关节上主要的力确定为髌腱力(P), 小腿重力(T)和关节反力(J)。髌腱力(P)和小腿 重力(T)是已知矢量。关节反力(J)的大小、方向和 作用线未知。用三个共面力的分离体法解出力(J), 可以发现此力只稍低于髌腱力。
(2)关节软骨
髌股关节软骨是人体中最厚的软骨。最大厚度可达7㎜。 髌股关节软骨厚度并非均匀一致,软骨最厚的部分位 于骨嵴处。60%位于髌骨的外侧关节面,分布于内侧者 约20%。关节面软骨厚度变化特点有助于增加髌股关节 面的适合性。
(3)维持髌股对合的平衡机制
髌股关节稳定性的影响因素很多,包括伸膝装置、支 持带、肌力、股胫角和股胫间的Screw-home机制、Q角、 髌骨位置、髁间槽发育程度、外力等,因此,良好的 髌股周围结构及其力学平衡,对维持髌股的正常排列 和稳定具有重要的作用。
横韧带对半月板运动有限制作用。 内外侧半月板与胫骨及关节囊的附着 以及与半月板横韧带之间形成的环状 结构又限制了半月板有过度外移。
5.膝关节的韧带
(1)有关节囊外韧带和关节囊内韧带。即:髌韧带 (patellar ligament) 、腓侧副韧带(fibular collateral ligment)、胫侧副韧带(tibial collateral ligament)、腘 斜韧带(oblique popliteal ligament)、膝交叉韧带 (cruciate ligaments of knee)。 (2)众多韧带附着,以保证膝关节运动的稳定性。 (3)侧副韧带在膝关节完全伸直时被拉紧,关节只有 处于这种状态时才易损伤。当膝关节被猛烈外展时, 可导致胫侧副韧带部分或全部被撕裂,而过大的内收 力量则可以导致腓侧副韧带损伤。 (4)在严重的内收或外展损伤时,交叉韧带可以与侧 副韧带一起被撕断。前交叉韧带可以在膝关节猛烈过 伸或胫骨向前脱位时被撕断。后交叉韧带则在后脱位 时被撕断。假如两条交叉韧带都被撕断,膝关节就会 出现不正常的前后移动;如果仅仅是向前移动的范围 增大,表示前交叉韧带断裂或松弛,如向后移动的范 围增大,则表示后交叉韧带断裂或松弛。

关节解剖及生物力学PPT培训课件

关节解剖及生物力学PPT培训课件






20
髋关节解剖
股神经 :发自 L3--L4 ,主要来自趾骨肌、股四头肌、髋关节囊前方,腹
股沟深处,这是股骨头坏死腹股沟疼痛的原因; 这也是股骨头坏死臀部肌肉疼痛及萎缩的原因;
臀上神经 : 发自L4、L5、S1 ,分布于关节囊的后上方的上部和外部, 闭孔神经:髋关节神经支配90%以上是闭孔神经,闭孔神经关节支为一纤
肌群 前群 层次 名称 髂腰肌 起点 髂窝,腰椎体侧 面 止点 股骨小转子 作用 屈曲,外旋大 腿 神经支配 腰丛肌支 脊髓节段 L1-4
阔筋膜张肌
髂嵴外唇前部, 髂前上棘外面
髂嵴外面,骶骨 背面 髂翼外面 骶骨前面外侧部 坐骨小切迹附近骨 面 闭孔膜内面及周围 骨面 坐骨小切迹附近骨 面 坐骨结节 髂翼外面 闭孔膜外骨面及
移行于髂胫束, 紧张髂胫束, 止于胫骨外侧 屈髋关节
臀肌粗隆,髂 胫束 股骨大转子 股骨大转子 股骨转子窝 股骨转子窝 股骨转子窝 股骨转自间嵴 股骨大转子 股骨转子窝 17
臀上神经
L4-S1
后群
浅层
臀大肌
后伸外旋大腿, 臀下神经及坐 防止躯干前倾 骨神经分支 外展大腿 外展外旋大腿 外旋大腿 外旋大腿 外旋大腿 外旋大腿 外展大腿 外旋大腿 臀上神经 骶丛肌支 同上 同上 同上 同上 同上 闭孔神经及骶
颈干角 115° -135°
>135° <115°
下肢长度变化 正常
下肢变长 下肢变短
偏心距变化 正常
减小 增大
12
髋关节解剖
股骨头韧带-长3-3.5cm,罩以
滑膜,内有股骨头韧带动脉,滋养 股骨头凹
关节囊-近端起自髋臼缘、髋臼横

关节的生物力学PPT课件

关节的生物力学PPT课件

编辑版pppt
8
(1)、拉伸负荷特征:
编辑版pppt
9
(2)蠕变特征:
应 力
由于关节软骨是固、液双相材 料,因此蠕变曲线的早期有大 量液体渗出,当无液体渗出时, 蠕变曲线稳定。
编辑版pppt
时间
10
2、渗透性:
渗透性是指液体流过多孔的固体基质时的摩擦阻力,因此 是这种二相材料的重要材料参数。渗透性越低,在承受载荷时 液体流动的阻力越大。
编辑版pppt
19
⑶、上肢开放运动链的力学特征:
肩部连接与支点作 用;
肩部载荷来源:上 肢的自身重量;外 界作用负荷。
F=ma,有些运动 如乒乓球、羽毛球, 复合小,但产生的 a大,那么对肩关 节的负荷就大。
编辑版pppt
20
4、锁骨的生物学意义: 锁骨的存在,产生对肩胛骨的支撑,使上肢远离身体中线。 所以:锁骨对增加上肢灵活性的意义很大。 当然,暴露了,也易损伤。 如:肩着地,导致锁骨骨折。
一、应力-应变曲线
在肌腱和韧带中,胶原纤维和弹性纤维的排列不同,以满足 各种不同的功能要求。肌腱中的纤维几乎完全是平行排列的,这 使它能够承受很高的拉伸载荷。韧带的排列主要根据功能而定。 纤维在受载和不受载的情况下也有不同的状况。不受载是,纤维 呈波浪形,受载后,纤维被拉直。
编辑版pppt
38
胶原纤维-拉伸试验
编辑版pppt
21
(二)、髋关节: 1、髋关节解剖:
编辑版pppt
22
2、运动:
从髂股韧带(限后伸)、坐股韧带(限内收、旋内)、 耻股韧带(限外展、旋外)来分析限制其某方向的运动。
编辑版pppt
23
臀中肌的外展作用。 前屈的动力来源为髂腰肌。

2024版膝关节骨性关节炎图文

2024版膝关节骨性关节炎图文

膝关节骨性关节炎图文目录•膝关节骨性关节炎概述•膝关节结构与功能•骨性关节炎病理生理变化•诊断方法与标准•治疗原则与方案选择•预防保健措施及患者教育01膝关节骨性关节炎概述定义与发病原因定义膝关节骨性关节炎是一种慢性、进行性关节疾病,以关节软骨变性、破坏及骨质增生为特征的关节病变。

发病原因膝关节骨性关节炎的发病与年龄、肥胖、关节劳损、创伤、关节先天性异常、关节畸形等诸多因素有关。

长期关节劳损和创伤可导致关节软骨损伤,进而引发骨性关节炎。

膝关节骨性关节炎多见于中老年人,随着年龄的增长,发病率逐渐上升。

年龄分布性别差异地域差异女性发病率略高于男性,可能与女性绝经后激素水平变化有关。

不同地域、种族间发病率存在一定差异,可能与遗传因素、生活环境等有关。

030201流行病学特点临床表现及分型临床表现膝关节骨性关节炎主要表现为关节疼痛、僵硬、肿胀、活动受限等症状。

疼痛多呈钝痛或酸痛,活动时加重,休息后缓解。

随着病情发展,可出现关节畸形、肌肉萎缩等并发症。

分型根据临床表现和影像学检查,膝关节骨性关节炎可分为轻度、中度和重度三种类型。

轻度主要表现为关节轻度疼痛和僵硬,影像学检查无明显改变;中度表现为关节疼痛加重,活动受限,影像学检查可见关节间隙变窄、骨质增生等改变;重度表现为关节剧烈疼痛、严重肿胀和畸形,严重影响患者生活质量。

02膝关节结构与功能包括股骨下端、胫骨上端和髌骨,构成膝关节的骨性支架。

骨性结构主要有前交叉韧带、后交叉韧带、内侧副韧带和外侧副韧带,维持膝关节的稳定性。

韧带结构包绕在膝关节周围,为密闭的结缔组织囊,起到保护关节的作用。

关节囊膝关节解剖结构膝关节能够承受人体重量,并在行走、跑跳等运动中发挥重要作用。

承重功能膝关节具有屈伸运动功能,使小腿能够相对于大腿进行前后运动。

运动功能膝关节内的关节软骨和滑液能够缓冲运动时的冲击,保护骨骼免受损伤。

缓冲功能膝关节生理功能膝关节生物力学特点杠杆作用膝关节在伸膝装置的作用下,能够发挥杠杆作用,提高运动效率。

膝关节生物力学精品PPT课件

膝关节生物力学精品PPT课件
(3)在膝屈伸时,滑液从一个凹室流入另一个凹室来润滑 关节面。在伸时,腓肠肌和腘肌囊受挤压,滑液受力驱使 向前运动。在屈时,髌上囊在前群肌肉中受张力而被压缩, 滑液受力向后运动。当关节处于半屈位置时,滑液处于最 小张力压迫下。当受伤或得病时,关节腔中充盈过多的液 体,半屈膝体位可以减少关节腔中的张力,有利于减少疼 痛。
(2)关节软骨
髌股关节软骨是人体中最厚的软骨。最大厚度可达7㎜。 髌股关节软骨厚度并非均匀一致,软骨最厚的部分位于骨 嵴处。60%位于髌骨的外侧关节面,分布于内侧者约20%。 关节面软骨厚度变化特点有助于增加髌股关节面的适合性。
(3)维持髌股对合的平衡机制
髌股关节稳定性的影响因素很多,包括伸膝装置、支持带、 肌力、股胫角和股胫间的Screw-home机制、Q角、髌骨位 置、髁间槽发育程度、外力等,因此,良好的髌股周围结 构及其力学平衡,对维持髌股的正常排列和稳定具有重要 的作用。
(2)半月板运动的影响因素
横韧带对半月板运动有限制作用。
内外侧半月板与胫骨及关节囊的 附着
以及与半月板横韧带之间形成的 环状
结构又限制了半月板有过度外移。
髌股关节的功能解剖
(1)髌骨
髌骨为膝提供两个重要的生物力学功能:它在整个运动范 围内借延长股四头肌力臂帮助膝伸直;并以增加髌骨与股 骨间的接触面来改善股骨上的压力分布。
膝关节的生物力学
马的膝关节向前还是向后?
膝关节在哪?
膝关节的功能解剖
在膝关节,弯曲常伴有一个微小而显著的转动, 但是因为来自关节周围强有力的滑囊、韧带和肌 的作用,它又有特殊的稳定性。膝关节周围的韧 带只在紧张状态下加载,对关节起到被动支持作 用。膝关节周围的肌也是在紧张状态下加载时对 关节起到积极的支持作用。膝关节周围的骨起到 支持作用,并且对抗压力载荷的作用。因此膝关 节的功能稳定性来源于韧带的被动收缩,关节几 何结构,肌的主动用力以及骨的承重作用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

膝关节活动
膝关节并非是一个单纯的铰链关节。膝 关节的活动极其复杂,包括了屈曲/伸展、 内旋/外旋、内收/外展
因无法照顾到这一复杂的活动,是加速 高限制性全膝关节假体失败的主要原因。 特别是在高限制性的早期“铰链膝”,后者 仅有伸屈一个方向上的活动
膝膝关关节节的活动运动
三根轴 六个方向
膝关节活动
Q角
胫骨结节在中线外侧约10-12mm 股骨解剖轴与髌韧带纵轴之间形成
的夹角即Q角 男性——14度
女性——17度
Q角
Q角
Q角
低位髌骨与高位髌骨
Patella alta:高位髌骨 Patella baja:低位髌骨 TKA后低位髌骨较为常见,特别是之前 有高位胫骨截骨者。
髌骨高度的测量
发育、关节炎、创伤等能改 变机械轴,从而改变负荷在两 侧间室的分布比例,引起进行 性退变。
膝内/外翻
在正常膝关节,下肢机械轴通过膝关节中心或中心 略偏内侧
在膝内翻畸形时,下肢机械轴通过膝关节中心的内 侧,使内侧间室负荷增加。这一负荷增加会导致一个 畸形进行性恶化的循环。当畸形变得非常严重时,或 者负重时会觉得膝关节在向外侧凸出。
髌骨的受力
髌骨关节面覆盖有人体中最厚的关节 软骨,因为需承担甚大的负荷。
通过髌骨的外力在正常行走时约为体 重的一半,而在深蹲时或跑动时则达到 体重的7倍。
髌骨的置换
髌骨的平均厚度是25mm。 置换髌骨时重要的是至少使截骨后的骨床 保留10mm,以免发生髌骨骨折。 带金属底托的髌骨假体临床效果差,原因 是较薄的聚乙烯假体上有较高的接触应力
膝关节生物力学_图文.ppt
膝关节生物力学的原则
在膝关节运动过程中,骨骼的位置和朝向( 运动学)是各种力量(动力学)获得平衡的结 果
关节形状(解剖学)决定了大部分接机械轴与解剖轴
任何膝关节置换的目的是通过截 骨、软组织平衡和良好的假体安放 恢复下肢的机械轴。
影响TKA术后生物力学的因素
植入物对线和位置 胫骨、股骨、髌骨相对于膝关节受力环境
(肌肉和韧带附着)的旋转定位
假体设计 股骨/胫骨在前后向上的中立 股骨滑车沟的设计 股骨髁矢状位的形状 髌骨关节面的形状 胫骨垫关节面的设计 PS、CR或活动平台设计
影响TKA术后生物力学的因素
关节的形合度
在正常膝关节的0-120度屈曲中: 内侧半月板的飘移可达5 mm, 外侧半月板的飘移则达11 mm。
关节的形合度
TKA的关节形合度
在TKA后,股骨髁与胫骨垫的形合度远高 于生理性膝,因此关节接触面大,接触应力 小、磨损也可能小。
但这一高形合度降低了关节的自由活动, 从而可能减小关节的活动范围,增加聚乙烯 内和假体-股骨界面上的应力集中。
Insall-Salvati指数:髌韧带长度/髌骨高度 正常=1.0 高位髌骨>1.2 低位髌骨<0.8
Blumensaat’s 线:屈膝30度时,髌骨下极应 该在髁间窝线上。
Blackburne-Peel指数:胫骨平台至髌骨下极 关节面距离/髌骨关节面高度
正常=0.8 高位髌骨>1.0
髌骨高度的测量
在外翻畸形时,下肢机械轴通过膝关节中心的外侧 ,使外侧间室的负荷增加,并使内侧结构扩张甚或丧 失功能。
膝膝内内翻/外与翻膝外翻
股骨解剖轴
解剖轴:是股骨、胫骨髓腔线与 胫股关节线相交形成的角度。
股骨解剖轴呈5-9度外翻,在个子 较小的患者,这一角度将会较大。
股股骨骨髁解与剖轴下与肢机力械线轴的关系
TKA中髌骨轨迹的优化
TKA后的髌骨轨迹,可经多个途径优化
股骨髁外旋 股骨髁外置 髌骨假体内置 胫骨假体外旋 伸膝装置侧方支持带松解
髌髌外骨侧支支持持带 带
髌骨受力
髌骨受力
髌髌骨骨的切作除用的结果
ma1 > ma2
髌骨切除的结果
关节线与髌骨位置的关系
为了保持正常的髌股关系,重要的是 在TKA中关节线的上升或下降不能超过8 mm。特别是在翻修手术中更需注意,由 于严重的骨缺损,正确地恢复关节线有时 甚为困难。过度升高关节线会致低位髌骨 ,这将致屈膝时髌骨与胫骨垫发生撞击
膝关节伸屈活动
膝关节的屈曲和伸展都包含了滚动和 滑动。 随着屈曲的增加,股骨髁上的瞬间旋 转中心向后移动所谓的瞬间旋转中心即 股骨与胫骨的接触点。 这一瞬间旋转 中心的后移即为股骨髁后滚,其作用是 防止股骨与胫骨的撞击,以增加膝关节 屈曲。同时它也增加了伸膝装置的力臂 ,从而提高了股四头肌的作用力
胫骨解剖轴
胫骨的解剖轴在胫骨干的中央,它 与胫骨关节面垂线之间有3度的内翻角 。从侧面观,胫骨关节表面有一5-7度 的后倾。
胫骨平台后倾
TKA中重要的画线
TKA中重要的画线
TKA中重要的画线
TKA中重要的画线
TKA中重要的画线
TKA中重要的画线
TKA中重要的画线
关节的形合度
与髋关节不同,膝关节两相对骨面 形合度较差。因此,软组织结构在维 持关节稳定中起到了至关重要的作用
为何膝关节受力会如此之大?
上半身的重量作用在一较长的力臂上 而股四头肌通过髌韧带的作用力臂要端许多
Q角
Q角是股四头肌腱纵轴与髌韧带纵轴之间 形成的夹角。Q角大于20度被认为异常。
在TKA中,需经调整假体旋转定位、内置 髌骨假体和必要时的软组织平衡(侧放松解 )来恢复Q角。
髌骨轨迹异常是TKA术后膝前疼痛的常见 原因,可采用不同的手术入路以减少这一并 发症的发生。
术者了解正常的下肢对线、作用于 膝关节上的外力和膝关节运动的限制 价格等都是必须的
关关节节软的骨形合的度作用
胫关骨节内的外形合侧度平台差异的意义
关节的形合度
在生理性膝关节,半月板增加了股 骨髁与胫骨平台之间的形合。
形合程度的增加也就增加了分担负 荷的关节面表面积,从而减少了特定 某一点的负荷。因此,半月板切除后 ,关节软骨某些部位上承受的负荷会 增加高达400%。
上楼梯时约为4倍体重。
正常情况下60%的负荷通过内侧 间室,40%通过外侧间室。
髌膝股关关节节活动受时力的受力
膝膝关关节节的活动受时力的受力
膝关节活动时的受力
膝关节活动时的受力
胫股关节受力 平地行走:4倍体重 下楼梯: 8倍体重
髌股关节受力 平地行走:0.5倍体重 下楼梯:5倍体重
膝关节活动时的受力
股骨髁的后滚
在生理性膝关节,股骨髁的后滚是由 四边框架系统来调整的。
ACL和PCL是这一系统中的韧带连接 部分,而其在胫骨与股骨止点之间的骨 质是这一系统中的另外两边。
整个膝关节的瞬间旋转中心位于ACL 与PCL的交叉处
A四C边L/框PC架L
膝股关骨节髁的的后滚滚动和滑动
没股有骨滑髁动的后时滚的膝关节运动——分离
大多数TKA采用髓内或髓外定位 来判断解剖轴。截骨导向能对股骨 和胫骨截骨的旋转和对线作精确的 调整,目的是用解剖轴来重建机械 轴。
下机肢械力轴线与解剖轴
解剖轴 机械轴
机械轴
机械轴:股骨头中心——胫 骨平台中心——踝关节中心
正常的机械轴能使60%的负 荷通过内侧间室、40%的负荷 通过外侧间室。
膝关节活动范围
膝关节的活动范围自过伸0-20度至屈 曲125-165度。
功能性膝关节的活的访问是0-115度。
正常步态时需要的膝关节活动范围是 0-70度。
膝关节活动范围
活动 步行
上楼梯 下楼梯 从站立位坐下
穿鞋 提起重物
需要屈曲角度 0-67 0-83 0-90 0-93 0-106 0-117
CR膝中股骨髁的后滚
在PCL保留的TKA中,PCL仍 能调节股骨髁的后滚,但因为ACL 的缺如和整个闭合四边框架系统的 断裂,这一后滚于生理性的并不相 同
PS膝中股骨髁的后滚
在后稳定型TKA中,PCL已予切 除,股骨髁的后滚依靠POST-CAM 结构调整。因此,其后滚更可预测, 虽然与生理性的仍有差异。当然 post-cam结构是增加了磨损的来源 ,也增加了系统的限制性。
同时髌骨也能帮助分布伸膝装置与股 骨髁远端之间的接触应力
并作为籽骨为股四头肌腱和髌韧带提 供附着。
髌骨的功能
因创伤或TKA并发症而切除髌骨将 会缩短伸膝装置的力臂,并使完全伸 膝时股四头肌所需要的力量增加15%30%。
对髌骨切除后的患者行TKA,通常 选择后稳定假体,因其能更好地模拟 股骨后滚,从而增加伸膝装置的力臂
伸膝旋转锁定机制
在膝关节接近完全伸直时,胫骨相对于股 骨发生外旋,内侧胫骨平台在隆凸的内侧股 骨髁上作滑行,直到膝关节完全伸直时获得 锁定。
这一机制是由股骨内侧髁的形状和大小、 膝关节周围肌肉和软组织结构共同调节的。
膝伸关膝节旋的转锁横定轴机制
膝伸关膝节旋的转锁伸定屈机和制旋转
屈曲+外旋 伸展+内旋
形合度增加与活动度减小之间的矛盾被称 为是“运动学冲突”
活动平台膝关节系统
解决运动学冲突的方法之一是采用活动平台 假体。
此类假体的胫骨垫与股骨髁高度形合,但在 胫骨垫与胫骨托之间存在第二个关节面,允许 胫骨垫作旋转或前/后向移动。
虽然这一设计在理论上颇具吸引力,但至今 的临床结果并未证明优于固定平台假体。
股骨髁内旋5度 机械轴正对膝关节中心 膝关节稳定无需股四头肌参与 完全伸膝位有效的站立 股骨前髁外侧防止髌骨脱位
伸膝旋转锁定机制
外旋锁定机制的机理 ACL止于股骨髁外侧 伸膝时ACL将外侧股骨髁拉向前方 ACL缺损的膝没有外旋锁定
膝关节活动时的受力
在正常步行时,胫股关节的受力 大约是3倍体重
髌骨的运动
当膝关节屈曲、髌骨滑向远侧时, 髌骨位于滑车沟的中央。而髌骨与股 骨的接触部位也逐渐由下极移至上极
相关文档
最新文档