18 蔡一方 2007硝酸根转运蛋白综述
植物中的铵根及硝酸根转运蛋白研究进展.

第 36卷第 4期 2012年 7月南京林业大学学报 (自然科学版Journal of Nanjing Forestry University (Natural Science EditionVol.36, No.4Jul., 2012收稿日期 :2011-12-02修回日期 :2012-04-06基金项目 :国家自然科学基金项目 (30871727 ; 高等学校博士学科点专项科研基金 (20090014110014 ; 国家高技术研究发展计划(2011AA100201 第一作者 :李静 , 硕士生。
*通信作者 :苏晓华 , 研究员。
E-mail :suxh@caf.ac.cn 。
沈应柏 , 教授。
E-mail :ybshen@bjfu.edu.cn 。
引文格式 :李静 , 张冰玉 , 苏晓华 , 等.植物中的铵根及硝酸根转运蛋白研究进展 [J ].南京林业大学学报 :自然科学版 , 2012, 36(4 :133-139.植物中的铵根及硝酸根转运蛋白研究进展李静 1, 2, 张冰玉 3, 苏晓华 3*, 沈应柏1, 2*(1.北京林业大学生物科学与技术学院 , 北京 100083; 2.林木、花卉遗传育种教育部重点实验室 , 北京 100083;3.中国林业科学研究院林业研究所 , 国家林业局林木培育重点实验室 , 北京100091摘要 :氮素 (N 是植物需求量最大的营养元素 , 其利用率是影响植物生长和发育的主要因素。
氮素的供需失衡会导致植物产量降低 , 过量施 N 肥还会造成环境破坏。
NH +4和 NO -3是可吸收利用的主要氮源。
笔者分析了植物吸收 NH +4、NO -3的转运蛋白及其相关基因的表达调控和功能的研究进展 , 认为在以后的研究中 , 应加强林木中与氮吸收相关基因的鉴定和认识 , 特别是加强氮素信号传导途径、 NO -3及 NH +4在植物体内的运输和调控机制、各蛋白组分间的相互作用、时间和空间表达模式和调控模式的研究。
毛果杨全基因组硝酸根转运蛋白家族(NRT2s)序列分析

J u n l fNo t we tF r s r i e st o r a r h s o e t y Unv r iy o
d i1 . 9 9 j is . 0 17 6 2 1 . 5 1
3 西 北 农 林 科技 大 学 林 学 院 , 西 杨 陵 7 20 ) . 陕 1 10
摘 要 : 以拟 南芥 ( a i o s h l n ) 莱茵 衣 藻 ( ha d mo a en a d t ) 亲和 性 硝 Ar bd p i ta i a 和 s a C lmy o n s ih r t i 高 r i
Ge me wi e Se u n e A n l ss o i h Afi t t a e Tr n p r e NRT2s Ge e no — d q e c a y i fH g fniy Nir t a s o t r( ) n
Fa iy i pul st iho a pa m l n Po u r c c r
亚 家族 II I。亚 家族 I 守程 度 最 高, 家族 I 和 II 保 亚 I I 可能 由亚 家族 I 进化 而来 。所有 的 NRT2 都 s
具 有高度 相似 的结 构域 、 能 区和基 因结构 , 不 同物 种 中的进 化 较 为保 守 。不 同的 NR s成 员 功 在 T2 定位 于不 同的亚细 胞结构 中, 其具体 功 能可能存 在差 异 , 并共 同参与调 控杨树 的硝 态氮平衡 。 关键 词 : 氮素 营养 ; 酸根 ; 硝 转运 蛋 白 ; 毛果 杨 ; 列分 析 序 中图分类 号 :7 2 1 ¥9.1 文献标 志 码 : A 文章编 号 :0 17 6 ( 0 2 0 — 0 00 1 0— 4 1 2 1 ) 50 8 —7
烟草硝酸盐转运蛋白基因的克隆及表达分析

烟草硝酸盐转运蛋白基因的克隆及表达分析烟草硝酸盐转运蛋白基因的克隆及表达分析#许金兰1,谢小东1,冯爽1,高军平1,王根洪2,程廷才2,夏庆友2**10(1. 重庆大学农学及生命科学研究院,重庆 400030;2. 西南大学家蚕基因组生物学国家重点实验室,重庆 400715)摘要:本研究通过同源性搜索的方法,得到烟草硝酸盐转运蛋白预测基因序列。
采用 PCR技术,从烟草中成功克隆出一个硝酸盐转运蛋白体基因,将其命名为NtNRT2.3。
其开放阅读框为 1455bp,编码 484 个氨基酸。
生物信息学分析表明该基因与已经报道的拟南芥、大豆、水稻等的 NRT2 家族基因具有高度同源性,且其编码的蛋白质具有 NRT 家族的共有结构特征。
定量表达结果显示,NtNRT2.3 基因在根中的表达量均高于茎和叶中,表明 NtNRT2.3在硝酸盐吸收过程中可能具有重要作用。
关键词:烟草;硝酸盐转运蛋白;克隆;表达中图分类号:Q9415Cloning and Expression Analysis of Tabacco NitrateTransporter Gene NtNRT2.3XU Jinlan1, XIE Xiaodong1, FENG Shuang1, GAO Junping1, WANG Genhong2, CHEN Tingcai2, XIA Qingyou220 25 30 35 401. Institue of agriculture and life science,Chongqing University, ChongQing 400030;2. State Key Laboratory of Silkworn Genome Biology,Southwest University, ChongQing 400715Abstract: I In this paper we through the method of homology searching to get the predictedtobacco nitrate transporter gene sequence. By using PCR technology, we successfully cloned anitrate transporter gene from the nicotiana tabacum, named it NtNRT2.3. The open readingframe of NtNRT2.3 is 1455 bp and encodes 484 amino acids.Bioinformatics analysis shows thatthe NtNRT2.3 is highly similar with the reported NRT2 family genes in plants,such as arabidopsisthaliana, soybean and rice. And the protein of NtNRT2.3 has the common domains of NRTfamily.The quantitative expression analysis of different organs shows that the expression ofNtNRT2.3 in the root is much higher than it in the stems and leaves,and this indicates thatNtNRT2.3 gene may play an important role in nitrate transporting.Keywords: Tobacco; Nitrate transporter; Cloning; Expression0 引言硝酸盐是土壤中最丰富的氮源,是植物可直接利用的主要氮源之一。
NO3-转运蛋白在植物适应逆境中的功能研究进展

NO3-转运蛋白在植物适应逆境中的功能研究进展李晓婷;袁建振;汪芳珍;李仁慧;崔彦农;马清【摘要】氮是植物生长发育所必需的大量元素,参与植物体内各种代谢活动.硝态氮(NO3-)是植物可吸收利用的主要无机氮源.NO3-转运蛋白不仅介导植物正常生长发育过程中NO3-的吸收、转运和再利用,还参与调控植物对多种逆境的适应过程.结合最新报道,重点总结了近年来关于NO3-转运蛋白在植物适应低NO3-、低K+、盐、干旱及重金属镉等胁迫中的重要作用的研究进展,以期为今后进一步深入探究植物抗逆机理提供依据和参考.【期刊名称】《生物技术通报》【年(卷),期】2019(035)002【总页数】7页(P156-162)【关键词】氮;NO3-转运蛋白;逆境适应【作者】李晓婷;袁建振;汪芳珍;李仁慧;崔彦农;马清【作者单位】兰州大学草地农业科技学院草地农业生态系统国家重点实验室,兰州730020;兰州大学草地农业科技学院草地农业生态系统国家重点实验室,兰州730020;兰州大学草地农业科技学院草地农业生态系统国家重点实验室,兰州730020;兰州大学草地农业科技学院草地农业生态系统国家重点实验室,兰州730020;兰州大学草地农业科技学院草地农业生态系统国家重点实验室,兰州730020;兰州大学草地农业科技学院草地农业生态系统国家重点实验室,兰州730020【正文语种】中文氮素(N)是植物必需的大量元素之一,是植物体内蛋白质、核酸及叶绿素等的重要组分,在植物生长发育过程中发挥着十分重要的作用,其供给的充足与否,直接影响着植物体内众多物质和能量代谢活动,因此,被称为生命元素[1-3]。
氮素以多种形态存在于自然生态系统中,大气中的氮主要以氮气的形式存在,土壤中能被植物吸收利用的氮素则主要为硝态氮(NO3-)和铵态氮(NH4+)等无机氮及尿素、氨基酸等有机氮,也有少数一些豆科植物可与固氮菌形成共生关系进而利用大气中的氮气作为其氮素营养的主要来源[4]。
激素和非生物逆境胁迫调控植物硝酸盐转运蛋白功能的研究进展

激素和非生物逆境胁迫调控植物硝酸盐转运蛋白功能的研究进展作者:戴毅田龙果潘贞志陈林宋丽来源:《江苏农业学报》2020年第06期摘要:植物硝酸盐转运蛋白不仅担负着硝酸离子吸收、转运的功能,还参与植物诸多生理发育过程。
本文重点介绍了激素和硝酸盐转运蛋白在植物生长发育过程中的相互作用,硝酸盐转运蛋白参与非生物逆境胁迫响应方面的最新研究进展,以及激素和逆境协同参与硝酸盐转运蛋白表达和功能的调控机制,最后对硝酸盐转运蛋白在激素信号传导和抗逆境胁迫中的应用以及未来可能开展的研究方向提出了展望。
关键词:硝酸盐转运蛋白;植物激素;逆境中图分类号:Q756文献标识码:A文章编号:1000-4440(2020)06-1595-10Abstract: Plant nitrate transporters are responsible for the absorption and transport of nitrate ions, and participate in various physiological processes of plants. This review focused on the interactions between hormones and nitrate transporters during plant growth and development, the roles of nitrate transporters in abiotic stress, and the synergistic effects of hormone and abiotic stress on the expression and function of nitrate transporters. Finally, the application of nitrate transporter in hormone signal transduction and stress resistance was proposed.Key words:nitrate transporter;plant hormone;abiotic stress氮(N)是植物生長发育必需的大量元素之一,氮素不仅是蛋白质、核酸及磷脂等生物大分子的组成成分,也是辅酶、辅基、叶绿素和植物激素等植物生长发育重要成分的构成组分[1-2]。
烟草硝酸盐转运蛋白基因的克隆及表达分析

烟草硝酸盐转运蛋白基因的克隆及表达分析许金兰;谢小东;冯爽;高军平;王根洪;程廷才;夏庆友【期刊名称】《烟草科技》【年(卷),期】2013(000)007【摘要】为了获得烟草NtNRT2.3基因的全长序列,进一步揭示其在烟草中的生物学功能,通过同源性搜索的方法,得到了烟草硝酸盐转运蛋白预测基因序列.采用RT-PCR技术,从烟草中成功克隆出一个硝酸盐转运蛋白体基因,将其命名为NtNRT2.3.其开放阅读框为1455bp,编码484个氨基酸.生物信息学分析表明,该基因与已报道的拟南芥、大豆、水稻等的NRT2家族基因具有高度同源性,且其编码的蛋白质具有NRT家族的共有结构特征.定量表达结果显示,NtNRT2.3基因在根中的表达量均高于茎和叶,表明NtNRT2.3基因在根系吸收硝酸盐过程中可能具有重要作用.【总页数】5页(P68-71,79)【作者】许金兰;谢小东;冯爽;高军平;王根洪;程廷才;夏庆友【作者单位】重庆大学农学与生命科学研究院,重庆市沙坪坝区174号 400030;重庆大学农学与生命科学研究院,重庆市沙坪坝区174号 400030;重庆大学农学与生命科学研究院,重庆市沙坪坝区174号 400030;重庆大学农学与生命科学研究院,重庆市沙坪坝区174号 400030;西南大学家蚕基因组生物学国家重点实验室,重庆市北碚区天生路2号 400715;西南大学家蚕基因组生物学国家重点实验室,重庆市北碚区天生路2号 400715;西南大学家蚕基因组生物学国家重点实验室,重庆市北碚区天生路2号 400715【正文语种】中文【中图分类】TS413【相关文献】1.黄瓜硝酸盐转运蛋白基因CsNRT1.5的克隆及表达分析 [J], 秦智伟;冯卓;武涛;周秀艳2.烟草硝酸盐转运蛋白基因NtNRT2.4的克隆及表达分析 [J], 黄化刚;申燕;王卫峰;连文力;陈雪;翟欣;喻奇伟;杨振智;贾宏昉3.菠菜14-3-3蛋白基因的克隆及硝酸盐胁迫下的表达分析 [J], 赵秀玲;徐慧妮;郭传龙;崔道雷;王琳;陈丽梅;李昆志4.甘蔗液泡膜二羧酸转运蛋白基因ScTDT克隆与表达分析 [J], 冯小艳;王俊刚;赵婷婷;彭李顺;王文治;冯翠莲;沈林波;张树珍5.甘蔗液泡膜二羧酸转运蛋白基因ScTDT克隆与表达分析 [J], 冯小艳;王俊刚;赵婷婷;彭李顺;王文治;冯翠莲;沈林波;张树珍因版权原因,仅展示原文概要,查看原文内容请购买。
植物寡肽运输与硝酸根运输基因家族的研究进展
植物寡肽运输与硝酸根运输基因家族的研究进展蔡昭艳;刘滔;方中明;范甜;张明永【摘要】氮素是植物生长发育的重要营养元素,也是限制植物生物量尤其是经济产量的关键营养元素之一.植物不仅能从外界获取无机氮素(硝酸根、铵根和尿素等),还能以氨基酸、寡肽等形式获取有机氮素.植物已进化出复杂的运输系统来吸收与运输这些含氮化合物.硝酸根运输基因家族分为低亲和力硝酸根运输基因(low-affmity nitrate transporter fanmily,NRTI)与高亲和力硝酸根运输基因(high-affmith nitrate transporter fanily,NR T2)两类.寡肽运输基因家族分为:运输含2~3个氨基酸残基的寡肽的PTR运输基因家族(peptide transporter family,PTR)和运输4-5个氨基酸残基的寡肽的OPT运输基因家族(oligopeptide transporter family,OPT).其中NRTI与PTR在序列同源性上归属于同一基因家族,称作NRTIIPTR家族.对寡肽运输基因和硝酸根运输基因家族在植物生长发育中的生理、生化功能的研究进展进行了简要综述.【期刊名称】《热带亚热带植物学报》【年(卷),期】2011(019)001【总页数】6页(P91-96)【关键词】硝酸根;寡肽;运输;功能基因;植物【作者】蔡昭艳;刘滔;方中明;范甜;张明永【作者单位】中国科学院植物资源保护与可持续利用重点实验室,华南植物园,广州,510650;中国科学院研究生院,北京,100049;中国科学院植物资源保护与可持续利用重点实验室,华南植物园,广州,510650;中国科学院研究生院,北京,100049;中国科学院植物资源保护与可持续利用重点实验室,华南植物园,广州,510650;中国科学院研究生院,北京,100049;中国科学院植物资源保护与可持续利用重点实验室,华南植物园,广州,510650;中国科学院研究生院,北京,100049;中国科学院植物资源保护与可持续利用重点实验室,华南植物园,广州,510650【正文语种】中文【中图分类】Q493.2植物生长和发育所必需的矿质元素中,氮素(N)是需求量最大并起着制约植物生长作用的重要元素[1]。
NRT在植物根系发育及非生物胁迫中的功能研究进展
NRT在植物根系发育及非生物胁迫中的功能研究进展作者:赵敏华刘吉徐晨曦蔡晓锋王全华王小丽来源:《上海师范大学学报·自然科学版》2020年第06期摘要:植物硝酸盐转运蛋白(NRT)不仅参与硝态氮的吸收及运转,还通过介导激素转运、信号传递,或直接作为其他离子转运子参与植物根系生长发育及其他矿质离子的吸收运转等过程,并影响植物在这些离子胁迫下的耐受表现。
部分NRT可能在植物养分综合利用及抗性培育中同时具有重要作用。
该文从根系发育及非生物胁迫两方面综述了NRT的最新研究进展,总结了其可能的作用机制。
关键词:硝酸盐转运蛋白(NRT); 侧根; 钾(K); 镉(Cd); 磷(P); 盐胁迫中图分类号: Q 945.12; S 60 文献标志码: A 文章编号: 1000-5137(2020)06-0709-10Abstract: Nitrate transporters (NRT) can not only participate nitrate uptake and transport in plants,but also play key roles in many other physiological processes,such as root system development,uptake and transport process of other mineral ions in plants through hormone transport,signal transduction and even act as other ion transporter,and accordingly affect the plant stress performance which related to these ions.Some NRT members may act as candidate genes for improving plant multiple-nutrition use and stress tolerance.This article reviewed the recent NRT research progress from two aspects:root development and abiotic stress.The possible mechanisms of NRT in these processes were also discussed.Key words: nitrate transporter (NRT); root system; potassium (K); cadmium (Cd); phosphorus (P); salt stress0 引言硝态氮(NO3--N)是植物最重要的氮素来源之一。
砷甜菜碱的合成途径和代谢过程
生态毒理学报Asian Journal of Ecotoxicology第18卷第2期2023年4月V ol.18,No.2Apr.2023㊀㊀基金项目:国家自然科学基金面上项目(21876180);广东省基础与应用基础研究基金自然科学基金杰出青年项目(2022B1515020030);广州大学百人计划引进人才科研启动项目㊀㊀第一作者:张伟(1982 ),女,博士,副教授,研究方向为环境污染物的生态毒理学㊁环境过程-暴露机制-生态健康㊁去除技术原理与应用,E -mail:***************.cn㊀㊀*通信作者(Corresponding author ),E -mail:***************.cnDOI:10.7524/AJE.1673-5897.20220704001张伟,叶紫君,黄莉萍,等.砷甜菜碱的合成途径和代谢过程[J].生态毒理学报,2023,18(2):188-197Zhang W,Ye Z J,Huang L P,et al.Biosynthesis pathways and metabolic processes of arsenobetaine [J].Asian Journal of Ecotoxicology,2023,18(2):188-197(in Chinese)砷甜菜碱的合成途径和代谢过程张伟*,叶紫君,黄莉萍,赵芊瑜广州大学环境科学与工程学院,广州510006收稿日期:2022-07-04㊀㊀录用日期:2022-09-17摘要:砷污染问题引起全球高度关注,在中国㊁南亚和东南亚等地尤为严重㊂砷通过食物链传递对生态系统以及人类健康造成潜在危害㊂研究发现海洋鱼类具有独特的高砷甜菜碱(arsenobetaine,AsB)富集能力,人类通过摄食海洋鱼类会摄取大量的AsB ,可能造成潜在的健康危害㊂然而,AsB 在不同生物体内的生物转化(合成和降解)过程尚不清楚㊂本文对已知和推测的AsB 合成和降解过程进行综述,探究海洋生物体内高AsB 富集原因和可能的合成途径,哺乳动物体内的AsB 代谢过程,以及环境中微生物在AsB 降解过程中发挥的作用,加深我们对AsB 沿食物链传递和代谢过程的认识,为防治砷污染,降低砷污染对生态与人体健康的风险提供理论依据,促进砷生态毒理学的发展㊂关键词:砷甜菜碱;海洋生物;哺乳动物;生物转化;合成;降解文章编号:1673-5897(2023)2-188-10㊀㊀中图分类号:X171.5㊀㊀文献标识码:ABiosynthesis Pathways and Metabolic Processes of ArsenobetaineZhang Wei *,Ye Zijun,Huang Liping,Zhao QianyuSchool of Environmental Science and Engineering,Guangzhou University,Guangzhou 510006,ChinaReceived 4July 2022㊀㊀accepted 17September 2022Abstract :Arsenic pollution,a serious environmental problem especially in China,South Asia and Southeast Asia,has aroused great concern worldwide.Arsenic is transmitted through the food chain and results in potential risk to the ecosystems and human health.It has been reported that marine fish have a unique enrichment capacity of high concentration of arsenobetaine (AsB),and human uptake a large amount of AsB through consumption of marine fish.However,the process of AsB biotransformation (biosynthesis and degradation)in different organisms is not clear.In this review,the biosynthetic and degradation processes of AsB were summarized to explore the reasons of high AsB enrichment in marine organisms and possible synthetic pathways.We also reviewed the potential AsB metabolic processes in mammals,and the involvement of microorganisms in AsB degradation was also included.All these information should provide a theoretical basis for understanding the transmission and metabolism process of AsB along the food chain,and promote the development of arsenic ecotoxicology.Better understand -第2期张伟等:砷甜菜碱的合成途径和代谢过程189㊀ing of the biosynthetic and metabolic process of AsB not only supply fundamental information in making strate-gies to prevent and control arsenic pollution,but also in reducing the risk of arsenic pollution to the ecology and human health.Keywords:arsenobetaine;marine organisms;mammal;biotransformation;synthesis;degradation㊀㊀重金属污染是目前世界范围内最严重的环境问题之一㊂多种重金属在美国有毒物质与疾病登记署和环境保护局颁布的危害物质名录(The Priority List of Hazardous Substances)上名列前茅,其中砷(arse-nic,As)位于环境污染物的首位(https://www.atsdr. /spl/index.html)㊂砷是一种天然存在的有毒类金属元素,是危害最严重的环境污染物之一,几乎存在于所有的环境介质中㊂美国毒物和疾病登记署(ATSDR)将其列为对人类健康危害最大的有毒物质,世界卫生组织(WHO)也将其列为引起全球重大公共卫生关注的化学物质㊂砷具有高毒性㊁致畸㊁致癌等危害㊂据报道,印度和孟加拉等国多处地区均发现与砷污染有关的大面积长期中毒事件,当地居民备受砷中毒疾病的折磨与煎熬[1-2]㊂2013年,据国际权威期刊报道,砷污染对约2000万中国人造成健康危害,对中国砷污染提出预警[3]㊂据世界卫生组织报道,目前全球至少有5000多万人口正面临着地方性砷中毒的威胁,提醒公众警惕砷中毒㊂砷污染是我国近海最严重的环境问题之一,各种来源的砷通过陆地径流㊁大气沉降㊁排污口和海洋倾废等途径汇入海洋㊂不同来源的砷汇入海洋生态系统,进入海洋食物链,传递至海洋鱼类,最终对人类健康构成严重威胁,导致砷对海洋生态系统的污染成为一个重要的国际性健康和环境问题[4]㊂海洋的承载力是有限的,当污染物排放超过海洋环境承载力时,就会引发海洋生态环境安全问题㊂砷污染影响着全球115个国家,已经在中国㊁南亚和东南亚(如巴基斯坦㊁孟加拉国㊁尼泊尔和印度)等地成为严重的环境问题,而这一区域刚好位于 南海-印度洋 ,它是中国 21世纪海上丝绸之路 重要战略区域㊂砷在海洋环境中存在着多种化学形态,已经鉴定了20多种不同的无机和有机形态砷,前者包括三价砷(arsenite,As(III))和五价砷(arsenate,As(Ⅴ)),后者包括一甲基砷酸(monomethylarsonic acid,MMA)㊁二甲基砷酸(dimethylarsinic acid,DMA)㊁砷甜菜碱(arsenobetaine,AsB)和砷胆碱(arsenocholine,AsC)等㊂无机砷具有剧毒,甲基砷(MMA和DMA)毒性减弱,而AsB和AsC毒性极小或无毒[5]㊂海产品是人类砷摄入的主要来源[6]㊂在西班牙的一项研究中,发现大多数人接触砷的途径是海产品,这种来源占砷暴露总量的96%[7]㊂AsB主要通过砷在鱼类㊁软体动物和甲壳类动物等海洋生物中代谢而形成[8-9]㊂AsB是海产品中砷的主要存在形式,通常占鱼类总砷的90%以上[10-12]㊂海产品中的总砷(AsB>90%)浓度可能比食品中的砷限值(50ng ∙g-1)高出200倍[13]㊂通过食用海产品,人类摄入大量的AsB,从而AsB进入人类食物链[14-17]㊂根据联合国粮食及农业组织(粮农组织)发布的‘世界渔业和水产养殖状况“,2016年鱼类总产量高于往年,人类直接消费了151亿t[18]㊂因此,通过消费鱼类, AsB是人类摄入的主要砷化合物㊂AsB被认为是海洋食物链中砷代谢的最终产物,是海洋生态系统中砷循环的终点,是人类摄入的主要砷形态,但对其生物合成和降解的机理认识仍然缺乏[6,19-27]㊂一方面,从解毒的角度,从低等微生物到海洋鱼类,许多酶在剧毒的无机砷向无毒的AsB生物转化中发挥重要作用㊂尽管已经提出了关于其生物合成途径的各种推测,海洋生物中AsB的合成途径尚不清楚[14,28]㊂另一方面,从食品安全的角度,AsB在哺乳动物和人体内是否会降解为毒性更强的无机砷,AsB对人体是否会产生毒性危害呢?这些问题仍不清楚㊂因此,海产品中AsB的合成途径以及人类从海产品中摄入AsB的降解过程仍有待挖掘,最终是否会导致生态和健康风险仍有待深入探究㊂本文对AsB在海产品和哺乳动物体内的生物转化(合成和降解)过程进行了综述,有助于了解AsB的潜在生态和健康风险,从而加深我们对AsB 在海产品和哺乳动物中的毒理循环的认识㊂剖析它们对认识AsB从海洋鱼类到哺乳动物的传递规律,特别在人类体内的代谢过程具有重要意义,而且为解决海产品砷污染以及造成的人类健康危害问题提供相应的理论支持,为最终采取防范措施,防控生态和人体砷暴露具有重要的现实指导意义㊂本综述为砷在毒理学和环境化学领域的进一步研究提供了有益的资源㊂190㊀生态毒理学报第18卷1㊀海洋生物体内高砷甜菜碱富集原因和可能的合成途径(Causes and possible synthetic pathways ofhigh arsenobetaine in marine organisms)1.1㊀海洋生物体内高砷甜菜碱富集原因(Causes of high arsenobetaine in marine organisms)海产品的质量状况一直为社会大众所关注㊂海洋鱼类体内总砷浓度(1~1000μg㊃g-1)比淡水鱼类总砷浓度(<1μg㊃g-1)高1~3个数量级,表现出较高的砷富集能力[8,28-29]㊂我们对我国沿海野生海洋鱼类砷含量进行了由北至南的大范围调查,评估了中国沿海野生鱼类砷富集状况,发现中国沿海部分海洋底栖鱼类短吻红舌鳎(Cynoglossus joyneri)和孔虾虎鱼(Trypauchen vagina)肌肉组织中砷含量严重超标,其中湛江的孔虾虎鱼肌肉组织中砷含量超过我国制定的安全标准30倍之多,长期摄食会对人体健康造成潜在危害,揭示中国沿海海洋鱼类体内存在高砷富集状况㊂海洋鱼类具有高砷富集现象,AsB 是海洋鱼类体内主要的砷存在形态,占总砷的90%以上[29-35]㊂AsB同样是海洋甲壳类和软体动物组织中主要的砷存在形态,占总砷的50%~95%[30]㊂AsB在其他海洋生物,比如多毛类㊁甲壳类㊁双壳类㊁腹足类㊁头足类,同样占总砷的大部分[36]㊂因此, AsB是海洋生物体内主要的存在形态㊂AsB在海洋生物体内高累积的原因到底是什么?首先,砷的生物累积随着盐度的增加而增加,研究发现贝类动物可以有效从海水中吸收AsB,而虾和鱼等高等动物只可从食物中(包括浮游植物等)积累AsB[37-38]㊂远洋鱼类中发现总砷随盐度增加的趋势,主要以AsB形式存在,表明盐度与AsB的吸收和累积密切相关[17,37]㊂阿拉伯湾西部的对虾(Penae-us semiisulcatus)和长须鱼(Arius thalassinus)中总砷和AsB含量相对较高,可能是由于海湾西部相对较高的盐度所致[39]㊂AsB的滞留取决于周围水的盐度,表明AsB可以部分替代重要的细胞渗透物甜菜碱(一种渗透压调节代谢物)[29,40]㊂我们发现海洋鱼类中AsB含量与环境盐度显著正相关,盐度可以控制砷的迁移,是关键控制因子,可能由于AsB是甜菜碱的结构类似物,可帮助海洋鱼类抵抗高盐海水的胁迫[29]㊂因此,盐度与海洋生物体内AsB的累积密切相关㊂虽然AsB含量与环境盐度有关系,而盐度调控鱼类砷生物转化机制研究匮乏㊂现有研究大多局限于对海洋和淡水鱼类砷不同形态与盐度野外调查现象的描述,而对规律与调控机制的认识尚不足㊂第二,通过研究砷沿着不同食物链传递过程,植食性食物链(大型海藻石莼(Ulva lactuca)㊁龙须菜(Gracilaria lemaneiformis)和粗江蓠(Gracilaria gigas) 黄斑篮子鱼(Siganus fuscescens))㊁肉食性食物链(沙蚕(Nereis succinea)㊁牡蛎(Saccostrea cucul-lata)和蛤(Asaphis violascens) 鲈鱼(Lateolabrax ja-ponicus))和海洋底栖食物链(沉积物 沙蚕(N.suc-cinea)和蛤(A.violascens) 诸氏鲻虾虎鱼(Mugil-ogobius chulae))㊂发现砷在沿这3类食物链传递过程中,食物中的无机砷较难被鱼体吸收,并且它们在鱼体(黄斑篮子鱼㊁鲈鱼和诸氏鲻虾虎鱼)组织中被生物转化成有机砷而不是直接累积;然而,食物中的AsB可以直接通过鱼体消化器官的上皮细胞膜,容易被鱼体吸收,而且是砷在鱼体组织中最终的存储形式㊂因此,不同形态砷沿食物链传递过程中,AsB 比无机砷更容易沿食物链传递和吸收,AsB的生物可利用性比无机砷高[33,41]㊂我们运用放射性同位素(73As)示踪技术和先进理论模型-药代动力学模型(PBPK),研究了砷在海洋鱼类体内的生物转运过程,通过PBPK模拟发现,交换率(k)(水到鳃)比k(水到肠道)低2倍,而且血液与鳃之间有最高的交换率,表明鳃不是主要的吸收器官㊂k(血液到肠道) (2.69d-1)是k(肠道到血液)(0.0039d-1)的700倍,表明AsB更容易分布于肠道,肠道是主要的吸收器官㊂同时,在暴露过程中,肠道中As(Ⅴ)(38.8%~ 45.1%)是主要形态,而在净化过程中AsB(81.7%~ 96.0%)成为主要形态,而且AsB在肠道中的含量比在肝脏中高,表明肠道是无机砷转化为AsB的主要代谢器官㊂肠道是砷的主要吸收和转化合成AsB 的器官㊂肠道吸收的不同形态砷,由血液转运至头㊁鳃㊁肝脏㊁肌肉各组织,最终主要以AsB形式贮存于靶器官肌肉组织中㊂因此,解析了肠道中合成的AsB和肌肉中存储的AsB是海洋鱼类高砷富集的主要原因[42]㊂罗非鱼(Oreochromis mossambicus)肠道菌能够促进鱼类砷代谢,分离并鉴定出影响鱼类砷代谢的关键肠道菌嗜麦芽寡养单胞菌(Stenotroph-omonas maltophilia SCSIOOM),其能合成AsB,而且betIBA调控S.maltophilia SCSIOOM体内AsB的合成[43]㊂同时,我们解析了AsB和As(Ⅴ)在海洋鱼类不同组织器官之间显著的生物转运差异,精确揭示了AsB的吸收㊁肝肠循环㊁存储和排泄过程,As(Ⅴ)表现出快速通过肠道膜㊁快速转运和排出的能力,而AsB通过肠道膜的能力较弱,被缓慢吸收并最终储第2期张伟等:砷甜菜碱的合成途径和代谢过程191㊀存在肌肉中[44]㊂综上所述,海洋生物,特别是海洋鱼类具有高AsB 富集能力,主要归因于AsB 的累积与环境盐度密切相关,食物中AsB 比无机砷更容易沿食物链传递和吸收,肠道是砷的主要吸收和转化合成AsB 的器官,AsB 穿过肠道膜的能力较弱,缓慢吸收,循环和存储在肌肉组织中,生物转化和转运对AsB 的富集起决定性作用㊂因此,无机砷在肠道中合成AsB ,食物中和合成的AsB 缓慢穿过肠道膜,缓慢循环以及高的肌肉存储速率是导致海洋鱼类高AsB 富集的主要原因(图1)㊂然而,AsB 的合成细节和途径尚未完全解析㊂图1㊀海洋鱼类高AsB 富集原因示意图注:AsB 表示砷甜菜碱,MMA 表示一甲基砷,DMA 表示二甲基砷㊂Fig.1㊀Schematic diagram of causes of high AsB concentrations in marine fishNote:AsB means arsenobetaine,MMA means monomethylarsonic acid,and DMA means dimethylarsinic acid.1.2㊀海洋生物体内砷甜菜碱可能的合成途径(Pos -sible synthesis pathways of arsenobetaine in marine or -ganisms)目前关于AsB 合成的过程主要依赖于潜在的生物合成前体和中间体的检测[45]㊂在不同生物体内,AsB 有几种可能的合成途径:(1)从二甲基化砷糖(DMAsSs)或三甲基化砷糖(TMAsSs)合成AsB ㊂据推测,DMAsSs 通过二甲基砷钠乙醇(DMAE)和二甲基砷钠乙酸(DMAA)转化为AsB ,而TMAsSs 直接转化为AsB [46]㊂(2)从AsC 转化为AsB ㊂沉积物中的微生物可以将AsC 转化为AsB[47],微生物枯草杆菌(B.subtilis )也可以将AsC 转化为AsB [1],AsC 是AsB的关键前体[48]㊂在水生动物中只发现微量的AsC [49-50],这表明它主要作为一种代谢中间物存在㊂AsC 是AsB 的代谢前体,接种标记AsC 后,在水生鱼类和贻贝中迅速吸收并转化为AsB [51-54]㊂(3)DMAE 和AsC 共同决定AsB 的合成㊂DMAE 作为中间体,甲基化生成AsC ,然后氧化生成AsB ㊂另外,DMAE 可能被氧化形成DMAA ,然后甲基化形成AsB [55]㊂此外,三甲基二氧砷基核糖苷可以定量转化为AsC ,而AsC 又可以定量转化为AsB [50,56]㊂(4)假设AsB 由DMA III ㊁2-氧酸㊁糖基酸和丙酮酸合成,从而形成DMAA 和AsB [14,46]㊂AsB 也由DMA III 合成,DMAA 的前体(可能由乙醛酸或丙酮酸合成),然后在海洋生物中甲基化形成AsB [57]㊂因此,通过已有研究发现,在水生生物体内AsB 最有可能来源于AsC ㊂微生物可能参与AsB 的合成㊂已有研究报道了海洋和土壤细菌对AsB 的代谢[56,58-60]㊂AsB 是由海洋沉积物中砷糖的微生物降解形成的,导致中间产物(如DMAE),随后可能被食腐动物和食草动物消耗,导致AsB 的合成[50,61]㊂细菌假单胞菌(Pseud -omonas sp.)在海洋生物中可将二甲基胂基醋酸盐转192㊀生态毒理学报第18卷化为AsB[62]㊂在生物体中发现的砷形态,二甲基砷核糖苷㊁硫砷核糖苷和三甲基砷核糖苷的降解也可能形成AsB[63-64]㊂因此,AsB合成的可能生物转化途径(图2),其中一些关键中间体㊁关键合成蛋白和基因尚未确定,微生物可能在AsB合成过程中发挥重要的作用,仍有待深入探究㊂图2㊀已知和推测的AsB合成和降解过程注:DMAE表示二甲基砷钠乙醇,AsC表示砷胆碱,DMAsSs表示二甲基化砷糖,TMAsSs表示三甲基化砷糖,DMAA表示二甲基砷钠乙酸,TMA表示四甲基砷,TMAO表示氧化三甲胺㊂Fig.2㊀Known and presumed processes of AsB synthesis and degradationNote:DMAE means dimethylarsinoylethanol,AsC means arsenocholine,DMAsSs means dimethylated arsenosugars,TMAsSs means trimethylated arsenosugars,DMAA means dimethylarsinoyl acetic acid,TMA means tetramethyl arsine,and TMAO means trimethylarsine oxide.2㊀哺乳动物体内的砷甜菜碱代谢过程(Arsenobe-taine metabolism processes in mammals)目前,海产品中的AsB在哺乳动物中的转化仍存在争议㊂关于人体中AsB的吸收和代谢仍了解尚少[51]㊂尽管无机砷在哺乳动物中的生物分布㊁生物转化和毒性已被广泛研究,但对AsB在哺乳动物中的生物转化知之甚少[65-66]㊂人体中几个关于砷代谢的基本假设如下㊂(1)哺乳动物体内没有形成AsB㊂在小鼠和人类体内几乎没有AsB的生成[66-67]㊂(2)哺乳动物体内形成AsB㊂在无AsB的饮食中,3/5的志愿者的尿液中检测到AsB,AsB浓度范围为0.2~12μg㊃L-1㊂AsB累积的可能原因有2个:组织中累积的AsB释放缓慢和从大米中摄取的无机砷形成AsB[68]㊂(3)哺乳动物体内吸收的AsB排泄得快和完全,且形态无改变㊂通过口服给药后,AsB通过胃肠道被有效地吸收,大部分通过尿液被排泄,而且形态没有发生变化[69-70]㊂经口摄入的AsB,在小鼠㊁大鼠和兔子的胃肠道中几乎完全吸收,但在体内不经代谢以尿液排出,98.5%AsB在2d内被排出体外[70]㊂小鼠㊁大鼠㊁兔子和仓鼠口服AsB后,在它们体内不代谢,但几乎完全从胃肠道吸收,并通过尿液不加改变地排出[71-72]㊂人体摄入AsB不会增加尿液中无机砷㊁MMA或DMA的浓度,支持AsB没有代谢㊁通过尿液排泄的假设[73]㊂志愿者只食用含有AsB的海产品,之后他们的排泄物(粪便和尿液)样本中只检测到AsB[68,74]㊂摄入的AsB快速通过尿液排泄出人体外,而且形态没有改变,从而减轻健康危害[15-17]㊂(4)在哺乳动物体内,AsB是否会降解为毒性更强的甲基砷和无机砷(图2)?也有研究报道少量的AsB发生了代谢[75-76]㊂每天给大鼠注射AsB,7个月后,AsB部分代谢为四甲基铵(TeMA)和氧化三甲胺(TMAO)[76]㊂AsB在有氧系统中与人类粪便一起共存7d后,降解为DMAA㊁DMA和TMAO[60]㊂AsB处理大鼠4d后,其尿液中检测到TeMA㊁AsB和TMAO,推测这一降解过程可能是由大鼠盲肠中的肠道微生物介导的[77]㊂我们最新的研究发现,小鼠长期暴露AsB,可导致AsB和As(Ⅴ)在小鼠组织中积累㊂AsB在吸收前被降解为As(Ⅴ),然后通过血液循环运输到其他组织㊂虽然吸收和生物转化受肠道微生物的调控,但aqp7㊁sam和as3mt基因以及去甲基化和甲基化过程在小鼠肠道组织中存在㊂基因㊁微生物组和代谢组学分析表明,葡萄球菌(Staph-ylococcus)和真杆菌(Blautia)㊁花生四烯酸㊁胆碱和鞘氨醇参与了小鼠肠道中AsB向As(Ⅴ)的降解㊂因此,长期食用AsB会增加小鼠体内As(Ⅴ)含量㊂通过食用海鱼长期摄入AsB可能对人类健康造成潜在危害[78]㊂因此,我们的研究结果引起了人们对人第2期张伟等:砷甜菜碱的合成途径和代谢过程193㊀类从海鱼中长期摄入砷的健康危害的高度关注㊂为水产品安全和人类健康风险提供了早期预警㊂未来的研究亟待探究消费海洋食物如何增加甲基砷和无机砷的负担㊂小鼠体内的微生物组成与人体内的差异很大,可能对AsB在人体内的降解过程有影响㊂因此,人体微生物在AsB生物降解过程中的作用有待进一步研究㊂需要注意的是,人类本身可能没有将AsB降解的能力,但是肠道微生物可能在这个过程中发挥着重要的作用㊂AsB可以在人类胃肠道中被微生物转化,DMA和TMAO是主要的降解产物[79]㊂在模拟胃肠消化过程中MMA和DMA的去甲基化被发现[80]㊂人类食用海产品中的AsB,可被微生物降解为毒性较高的砷形态[59]㊂人肠道中的微生物可以将AsB转化为各种甲基化的砷化合物,从而潜在地形成有毒的代谢产物㊂在与肠道菌群进行体外温育后,有氧肠道细菌在7d后将AsB分解为DMA㊁DMAA和TMAO,但降解的AsB在30d后会再次出现在样品中,研究表明人类肠道内存在能够降解AsB的微生物,然而,转化所需的时间比生理肠道的通过时间长得多,因此,在体内尚未观察到[60]㊂因此,哺乳动物和人类肠道中的微生物在AsB的降解过程中发挥了重要的作用㊂3㊀环境中微生物在砷甜菜碱降解过程中发挥的作用(The role of environmental microorganisms in the degradation of arsenobetaine)AsB的微生物转化不限于哺乳动物和人类微生物群㊂环境细菌在环境中AsB及其代谢产物的循环中起关键作用㊂在海洋生态系统中,已经进行了许多有关微生物AsB降解的研究[81]㊂Hanaoka等[82]研究AsB在海洋环境中的命运,来自海洋沉积物的微生物首先将AsB降解为TMAO,然后降解为MMA或As(Ⅴ)㊂在海洋环境中,微生物多样性是降解AsB的关键,好氧微生物促进了AsB向TMAO 的转化,而当消化系统中的微生物在液体培养物中培养时,AsB代谢为DMA和DMAA,而不是TMAO,表明存在不同的AsB降解途径,其取决于微生物群落的组成[59,83]㊂在混合了海洋沉积物的ZoBell介质中,发现了AsB降解为TMAO,并进一步转化为As(Ⅴ)的过程[84]㊂AsB也被降解为TMAO㊁DMA和As(Ⅴ)㊂DMAA被证明是AsB降解为DMA的中间产物[59,85]㊂AsB在数小时内转化,最初转化为二甲基胂基醋酸盐,然后转化为DMA[85]㊂在海洋微生物混合培养的作用下,已检测到AsB的生物转化[58]㊂基于不同中间体的形成,提出了不同降解AsB途径[85]㊂AsB降解为无机砷有2种途径(TMAO或DMAA)㊂不同的AsB降解途径取决于微生物群落的组成[27]㊂已从土壤和水中分离出去甲基化微生物[48,83,86-87]㊂因此,环境微生物在AsB的降解过程中同样发挥了重要作用㊂AsB的合成和降解是一个复杂的过程,而且受到众多基因的调控㊂从目前砷代谢相关基因的研究结果来看,As3MT㊁PNP㊁GSTM1㊁GSTT1和MTHFR 等基因的多态性都与砷代谢有一定的相关性㊂砷暴露后转录活性的改变导致基因表达的显著变化,表明基因对砷代谢存在不同的调控途径[88],比如As3MT基因对砷代谢存在不同调控方式[89]㊂因此,如果要彻底研究清楚AsB的合成和降解过程,利用当前和未来的宏基因组学㊁元转录组学㊁宏蛋白质组学和代谢组学方法破译微生物砷生物转化过程,将提高我们对微生物如何促进AsB生物转化过程的理解[90]㊂因此,关于AsB的生物转化过程,包括甲基化㊁AsB合成和降解AsB,应用基因组学方法,特别是相关酶和基因的鉴定,尚有很多亟待探索的未知过程㊂4㊀结语和展望(Conclusion and outlook)由于砷在环境中普遍存在及其与各种人类疾病的关系,引起了全球对其公共卫生影响的关注㊂本综述重点讨论了AsB的生物转化(合成和降解)过程,对于深入了解AsB在环境中的命运及评估其对人体健康的风险至关重要㊂同时,了解影响AsB转化过程是制定降低砷暴露健康风险的关键策略㊂该研究领域未来的研究趋势主要集中在以下几个方面:(1)需要深入研究AsB的环境命运和代谢途径,开发先进的分析技术,用以对各种砷化合物之间的转化进行全方面的研究;(2)确定微生物和非生物介导的AsB合成和降解过程;(3)AsB降解为无机砷会增加其毒性,更多研究应着眼于转化动力学,以更好地理解环境中的砷循环;(4)海洋生物可以将有毒的无机砷转化为无毒的AsB,但其合成途径尚不清楚;微生物在AsB的降解过程中发挥重要作用,但其分子转化机制尚不清楚,因此,利用基因组学方法深入研究AsB的合成和降解过程至关重要㊂因此,了解AsB在海洋生物㊁哺乳动物和人类组织中的合成和降解有助于控制其在环境中的迁移循环过程,对于防控砷污染和降低人类健康危害至194㊀生态毒理学报第18卷关重要㊂将砷的环境行为研究经验,用于预测环境如何改变砷㊂相应的,砷的生物转化如何改变环境?总之,AsB的来源㊁生物合成㊁降解和命运需要继续深入探究,才能更全面解析AsB的合成途径和代谢过程㊂参考文献(References):[1]㊀Acharyya S K,Chakraborty P,Lahiri S,et al.Arsenic poi-soning in the Ganges delta[J].Nature,1999,401(6753):545-547[2]㊀Stokstad E.Bangladesh.Agricultural pumping linked toarsenic[J].Science,2002,298(5598):1535-1537[3]㊀Rodríguez-Lado L,Sun G F,Berg M,et al.Groundwaterarsenic contamination throughout China[J].Science,2013,341(6148):866-868[4]㊀Lin M C,Liao C M.Assessing the risks on human healthassociated with inorganic arsenic intake from groundwa-ter-cultured milkfish in southwestern Taiwan[J].Foodand Chemical Toxicology,2008,46(2):701-709[5]㊀Moe B,Peng H Y,Lu X F,et parative cytotoxicityof fourteen trivalent and pentavalent arsenic species deter-mined using real-time cell sensing[J].Journal of Environ-mental Sciences,2016,49:113-124[6]㊀Luvonga C,Rimmer C A,Yu L L,et anoarsenicalsin seafood:Occurrence,dietary exposure,toxicity,andrisk assessment considerations-A review[J].Journal ofAgricultural and Food Chemistry,2020,68(4):943-960 [7]㊀Fontcuberta M,Calderon J,VillalbíJ R,et al.Total andinorganic arsenic in marketed food and associated healthrisks for the Catalan(Spain)population[J].Journal ofAgricultural and Food Chemistry,2011,59(18):10013-10022[8]㊀Zhang W,Wang W rge-scale spatial and interspeciesdifferences in trace elements and stable isotopes in marinewild fish from Chinese waters[J].Journal of HazardousMaterials,2012,215-216:65-74[9]㊀Zhang W,Wang W X,Zhang L.Arsenic speciation andspatial and interspecies differences of metal concentrationsin mollusks and crustaceans from a South China Estuary[J].Ecotoxicology,2013,22(4):671-682[10]㊀Amlund H,Ingebrigtsen K,Hylland K,et al.Dispositionof arsenobetaine in two marine fish species following ad-ministration of a single oral dose of[14C]arsenobetaine[J].Comparative Biochemistry and Physiology Toxicology&Pharmacology,2006,143(2):171-178[11]㊀Sele V,Sloth J J,Lundebye A K,et al.Arsenolipids inmarine oils and fats:A review of occurrence,chemistryand future research needs[J].Food Chemistry,2012,133(3):618-630[12]㊀Wolle M M,Conklin S D.Speciation analysis of arsenicin seafood and seaweed:PartⅠ Evaluation and optimi-zation of methods[J].Analytical and Bioanalytical Chem-istry,2018,410(22):5675-5687[13]㊀Sakurai T,Kojima C,Ochiai M,et al.Evaluation of in vi-vo acute immunotoxicity of a major organic arsenic com-pound arsenobetaine in seafood[J].International Immu-nopharmacology,2004,4(2):179-184[14]㊀Caumette G,Koch I,Reimer K J.Arsenobetaine forma-tion in plankton:A review of studies at the base of the a-quatic food chain[J].Journal of Environmental Monito-ring,2012,14(11):2841-2853[15]㊀Molin M,Ulven S M,Meltzer H M,et al.Arsenic in thehuman food chain,biotransformation and toxicology-Re-view focusing on seafood arsenic[J].Journal of Trace El-ements in Medicine and Biology,2015,31:249-259 [16]㊀Thomas D J,Bradham K.Role of complex organic arsen-icals in food in aggregate exposure to arsenic[J].Journalof Environmental Sciences,2016,49:86-96[17]㊀Taylor V,Goodale B,Raab A,et al.Human exposure toorganic arsenic species from seafood[J].Science of theTotal Environment,2017,580:266-282[18]㊀Food and Agriculture Organization of the United Nations(FAO).The State of the World Fisheries and Aquaculture:Meeting the Sustainable Development Goals[R].Rome:Food and Agriculture Organization of the United Nations,2018:6[19]㊀Francesconi K A,Hunter D A,Bachmann B,et al.Uptakeand transformation of arsenosugars in the shrimp Crangoncrangon[J].Applied Organometallic Chemistry,1999,13(10):669-679[20]㊀Francesconi K A,Khokiattiwong S,Goessler W,et al.Anew arsenobetaine from marine organisms identified byliquid chromatography-mass spectrometry[J].ChemicalCommunications,2000(12):1083-1084[21]㊀Madsen A D,Goessler W,Pedersen S N,et al.Character-ization of an algal extract by HPLC-ICP-MS and LC-electrospray MS for use in arsenosugar speciation studies[J].Journal of Analytical Atomic Spectrometry,2000,15(6):657-662[22]㊀Anita G,Somkiat K,Walter G,et al.Identification of thenew arsenic-containing betaine,trimethylarsoniopropi-onate,in tissues of a stranded sperm whale Physeter cat-odon[J].Journal of the Marine Biological Association ofthe United Kingdom,2002,82(1):165-168[23]㊀Grotti M,Soggia F,Lagomarsino C,et al.Arsenobetaine。
植物氮素代谢与调控机制研究
植物氮素代谢与调控机制研究氮素是植物生长发育所必需的营养元素之一,但如果氮素过量或缺乏,都会对植物造成很大的危害。
因此,了解植物氮素代谢与调控机制非常重要。
本文将介绍氮素的吸收、转运、代谢及调控机制的研究现状。
一、氮素的吸收与转运植物从土壤中吸收氮素,但氮素在土壤中通常以无机离子的形式存在,如硝酸根离子(NO3-)和铵离子(NH4+)。
氮素的吸收与转运涉及到一系列的氮素转运蛋白家族,如硝酸盐转运蛋白(NRT)和铵转运蛋白(AMT)等。
研究表明,硝酸盐转运蛋白家族包括NRT1和NRT2两类,其中NRT1蛋白主要参与低浓度硝酸盐的吸收,而NRT2蛋白则具有高亲和力,主要参与高浓度硝酸盐的吸收。
铵转运蛋白家族包括AMT1、AMT2和AMT3三类,其中AMT1蛋白主要参与对低浓度铵离子的吸收,而AMT2和AMT3蛋白则主要参与对高浓度铵离子的吸收。
除了氮素转运蛋白,还有一些与氮素吸收和转运相关的转录因子和信号分子,如NLP、NIN和CIPK等。
这些基因和蛋白质参与氮素吸收和转运的调控,对植物的氮素代谢和生长发育发挥着重要的作用。
二、氮素代谢途径植物通过不同途径代谢氮素,包括硝化作用、还原作用和转化作用等。
硝化作用是将土壤中的氨转化为硝酸盐的过程,其中通过氧化亚氨酰化酶(AMO)和亚硝化作用酶(Nir)等酶类催化氨、羟胺和亚硝酸等物质的转化。
还原作用是将硝酸盐还原为亚硝酸盐、氨和一氧化氮等物质的过程。
还原作用主要由硝化细菌、厌氧细菌和光合生物等催化。
转化作用主要是将硝酸盐和铵盐转化为氨基酸和尿素等物质的过程。
这一过程涉及到多种酶类,如硝酸还原酶(NR)和谷氨酰胺合成酶(GS)等。
三、氮素代谢的调控机制氮素代谢对植物的生长发育和逆境响应有着重要的影响。
因此,氮素代谢的调控机制备受关注。
目前已研究出多种氮素代谢调控机制,包括转录后调控、翻译后调控和代谢物反馈调控等。
转录后调控是通过氮素响应因子的调控,调节相关基因的转录和表达,从而影响氮素代谢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MinireviewNitrate transporters and peptide transportersYi-Fang Tsay*,Chi-Chou Chiu,Chyn-Bey Tsai,Cheng-Hsun Ho,Po-Kai Hsu Institute of Molecular Biology,Academia Sinica,Taipei,TaiwanReceived1April2007;revised17April2007;accepted20April2007Available online26April2007Edited by Julian Schroeder and Ulf-Ingo Flu¨ggeAbstract In higher plants,two types of nitrate transporters, NRT1and NRT2,have been identified.In Arabidopsis,there are53NRT1genes and7NRT2genes.NRT2are high-affinity nitrate transporters,while most members of the NRT1family are low-affinity nitrate transporters.The exception is CHL1 (AtNRT1.1),which is a dual-affinity nitrate transporter,its mode of action being switched by phosphorylation and dephos-phorylation of threonine101.Two of the NRT1genes,CHL1 and AtNRT1.2,and two of the NRT2genes,AtNRT2.1and AtNRT2.2,are known to be involved in nitrate uptake.In addi-tion,AtNRT1.4is required for petiole nitrate storage.On the other hand,some members of the NRT1family are dipeptide transporters,called PTRs,which transport a broad spectrum of di/tripeptides.In barley,HvPTR1,expressed in the plasma membrane of scutellar epithelial cells,is involved in mobilizing peptides,produced by hydrolysis of endosperm storage protein, to the developing embryo.In higher plants,there is another fam-ily of peptide transporters,called oligopeptide transporters (OPTs),which transport tetra/pentapeptides.In addition,some OPTs transport GSH,GSSH,GSH conjugates,phytochelatins, and metals.Ó2007Federation of European Biochemical Societies.Published by Elsevier B.V.All rights reserved.Keywords:Nitrate transporter;Peptide transporter;NRT1; NRT2;PTR;OPT1.IntroductionIn higher plants,there are two types of nitrate transporters, known as NRT1s and NRT2s,and two types of small peptide transporters,known as PTRs(peptide transporters)and OPTs (oligopeptide transporters).NRT2s are high-affinity nitrate transporters,while most NRT1s are low-affinity nitrate trans-porters,with the exception of CHL1(AtNRT1.1),which is a dual-affinity nitrate transporter[1].PTRs are di/tripeptide transporters,while OPTs are tetra/pentapeptide transporters. Two plus two normally equals four;however,in this case, two plus two equals three,as NRT1s and PTRs belong to the same family,known as NRT1(PTR).In this review,we will discuss these three transporter families.No sequence homol-ogy is found between the NRT1(PTR)family and either the NRT2family or the OPT family.Most of the in planta func-tions of the NRT1(PTR),NRT2,and OPT transporters have been identified in Arabidopsis,in which there are7NRT2 genes,53NRT1(PTR)genes,and9OPT genes.2.NRT1(PTR)familyThefirst NRT1(PTR)gene isolated was CHL1(AtNRT1.1). CHL1stands for CHLorate resistant mutant1.Chlorate,a ni-trate analog,can be taken up by plants using nitrate uptake systems and converted by nitrate reductase(NR)into chlorite, which is toxic for plants.Mutants defective in nitrate uptake or NR activity are resistant to chlorate treatment.The low-affin-ity nitrate uptake mutant,chl1,was isolated in1978[2]and the CHL1(AtNRT1.1)gene was isolated using a T-DNA-tagged mutant in1993[3].At that time,CHL1was a novel protein showing no sequence similarity with any protein in the ing the Xenopus oocyte expression system,it was shown to be a proton-coupled nitrate transporter[3].In1994,five di/tripeptide transporter genes were identified independently in the rabbit(PepT1)[4],a fungus(fPTR2) [5,6],Arabidopsis(AtNTR1,renamed as AtPTR2)[7,8],yeast (PTR2)[9]and a bacterium(DtpT)[10]by functional cloning based on peptide transport activity when expressed in Xenopus oocytes(PepT1),complementation of a yeast mutant(fPTR2, AtPTR2and yeast PTR2),or complementation of an Esche-richia coli mutant(DtpT).These peptide transporters were found to share sequence similarity with the nitrate transporter CHL1,and,together,they form a new transporter family, called NRT1(PTR).All the evidence indicates that nitrate transporters cannot transport peptide[11–13],while peptide transporters cannot transport nitrate[14],i.e.peptide transporters and nitrate transporters are functionally distinct.Nitrate and peptides are very different in structure.The question why peptides and nitrate share the same family of transporter has puzzled workers in thefield ever since the identification of NRT1(PTR) family.This puzzle should be solved in the future by structure determination of the nitrate transporters and peptide trans-porters in this family by mutagenesis or crystal structure stud-ies.The common feature of peptides and nitrate is that both are nitrogen sources:nitrate is the primary nitrogen source in higher plants,while di/tripeptides are the nitrogen sources in animals.CHL1(AtNRT1.1)is involved in taking nitrate from the soil[15,16],and PepT1,expressed in the intestine,is involved in absorption of the di/tripeptide products of protein digestion[4].Most secondary transporters in animals are so-dium-coupled,but PepT1,like NRT1,is a proton-coupled transporter.Since all the NRT1(PTR)transporters identified*Corresponding author.E-mail address:yftsay@.tw(Y.-F.Tsay).0014-5793/$32.00Ó2007Federation of European Biochemical Societies.Published by Elsevier B.V.All rights reserved. doi:10.1016/j.febslet.2007.04.047FEBS Letters581(2007)2290–2300in organisms other than higher plants are di/tripeptide trans-porters,it is more likely that nitrate transport activity evolved from an ancient peptide transporter.2.1.NRT1(PTR)family in Arabidopsis and riceAnother remarkable feature of the NRT1(PTR)family is the number of NRT1(PTR)genes in higher plants.In contrast to the low number in other organism(six in humans,four in C. elegans,three in Drosophila,and one in yeast),Arabidopsis has53NRT1(PTR)genes and rice80,suggesting that this fam-ily plays some unique function in higher plants.We can ask whether transport of nitrate and/or peptide is sufficient to ac-count for the large numbers of NRT1(PTR)genes in higher plants or whether there are any unidentified substrates or func-tions for this family.All of the NRT1(PTR)transporters in higher plants contain 12putative transmembrane(TM)spanning regions,with a large hydrophilic loop between TM domains6and7. At1g72120was originally predicted to encode a protein with 24TM domains,but Northern blot analysis and RT-PCR using various primers indicate that At1g72120should be split into two genes,At1g72115and At1g72125,each encoding a protein with the typical12TMs(Wang,Yang,and Tsay, unpublished data).The position of the long hydrophilic loop between TMs6and7is unique to higher plant NRT1(PTR) and rat PHTs[14].In most animal NRT1(PTR)transporters, the long loop is located between TMs9and10,while,in fungi, it is between TMs7and8.However,the function of the long hydrophilic loop in the NRT1(PTR)transporters has not been elucidated.Phylogenetic analysis of NRT1(PTR)transporters in Arabidopsis and rice,together with BnNRT1-2from Brassica[17],HvPTR1from barley[18],and AgDCAT1from alder[19]shows that they can be classified into four subgroups I,II,III and IV(labeled,respectively in red,green,pink, and blue in Figs.1and2).Four clusters in the phylogenetic tree(Os11g18044–Os04g41410,Os04g50930–Os07g41250, Os10g02220–Os10g02080,and Os04g59480–Os01g65120)are rice specific and two clusters(At1g72115–At1g22540and At3g45650–At3g45720)are Arabidopsis specific indicating that the genes in these clusters evolved by duplication after speciation events.Indeed,genes in the Arabidopsis-specific clusters are either closely linked or located in the duplicated blocks of the genome.RT-PCR analysis using gene-specific primer shows that51 of the53Arabidopsis NRT1(PTR)genes are expressed,and that only two(At1g69860and At3g45690),for which no tran-script could be detected in the tissues tested,might be pseudo-genes(Fig.2).Seven NRT1(PTR)genes are tandemly clustered on chromosome3(At3g45650–At3g45720),andfive of these are root-specific,indicative of functional redundancy.In addi-tion,there are12pairs of genes,marked with brackets in Fig.2,which(1)share the highest degree of sequence similarity with each other,and(2)are either closely linked or located on duplicated blocks of the genome.When the tissue-specific expression patterns are compared between the genes in each pair,identical patterns are seen with only three pairs(marked with a gray background in Fig.2).Thus,most of the53genes, even those sharing a high degree of sequence similarity,exhibit different tissue expression patterns and may play unique func-tions in Arabidopsis.So far,using Xenopus oocyte system for functional studies, 13plant NRT1(PTR)genes(AtNRT1.1[At1g12110][3], BnNRT1-2[17],AtNRT1.2[At1g69850,NTL1][12],and AtNRT1.4[At2g26690,NTL3][11]in group I,OsNRT1.1 [13]and At1g32450[AtNRT1.5,NTL2]in group II, At1g72115and At1g72125in group III,and At1g27080 [AtNRT1.6,NTL9],At1g69870[AtNRT1.7,NTL4], At1g18880,At5g62680and At1g52190[NTL8]in group IV [our unpublished data])have been proven to encode nitrate transporters(Fig.1).Nitrate transporters are found in all four groups.On the other hand,using yeast and/or Xenopus oo-cytes for functional studies,three of the plant NRT1(PTR) genes(AtPTR2[8,14,20],HvPTR1[18],and AtPTR1[21]) were found to encode peptide transporters.All three belong to a cluster in group II(Fig.1).In addition,AtPTR3 (At5g46050)in group III has been shown to be able to comple-ment a yeast dipeptide uptake mutant[22],but its dipeptide transport activity has not been directly tested in either yeast or oocytes.In summary,nitrate transporters are found in all four groups,while dipeptide transporters mainly belong to group II,with one member AtPTR3in group III.2.2.Nitrate transporters in the NRT1(PTR)family2.2.1.CHL1(AtNRT1.1).CHL1(AtNRT1.1)was not only thefirst NRT1(PTR)gene to be identified,but is also the most extensively studied.The nitrate concentration in the soil can vary by four orders of magnitude from the l M to mM range.To counteract thisfluctuation,plants have evolved two nitrate uptake systems,one high-affinity,with a K m in the l M range,and one low-affinity,with a K m in the mM range (Fig.3).When the chl1mutant wasfirst isolated,nitrate up-take studies showed that it was defective in low-affinity nitrate uptake,but had normal high-affinity nitrate uptake activity [23].In addition,based on the currents elicited by different concentrations of nitrate,the K m,calculated in CHL1-injected oocytes,was about5mM,in the low-affinity range[15].On the basis of these two pieces of evidence,the low-and high-affinity nitrate uptake systems were for a long time thought to be genetically distinct,and CHL1was thought to be a low-affinity nitrate transporter.However,two later independent studies showed that high-affinity nitrate uptake was also defective in the chl1mutant[1,24].In addition,Xenopus oocytes express-ing AtNRT1.1(CHL1)were found to exhibit two phases of ni-trate uptake,with a K m of about50l M for the high-affinity phase and a K m of about4mM for the low-affinity phase,indi-cating that CHL1is a dual-affinity nitrate transporter[1]. The mode of action of AtNRT1.1(CHL1)is switched by phosphorylation and dephosphorylation of threonine101 (Fig.3).Xenopus oocytes expressing the T101A mutant,which cannot be phosphorylated,exhibit only low-affinity nitrate up-take activity;while oocytes expressing the T101D mutant, which mimics the phosphorylated form,exhibit only high-affinity nitrate uptake activity[25].This indicates that phos-phorylated AtNRT1.1(CHL1)functions as a high-affinity nitrate transporter,and dephosphorylated CHL1functions as a low-affinity transporter.The phosphorylation levels of AtNRT1.1(CHL1)are regulated in response to the changes of the external nitrate concentrations[25].Other Arabidopsis NRT1s have been tested for high-affinity nitrate transport activity([1,11,13]and our unpublished data). Of the12tested,eleven showed pure low-affinity nitratetransport activity and only AtNRT1.1(CHL1)showed dual-affinity nitrate transport activity.However,the sequence RXXT101was found in36of53Arabidopsis NRT1(PTR) transporters,including some of those shown to be pure low-affinity nitrate transporters,indicating that an additional se-quence is required for the dual-affinity switch.BnNRT1-2 from Brassica napus and Os08g05910and Os10g40600from rice show a higher degree of sequence similarity to AtNRT1.1 (CHL1)than any of the Arabidopsis NRT1s,suggesting that they are orthologs of AtNRT1.1(CHL1),and it will be inter-esting to determine whether these three transporters also func-tion as dual-affinity nitrate transporters.Ironically,high-affinity nitrate uptake was found to be nor-mal in thefirst studies on the chl1mutant[23],and,at,that time,at which no gene involved in nutrient uptake had been identified,this different behavior of high-and low-affinity ni-trate uptake in the chl1mutant was one of the strongest pieces of evidence supporting the hypothesis that the high-and low-affinity nutrient uptake systems in higher plants were geneti-cally distinct.Many more channels and transporters have now been identified and found to be responsible only for high-affinity uptake or only for low-affinity uptake,demon-strating that the‘‘genetically distinct model’’is correct,and, in fact,AtNRT1.1(CHL1)proved to be an exception to the rule.Why was high-affinity nitrate uptake of chl1mutants some-times found to be normal and sometime abnormal?This could be due to there being multiple genes involved in nitrate uptake. For example,in Arabidopsis,AtNRT1.1(CHL1),AtNRT2.1, and AtNRT2.2are known to be involved in high-affinity ni-trate uptake[1,24,26–28],and AtNRT1.1(CHL1)and AtNRT1.2are known to be involved in low-affinity nitrateuptake [12,15](Fig.3).The transcription levels of AtNRT1.1(CHL1)and AtNRT2.1have been shown to be differentially regulated by N-starvation [29,30],nitrite [31],and NR defi-ciency [29,30].The determination of the relative contribution of AtNRT1.1(CHL1),AtNRT2.1,and AtNRT2.2to high-affinity nitrate uptake was made more complicated by the facts that phosphorylation of AtNRT1.1(CHL1),which controls the switch between the high-affinity and low-affinity modes of action,is regulated by different concentrations of nitrate [25]and that gene compensation has been documented be-tween CHL1and AtNRT2.1[32]and between AtNRT2.1and AtNRT2.2[28].Thus,the contribution of AtNRT1.1(CHL1),AtNRT2.1,and AtNRT2.2to high-affinity nitrate uptake varies from one condition to the other,and the high-affinity nitrate uptake defect of the chl1mutant is only detected under conditions in which the contribution of AtNRT1.1(CHL1)is dominant over that of AtNRT2.1and AtNRT2.2.Indeed,the age of the plant (the plants used for different up-take studies ranged from 5-day-old to 6-week-old)[1,16,24,32],the N-status of the plant [15,16],and the uptake medium (with or without ammonium)[32,33]can all cause dif-ferences in uptake behavior of the chl1mutant.For example,two studies showing a high-affinity nitrate uptake defect of the chl1mutant used 5-to 12-day-old plants,an age when the high-affinity nitrate uptake of the chl1mutant is only 10–30%of the wild type level [1,24].In contrast,the study which showed increased or normal high-affinity nitrate uptake activ-ity in the chl1mutant used 6-week-old plants [32,33].TheseFig. 2.Tissue-specific expression pattern of Arabidopsis AtNRT1(PTR )genes.Various tissues were collected for RT-PCR analyses of 53AtNRT1(PTR )genes.Shoot and root tissues were collected from 14-day-old Arabidopsis grown hydroponically on nylon meshes in magenta box (Sigma)and the inflorescence stem,cauline leaf,flower,and silique were collected from 4-week-old pot-grown Arabidopsis.Images of RT-PCR analyses of AtNRT1genes were quantified using a Luminescent Image Analyzer LAS1000plus (Fujifilm,Tokyo,Japan)and the software program,Image Gauge Ver.4.0(Fujifilm).The expression of the AtNRT1genes was normalized to that of UBQ10.The sum of the expression of all tissues for each gene was taken as 100%and the expression in a given tissue expressed as a percentage of this (shown by the area of the circle).Each gene is represented by a distinct color.Genes for which no expression was detected in the RT-PCR analyses are indicated by an asterisk.Genes sharing the highest similarity and closely linked or located on duplicated blocks of the genome are indicated by a right-bracket (]);pairs or groups of genes with similar expression patterns are indicated by a light grey background.results are consistent with the fact that AtNRT1.1(CHL1)is more highly expressed in the younger part of the root than the older part[15,34,35],while the converse is the case for AtNRT2.1[36,37].In fact,no AtNRT2.1transcripts can be de-tected in2-to5-day-old plants[38].In addition to nitrate uptake,AtNRT1.1(CHL1)is also in-volved in nascent organ development[34],light-induced sto-matal opening[39],repression of AtNRT2.1by high nitrate [32,33],relief of seed dormancy by nitrate[40],and stimulation of lateral root proliferation by high nitrate[35].Some of these studies suggested that AtNRT1.1(CHL1)may function as a nitrate sensor[32,33,35].In yeast,several unique members of transporter families(Ssy1p for amino acids,Mep2p for ammo-nium,and Snf3p and Rgt2p for glucose)do function as extra-cellular nutrient sensors[41].With the exception of Mep2p, these transporter-like sensors in yeast do not transport their respective nutrients.Since transport activity will alter cytosolic nutrient concentrations,it is,in fact,difficult to prove or dis-prove if a functional transporter also acts as a nutrient sensor.2.2.2.AtNRT1.2and cLATS.The basal level of nitrate up-take activity seen in nitrogen-starved plants or ammonium-grown plants is due to the‘‘constitutive’’components of nitrate uptake and the increase of several folds in activity after exposure to nitrate is due to the‘‘inducible’’components. There are four components of nitrate uptake,the constitutive high-affinity system(cHATS),the inducible high-affinity sys-tem(iHATS),the constitutive low-affinity system(cLATS), and the inducible low-affinity system(iLATS).In Arabidopsis, AtNRT1.2is responsible for cLATS,as shown by the consti-tutive expression of AtNRT1.2and the defect in nitrate-in-duced membrane depolarization seen in the atnrt1.2 antisense mutant grown in ammonium[12].Although both AtNRT1.1and AtNRT1.2are involved in low-affinity nitrate uptake,these two transporters differ in three aspects:(1) expression of AtNRT1.1is induced by nitrate[3],while AtNRT1.2is constitutively expressed[12];(2)AtNRT1.1is a dual-affinity nitrate transporter,while AtNRT1.2is a pure low-affinity nitrate transporter[1];and(3)AtNRT1.1 (CHL1)is expressed in the epidermis in the root tip[15],but in the cortex and external half of the endodermis in other regions,whereas AtNRT1.2mRNA is found only in the epi-dermis[12].The physiological impact of the difference in cell type-specific expression remains to be analyzed.Similar to AtNRT1.2,OsNRT1is a constitutive gene encod-ing a pure low-affinity nitrate transporter and is only expressed in the root epidermis[13].However,phylogenetic analysis indi-cated that AtNRT1.2and OsNRT1belong to different groups of the NRT1(PTR)family(Fig.1).If OsNRT1is also respon-sible for cLATS,this then raises the question why OsNRT1, and AtNRT1.2are orthologs,but belong to different groups of the NRT1(PTR)family.2.2.3.AtNRT1.4and petiole nitrate storage.After being taken up into the root cells,nitrate has to cross several cell membranes to be distributed in different cellular compartments and different pared to nitrate uptake,less is known about how nitrate is transported to different cellular compartments and tissues.AtCLCa,a member of the chloride channel family(reviewed separately in this issue),functions as a nitrate/proton exchanger responsible for nitrate accumula-tion in vacuoles[42].In addition,several NRT1genes in Ara-bidopsis are involved in nitrate distribution in different cellular compartments and tissues(Tsay,unpublished data).The low-affinity nitrate transporter gene,AtNRT1.4,is only expressed in the leaf petiole[11].In the wild type,the petiole nitrate con-tent is high,but NR activity is low,indicating that the petiole is a nitrate storage site.In the atnrt1.4mutant,the nitrate con-tent of the petiole is reduced to half that of the wild type level, but that in the leaf lamina is slightly increased[11].These stud-ies on AtNRT1.4show that the petiole has a unique function in nitrate homeostasis regulation.This could explain why some farmers use the petiole nitrate content to monitor the N-de-mand of crops.2.3.Dipeptide transporters in the NRT1(PTR)familyIn bacteria,yeasts,and animals,the ability to transport pep-tides,which plays a crucial role in nutrition in terms of carbon and nitrogen sources,is well established.However,in plants, the role of small peptides(2–6amino acids)and their trans-porters is less defined.To date,three protein families have been identified as transporting small peptides in higher plants,the ABC-type transporters,the di/tripeptide transporters(PTR family),and the OPT family.Peptide transporters within the ABC superfamily have been reviewed by Stacey et al.[43].In this review,we focus on recent data for the PTR and OPT fam-ilies(Table1).In addition,we will discuss some new insights into diverse possible roles of Arabidopsis PTRs in plant devel-opment,stress responses,and heavy-metal detoxification.2.3.1.The PTRs in Arabidopsis.Thefirst plant peptide transporter,AtPTR2(At2g02040,formerly AtNRT1),was iso-lated by complementation of a yeast histidine transport-defi-cient mutant with an Arabidopsis cDNA library.However,no uptake of radiolabeled histidine could be measured in S.cerevi-siae expressing AtPTR2[7].Later,AtPTR2was transformed into a yeast peptide transport-deficient mutant in which AtPTR2displayed high-affinity,low-selectivity transport activ-ity for di-and tripeptides[8].AtPTR2(formerly AtPTR2-B)CHL1CHL1was also cloned by Song et al.by functional complementation of a yeast peptide transport mutant with an Arabidopsis cDNA library[20].Again,it was demonstrated that,when expressed in yeast[20]or Xenopus oocytes[14],it could mediate the uptake of various di-and tripeptides,but showed no His or nitrate up-take activity.AtPTR2is expressed in most plant tissues,with high levels in green silique,root,and young seedlings[7,20]. In situ hybridization indicated that AtPTR2is expressed in the embryo at the heart stage of development[8].It is notewor-thy that the role of AtPTR2in planta is still an open question, because the lateflowering and seed abortion phenotype ob-served in antisense AtPTR2plants is not seen in the T-DNA-in-serted atptr2mutant(G.Stacey,personal communication), indicating that the phenotype was caused by cross-silencing an unknown member(s)of the NRT1(PTR)family. Functional analysis of AtPTR2and fungus fPTR2(formerly AtPTR2-A,isolated by complementing a yeast mutant with an Arabidopsis cDNA library,but later found to be a gene from a fungal contaminant[5,6])in Xenopus oocytes under voltage clamp conditions revealed that both transport a broad spec-trum of dipeptides,with K m s ranging from30l M to3mM [14].Similar to rabbit PepT1,AtPTR2and fPTR2prefer dipeptides;the tripeptide and amino acid transport activities being$60%and10%,respectively,of the dipeptide activity [14].The low level of amino acid transport activity may explain why AtPTR2was originally isolated by complementing a his-tidine transport-deficient mutant,but no histidine transport activity was observed.The substrate preferences of AtPTR2and fPTR2are quite similar.In addition,kinetic analysis sug-gests that both AtPTR2and fPTR2operate by a random bind-ing,simultaneous transport mechanism[14]. Subsequently,AtPTR1(At3g54140),which mediates the up-take of di-and tripeptides,was also identified by heterologous complementation of a yeast peptide transport-deficient mutant and found to recognize not only a wide spectrum of naturally occurring di-and tripeptides,but also the modified tripeptide, phaseolotoxin,and substrates lacking peptide bonds[21]. Transient expression analysis of a GFP fusion indicated that AtPTR1is a plasma membrane protein and GUS staining analysis revealed strong expression of AtPTR1in vascular tis-sue throughout the plant,indicating a role in long-distance peptide transport[21].AtPTR3(At5g46050),a mechanical wounding-induced gene, was identified by screening mutant lines transformed with T-DNA containing a promoter trap vector carrying a GUS re-porter[44].Further study showed that AtPTR3expression is induced by salicylic acid(SA),and that wound-induced expres-sion of AtPTR3was abolished in the SA signaling mutants, NahG and npr1.AtPTR3is able to complement the growth de-fect of the yeast dipeptide uptake mutant,ptr2,using dipep-tides as the amino acid source[22].One of the T-DNA inserted mutants,atptr3-1,showed increased susceptibility to the pathogen,Erwinia carotovara subsp.carotovora,but the phenotype was not so obvious in another mutant,atptr3-2, with a different ecotype background.The converse was true for another pathogen,Pseudomonas syringae with increasedTable1Properties of Arabidopsis dipeptide and oligopeptide transportersAGI Expression Localization Substrate specificity Phenotypes mRNA a Promoter-GUS In yeast b In oocytesAtPTRsAtPTR2At2g02040Root,3d-germ.seed,silique;other tissues –Di-and tripeptides*;phaseolotoxinDi-andtripeptides?dAtPTR1At3g54140Weak expressionin all tissues Vascular tissue throughoutthe plantPlasmamembraneDipeptides;phaseolotoxinDi-andtripeptides;4-APAA cNo unusualphenotypeAtPTR3At5g46050–Cotyledons,leaves Di-and tripeptides–Reduced defenseagainst pathogens AtOPTsAtOPT1At5g55930Flower;leaf,stem Vascular tissues;pollen andpollen tubesKLLLG–AtOPT2At1g09930Equal in all tissues–––AtOPT3At4g16370Flower,leaf,root;stem Vascular tissues;pollenand embryoCu2+;Mn2+;Fe2+–Embryo arrestedat the preglobularstageAtOPT4At5g64410Equal in all tissues Vascular tissues;embryoniccotyledons KLLG;KLGL*;KLLLGGGFL;GGFM;KLGLAtOPT5At4g26590Flower–KLLLG–AtOPT6At4g27730Flower;root Vascular tissues;ovules,embryo,stamenfilamentsand lateral root initiation KLLLG;GSH*; GSSG–AtOPT7At4g10770Flower;root Vascular tissues;embryoniccotyledonsKLLLG–AtOPT8At5g53520–Pollen,early stages ofembryogenesis––AtOPT9At5g53510––––a Words in bold indicate a stronger expression.b Yeast growth complementation assays reveal possible substrates for the indicated AtOPT.Substrates further confirmed by uptake experiments are marked with an asterisk.Metal transport by AtOPT3is nicotianamine-independent.c4-APAA:Aminophenylacetic acid.d Phenotypes observed in antisense mutants of AtPTR2are delayedflowering and arrested seed development,however,the T-DNA insertion lines show no unusual phenotypes(personal communication).susceptibility found in atptr3-2and no phenotype in atptr3-1 [22].Whether dipeptides are the primary substrate of AtPTR3, the role of AtPTR3in pathogen defense,and whether these ac-count for the ecotype-specific and pathogen-specific pheno-types remain to be determined.2.3.2.The PTRs in barley.In the past few years,using degenerate primers designed to conserved regions of peptide transporters,homologous genes encoding peptide transporters have been identified in barley[18],Vicia faba[45],and the car-nivorous plant,Nepenthes,[46].The barley scutellar peptide transporter,HvPTR1,is the best characterized plant PTR,as peptide transport in germinating barley grain has been exten-sively studied using biochemical approaches[18,47,48].Unlike AtPTRs,which are expressed in almost all tissues,expression of HvPTR1is highly tissue-and developmental stage-specific, with transcripts being detected in scutellar epithelial cells dur-ing germination[18].All the evidence indicates that HvPTR1, localized in the plasma membrane of scutellar epithelial cells,is responsible for remobilizing small peptides,produced by the hydrolysis of storage protein in the endosperm,to the growing seedling[18,49].In response to increased levels of amino acids (present at the later stage of germination),the dipeptide transport activity of the scutella is reduced and HvPTR1 protein is regulated at the post-translational level by phos-phorylation[50].This could be an important regulatory mech-anism for controlling the amount of organic nitrogen transported from the endosperm to the embryo during seed germination.2.4.Other substrates and potential substrates of theNRT1(PTR)transportersIn addition to nitrate and dipeptides,histidine and malate have been shown to be transported by some NRT1(PTR) transporters.RnPHT1,expressed in rat brain,exhibits high-affinity dipeptide and high-affinity histidine transport activity(K Hism is about20l M),but no transport activity can be detectedfor other amino acids[51].BnNRT1-2from Brassica trans-ports nitrate and histidine with similar K m s(both in the mM range),but different pH dependencies[17].AtPTR1and AtPTR2are high-affinity dipeptide transporters with low-affin-ity,low-capacity histidine transport activity[14,21].RnPHT1 therefore transports dipeptide and histidine with equal effi-ciency,but AtPTR1and AtPTR2transport dipeptide much more efficiently than histidine.On the other hand,AgDCAT1, a member of the NRT1(PTR)family expressed in the actino-rhizal nodules of alder,has been shown to be a dicarboxylate transporter,with a K m of70l M for malate[19].Located at the symbiotic interface,it may be responsible for providing the intracellular bacteria with dicarboxylates as carbon sources. It will be interesting to determine whether any of the Arabid-opsis NRT1(PTR)s can transport malate.What could be other potential substrates for NRT1(PTR) transporters accounting for such a large family in higher plants?IAA-amino acid conjugates,c-glutamylcysteine,and glutathione,with similar structures to di-and tripeptides,are important molecules for plant development,nutrition,stress adaptation,and heavy metal detoxifiing a reverse ge-netic approach,it was found that c-glutamylcysteine and glu-tathione can be transported by one of the AtNRT1(PTR) transporters and that the T-DNA-inserted mutant was cad-mium-sensitive(Tsai and Tsay,unpublished data).3.NRT2familyThe NRT2family of high affinity nitrate transporters was first discovered in the chlorate-resistant mutant,crnA,now re-named NRTA,of Aspergillus nidulans:the nitrate uptake de-fect of this mutant is seen in the conidiospore and young mycelia stages,but not in older mycelia[52,53].Subsequent searches led to the identification of an equivalent gene family in Chlamydomonas[54],marine cyanobacterium[55],and a variety of plants,including barley[56],tobacco[57],soybean [58],and Arabidopsis[30,38].3.1.A two-component high-affinity nitrate uptake systemNRT2protein contains12TM domains.In the fungus, Aspergillus nidulans,NRT2protein is functional on its own.A.nidulans NRT2cDNA expressed in Xenopus oocytes exhib-its nitrate,nitrite,and chloride(nitrite analogue)uptake activity[59].The nitrate-induced inward currents are pH-dependent,consistent with a proton-coupled mechanism. Mutagenesis analysis indicated that two conserved arginine residues(R87and R459)in TM domains2and8are required for substrate binding,and intragenic suppression analysis revealed a functional interplay between R87in TM2and N459in TM11[60].In contrast,in Chlamydomonas and higher plants,NRT2protein alone does not show any nitrate transport activity and an additional component,NAR2,a pro-tein with a single TM domain,is required.The involvement of NAR2in high-affinity nitrate uptake wasfirst identified genet-ically in Chlamydomonas reinhardtii,in which NAR2is next to NRT2.1in the nitrate-related gene cluster[54,61].Xenopus oocytes co-injected with CrNAR2and CrNRT2.1show pH-dependent,nitrate-elicited currents,while oocytes injected with either one alone do not[62].A direct interaction between NRT2and NAR2was further confirmed using the yeast split-ubiquitin system[63].The interaction between NAR2 and NRT2is very specific.For example,in barley,there are three NAR2genes,only one of which,HvNAR2.3,can forma functional unit with HvNRT2.1[64].3.2.Genes involved in high affinity nitrate uptake(HATS) According to the physiological analyses,there are two high-affinity nitrate uptake systems,inducible HATS(iHATS)and constitutive HATS(cHATS).The V max of iHATS is several folds higher than that of cHATS.In Arabidopsis,there are seven NRT2genes.AtNRT2.1and AtNRT2.2are next to each other on the chromosome,and both are involved in high affinity nitrate uptake[26–28].In the nrt2.1and nrt2.2mutants,iHATS is reduced by50–72% and19%,respectively,indicating that AtNRT2.1plays a more dominant role and AtNRT2.2a minor role in iHATS[28]. However,when AtNRT2.1is mutated,AtNRT2.2mRNA lev-els are increased three-fold to compensate the functional loss of AtNRT2.1[28].In Arabidopsis,there are two NAR2genes, NAR2.1(AtNRT3.1,At5g50200)and NAR2.2(AtNRT3.2, At4g24720).AtNAR2.1is known to participate in high-affinity nitrate uptake[63,65].In the nar2.1null mutant,cHATS is re-duced by up to89%,while iHATS is reduced by up to96% [65].It is noteworthy that,in a nrt2.1nrt2.2double knock out mutant,cHATS was only reduced by30–35%[28].The severe defect of cHATS in the nar2.1mutant[65],but not the nrt2.1nrt2.2double mutant[28],suggested that another。