人类基因组计划2

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人类基因组计划

人类基因组计划(英语:Human Genome Project, HGP)是一项规模宏大,跨国跨学科的科学探索工程。其宗旨在于测定组成人类染色体(指单倍体)中所包含的30亿个碱基对组成的核苷酸序列,从而绘制人类基因组图谱,并且辨识其载有的基因及其序列,达到破译人类遗传信息的最终目的。基因组计划是人类为了探索自身的奥秘所迈出的重要一步,是继曼哈顿计划和阿波罗登月计划之后,人类科学史上的又一个伟大工程。

截止到2005年,人类基因组计划的测序工作已经基本完成(92%)。其中,2001年人类基因组工作草图的发表(由公共基金资助的国际人类基因组计划和私人企业塞雷拉基因组公司各自独立完成,并分别公开发表)被认为是人类基因组计划成功的里程碑。

国际人类基因组计划的启动的重要原因是美国能源部的推动。首次对于人类基因组测序的可行性进行认真的探讨是在1986年由罗伯特·辛西默主持的一个会议上。随后,美国能源部健康与环境研究项目主任查尔斯·德利西决定对人类基因组启动计划进行资助,资助金额为五百三十万美元,用于发展关键性技术与资源。

1988年,人类基因组计划再次得到显著的推动,DNA双螺旋结构的发现者和诺贝尔生理学或医学奖的获得者詹姆斯·沃森领导着美国国家卫生研究院中新成立的一个基因组研究中心,加入了这个计划。

1990年,投资三十亿美元的人类基因组计划由美国能源部和国家

卫生研究院正式启动,预期在15年内完成。随后,该计划扩展为国际合作的人类基因组计划,英国、日本、法国、德国、中国和印度先后加入,形成了国际基因组测序联盟。为了协调各国人类基因组研究,1988年在维克多·马克库斯克等科学家的倡导下,国际人类基因组组织(HUGO)宣告成立。

中国的人类基因组计划在中国国家自然科学基金委员会的支持下,于1994年启动,并得到国家高技术发展计划和国家自然科学基金的资助。在此之前,国际人类基因组计划早已在各个合作单位,规划和分配了各自应负责的染色体和其片段的测序工作。1998年3月,中美港科学家合作,成功地将与华人和鼻咽癌有关的肿瘤抑制基因定位于人类第3号染色体的短臂3p21.3位点,这为中国最终参加国际合作的DNA测序工作提供了迫切和合理的理由。1999年6月26日,中国科学院遗传研究所人类基因组中心向美国国立卫生研究院(NIH)的国际人类基因组计划(HGP)递交加入申请。HGP在网上公布中国注册加入国际测序组织,中国成为继美、英、日、德、法后第六个加入该组织的国家。2000年4月,中国完成了人第3号染色体上3000万个碱基对的工作草图。中国加入人类基因组计划的意义重大。除了使该计划具有更广泛的代表性外,此举也成为生命科学领域里国际间大规模研究合作的起始点,标志着中国的生物科学研究开始跻身国际前沿行列。

人类基因组计划的研究内容:

遗传图谱的绘制。遗传图谱主要是用遗传标签来确定基因在染色

体上的排列。1994年9月,完成了包含3000个(原计划为600-1500)标签分辨率为1-cM(即1%重组率)的遗传图谱的绘制。

物理图谱的绘制。物理图谱是通过序列标签位点对构成基因组的DNA分子进行测定,从而对某基因所相对之遗传讯息及其在染色体上的相对位置做一线性排列。1998年10月,完成了包含52,000个(原计划为30,000)序列标签位点的物理图谱的绘制。

序列测定。通过测序得到基因组的序列,是一般意义上的人类基因组计划。2003年4月,包含基因序列中的98%(原预计为95%)获得了测定,精确度为99.99%。

辨别序列中的个体差异。每一个人都有唯一的基因序列,因此,人类基因组计划发布的数据不可能精确的反映单独个体的基因序列。它只是很少量匿名捐赠人基因组的组合。人类基因组计划只是为未来鉴定不同个体间基因组差异做一些基础的框架性工作。当前主要工作在于鉴定不同个体间包含的单核苷酸多态性。至2003年2月,已有约3,700,000个单核苷酸多态性位点得到测定。

基因鉴定。以获得全长的人类cDNA文库为目标。至2003年3月,已获得15,000个全长的人类cDNA文库。人类基因组计划最开始的目标是不但以最小的错误率检测出人类基因的所有30亿个碱基对,还要从如此海量的数据中确认出所有的基因及其序列。这一部分计划正在进行中,尽管目前的数据显示在人类基因组中只有大约20,000至25,000个基因,远远低于大多数科学家先前的估计。

基因的功能性分析。今天,人类DNA序列已经存储在数据库中,

任何人都可以通过互联网下载。美国国家生物技术信息中心和位于欧洲和日本的姊妹组织储存着整个基因序列,其中包含已知序列,假设基因和蛋白质。用已开发的计算机程序来分析数据,因为未经过译码的数据基本上没有用处。而这一过程将要耗费大量的时间。如果只由有经验的生物学家对海量的数据进行标注,经常是非常缓慢的,所以一些特定的对DNA序列进行判别的计算机程序正被越来越多地应用在基因排序工程中。当前,分析注释序列的最佳技术是利用DNA序列和人类语言之间并行性的统计模型,采用类似于计算机科学中形式文法的概念。但是,使用自动标注的注释的准确度仍然不够理想。而且计算机程序的自动判定会复制已有注释中的错误,从而使错误越来越多。对于这些错误的纠正是一个非常巨大的工程。这一阶段的另一个目标是研发出更快更有效的方法来进行DNA测序和序列分析,并把这一技术加以产业化。已获得开发的技术包括高通量寡聚核苷酸的合成(1994年)、DNA微阵列(1996年)、标准化和消减化cDNA文库(1996年)、真核(酵母)全基因组敲除技术(1999年)、大型化双杂交定位(2002年)。

相对于基因组测序而言,要了解所有基因的功能还有很长的一段路要走。例如以前人们所认为的垃圾DNA实际上并不“垃圾”,它们在基因组的进化、每个个体的差异性以及许多其他方面扮演着重要角色,是世界上许多实验室着力研究的目标。

人类基因组计划的众多发现:

目前已经发现和定位了26000多个功能基因,其中尚有42%的基

相关文档
最新文档