蛋白质的加工与转运
蛋白质的合成、转运、加工与修饰

沉降系数 蛋白质
原核细胞 16S-rRNA
30S 21种 5S-rRNA 23S-rRNA
50S 34种 70S
真核细胞 18S-rRNA
40S ~33种 5S-rRNA 5.8S-rRNA 28S-rRNA 60S ~49种 80S
E.coli核糖体小亚基中rRNA与r蛋白的相互关系示意图
Brenner 等 用 实 验 证 实 : 用 噬 菌 体 T2 感 染大肠杆菌后,几乎所有在细胞内合成 的蛋白质都不再是细胞本身的蛋白质, 而是噬菌体所编码的蛋白质;大肠杆菌 内出现了少量半衰期很短的新类型RNA, 其代谢速度极快,它们的碱基组成与噬 菌体DNA是一致的。
Spiegelman用分子杂交技术证明:经噬 菌体感染后新合成的RNA可以与噬菌体 DNA相杂交。
Kozak序列:a favorable context for efficient
eukaryotic
translation
initiation
(PuNNATGPu)。(S)
典型的Poly(A)加尾信号:AATAAA。(S)
cDNA末端快速扩增法(rapid amplification of
Tu TGsTP
Ts Tu GDP
5'
AUG
3'
2. 肽链延长的第二步:成肽
在转肽酶的催化下,P位上的tRNA所携的甲酰蛋氨酰 基转移给A位上的新进入的氨酰-tRNA,形成肽链。原 在P位上的、脱去甲酰蛋氨酰基的tRNA从复合物中迅速 脱落,使P位留空。
3. 肽链延长的第三步:转位
在转位酶/延长因子G(EF-G)的催化下,在A位的二 肽连同mRNA从A位进入P位。实际是整个核糖体的相对 位置移动。第三位氨基酸按密码的指引进入A位注册,开 始下一轮循环。
分泌蛋白的合成加工和运输过程

分泌蛋白的合成加工和运输过程
分泌蛋白的合成、加工和运输是一个复杂的过程,涉及多个细胞器和分子机制。
以下是一般的分泌蛋白合成加工和运输的过程概述:
1.合成过程:
o合成:分泌蛋白的合成发生在细胞的核内,由核糖体通过蛋白质合成过程进行。
合成的蛋白质称为前
蛋白。
o信号肽:在合成过程中,蛋白质序列中可能存在一个信号肽序列,该序列指示着该蛋白质是一个分泌
蛋白。
信号肽将帮助定位蛋白质到正确的位置。
2.加工过程:
o初始加工:在合成过程结束后,前蛋白将进入内质网(ER)。
在ER中,前蛋白将经历一系列的初始加
工步骤,包括信号肽的剪切和糖基化。
o终末加工:从ER中,蛋白质将进一步进入高尔基体,然后进入高尔基体的囊泡以进行成熟和终末加工。
该过程可能包括糖基化、脱糖基化、剪切等多种修
饰方式。
3.运输和存储过程:
o高尔基体到细胞膜:成熟的蛋白质囊泡从高尔基体进入细胞膜的分泌途径。
这些囊泡将与细胞膜融合,
释放蛋白质到细胞外。
o分泌颗粒:某些蛋白质可能在高尔基体中被包裹形成分泌颗粒,存储在细胞内。
这些颗粒在需要时,
可以通过融合细胞膜释放蛋白质。
4.分泌:
o定向分泌:某些蛋白质需要特定的信号序列来定向到特定的细胞膜区域,例如突触前膜和上皮细胞表
面。
o不定向分泌:其他蛋白质可能没有特定的定向信号,将被均匀地分泌到细胞膜上。
整个过程涉及到多个细胞器、蛋白质修饰和转运机制。
它的精细调控确保了分泌蛋白的准确合成和传递,使其可以发挥正常的功能。
中学生物:蛋白质的运输与代谢过程

蛋白质是生命体内的重要物质之一,其在生命活动中扮演着重要的角色。
在生物体内,蛋白质存在于多个方面,如细胞膜、细胞骨架、酶、激素等,因此,蛋白质在生命体中的生理功能异常广泛。
在本篇文章中,我们将介绍蛋白质的运输与代谢过程。
一、蛋白质运输蛋白质的运输主要分为两种情况:膜转运和液体转运。
1.膜转运膜转运是指从一个细胞内的亚细胞结构向另一个细胞内的亚细胞结构运输蛋白质的过程。
膜转运主要是通过蛋白质在内质网上合成后,经由高尔基体、囊泡和内质网的运行等一系列过程达到细胞膜或其他细胞内的亚细胞结构。
在细胞膜上,运输蛋白质的机制主要包括两种:内吞作用和外分泌作用。
内吞作用是指细胞吞噬了物质,将其包裹在细胞膜上,并在细胞内形成囊泡后将其调制到别处,例如溶酶体和内质网等亚细胞结构中。
外分泌作用是指细胞经过复杂的细胞物质转运和生化过程,将蛋白质从内质网向细胞外界分泌出来。
这个过程中,蛋白质需要经过一系列的加工和调控,才能最终达到所需的形态。
2.液体转运液体转运是指在细胞膜之外,通过蛋白质在血液、体液、胆汁、胃液等液体内转运的过程。
这个过程又包括了几种转运机制:扩散作用、简单转运、被动转运和主动转运。
扩散作用是指物质从高浓度区域移向低浓度区域的过程,而蛋白质的扩散作用又被称之为自由运输。
简单转运是指物质在细胞膜上的通道中通过直接跨越膜从细胞外进入细胞内,这种过程主要用于小分子物质的转运。
被动转运是指物质通过载体蛋白质的帮助,自然地从高浓度区移向低浓度区,而不需要能量消耗。
主动转运是指物质跨越膜时需要耗费能量的过程,这个过程需要一些特殊的载体蛋白质,例如ATP酶和平衡络合体。
二、蛋白质代谢蛋白质在人体内经历了三个阶段的代谢过程:蛋白质合成、蛋白质老化和蛋白质消耗。
1.蛋白质合成细胞内的蛋白质合成又被称之为蛋白质生物合成,主要是指在内质网上进行的一连串复杂过程,包括了转录、RNA加工和翻译等。
在这个过程中,蛋白质需要一系列的辅酶和信号分子的帮助来协助完成整个过程。
蛋白质合成后的加工及转运

The signal-recog整n理it课io件n particle (SRP)
14
③转移通道:存在与内质网膜上的跨膜通道。
④。 SRP受体(SPR receptor),是膜的整合蛋白, 为异二聚体蛋白,存在于内质网上,可与SRP特异结合。
⑤停止转移序列(stop transfer sequence),肽链上的 一段特殊序列,与转移通道蛋白亲合力很高,能阻止肽 链继续进入内质网腔。
第五节 蛋白质合成后的加 工及转运
整理课件
1
本节内容:
一、蛋白质合成后的细胞定位;
二、蛋白质合成后的转运;
三、蛋白质合成后的加工及修饰;
整理课件
2
一、蛋白质合成后的细胞定位:
1、蛋白质是在细胞中游离的核糖体上或者是在糙面内 质网上的核糖体上合成的。
2、蛋白质合成后需要运转到特定的位点起作用:
(1)、内质网驻留蛋白、高尔基体驻留蛋白质、溶酶 体蛋白质、分泌蛋白质、膜蛋白等这些蛋白是由位于 糙面内质网上的核糖体合成的。然后进入内质网腔或 内质网膜。
输入内质网
-Leu-Ala-Leu-Lys-Leu-Ala-Gly-Leu-AspIle-
+H3N-Met-Leu-Ser-Leu-Arg-Gln-Ser-Ile-Arg-Phe-PheLys-Pro-Ala-Thr-Arg-Thr-Leu-Cys-Ser-Ser-Arg-Tyr-LeuLeu-
-Ser-Lys-Leu-COO-
整理课件
34
(四)、叶绿体的蛋白质转运
转运到基质的前体蛋白具有典型的N端序列。转运到 叶绿体内膜和类囊体膜的前体蛋白含有两个N端信号序 列,第一个被切除后,暴露出第二个信号序列,将蛋白 导向内膜或类囊体膜。
蛋白质转运的四种方式

蛋白质转运的四种方式
蛋白质转运是指蛋白质在细胞内或细胞间的运输过程。
蛋白质转运可以通过四种方式进行:
1. 简单扩散:某些小分子量的蛋白质可以通过细胞膜的脂质层进行简单扩散。
这种方式不需要能量消耗,但对于大分子量或极性的蛋白质来说效率较低。
2. 通道介导转运:细胞膜上存在一些通道蛋白,可以形成水通道或离子通道,以便蛋白质通过。
这种方式也不需要能量消耗,但对于大分子量的蛋白质来说通道通常较窄。
3. 载体介导转运:细胞膜上存在一些特定的载体蛋白,可以与蛋白质结合并通过细胞膜。
这种方式需要能量消耗,通常是通过ATP的水解来提供能量。
载体介导转运对于大分子量或极性的蛋白质来说效率较高。
4. 胞吞作用:细胞可以通过胞吞作用将蛋白质包裹在细胞膜形成的囊泡内,然后将其运输到细胞内部。
这种方式需要能量消耗,通常是通过ATP的水解来提供能量。
胞吞作用对于大分子量的蛋白质或整个细胞的吞噬作用来说效率较高。
蛋白质转运的四种方式

蛋白质转运的四种方式
蛋白质转运是指在细胞内将蛋白质从一个位置转移到另一个位置的过程。
这一过程可以通过以下四种方式进行:
1. 核内转运:某些蛋白质需要在细胞核内进行转运,以参与DNA复制、转录和修复等核内生物学过程。
这种转运方式通常依赖于核孔复合物,它是核膜上的一组蛋白质复合物,能够选择性地将特定的蛋白质运送进入或离开细胞核。
2. 胞质转运:大多数蛋白质通过胞质转运从细胞质移动到其他细胞器中。
这种转运方式通常涉及到信号肽,即蛋白质上的一段特定序列,在蛋白质合成过程中被识别并用于定位蛋白质到特定的细胞器。
3. 高尔基体转运:高尔基体是一个细胞内的复杂细胞器,负责加工和分拣蛋白质。
在高尔基体转运中,蛋白质经过一系列加工步骤,例如糖基化和蛋白质折叠,以及与特定的转运蛋白相互作用,最终被分泌到细胞外或送往其他细胞器。
4. 内质网转运:内质网是一种包裹和运输蛋白质的细胞器,在蛋白质合成过程中起着重要的作用。
蛋白质在合成过程中与内质网上的核糖体相互作用,并随后通过蛋白质通道进入内质网腔。
在内质网中,蛋白质会经过一系列加工步骤,例如糖基化和蛋白质折叠,以确保它们的正确功能和结构。
蛋白质的合成与运转翻译的过程

一、准备(一)肽链的合成是由氨基端向羧基端进行的,速度很快,大肠杆菌每秒可聚合20个氨基酸。
信使RNA是从5’向3’翻译的。
(二)氨基酸的活化:由氨酰tRNA合成酶催化,分两步:1. 形成氨基酸-AMP-酶复合物:氨基酸的羧基与5’磷酸形成高能酸酐键而活化。
2.转移:氨基酸转移到转运RNA3’末端,与3’或2’羟基结合。
总反应为:氨基酸+tRNA+ATP=氨酰tRNA+AMP+PPi此酶专一性很高,只作用于L-氨基酸,每种氨基酸都有一个专一的酶。
酶有校对机制,一方面对转运RNA有专一性,另一方面还有水解位点,可水解错误酰化的氨基酸。
(三)转运RNA的作用:起接头作用,根据密码子决定氨基酸的去向。
转运RNA反密码子的某些突变可抵销一些有害突变,称为校正突变。
二、肽链合成的起始(一)起始信号:起始密码子是AUG,其上游约10个核苷酸处有一段富含嘌呤的序列,可与16S rRNA的3’端互补,与起始有关。
(二)起始复合物的形成:1.起始氨基酸:是N-甲酰甲硫氨酸,其转运RNA也有所不同,称为tRNAf,与甲硫氨酸结合后被甲酰化酶以甲酰四氢叶酸甲基化,生成fMet-tRNAf。
2.30S起始复合物:信使RNA先与小亚基结合,在起始因子3(IF3)的参与下形成mRNA-30S-IF3复合物,然后在IF1和IF2参与下与fMet-tRNAf和GTP结合,并释放IF3,形成30S起始复合物。
3.30S起始复合物与大亚基结合,水解GTP,释放IF1和IF2,形成70S起始复合物。
此时转运RNA占据肽酰位点,空着的氨酰位点可接受另一个转运RNA,为肽链延长作好了准备。
三、肽链的延伸(一)转运RNA进入氨酰位点:需ATP和两种延伸因子参加。
EFTu与GTP 结合,再与转运RNA形成复合物,才能与起始复合物结合。
然后释放出EFTu-GDP,与EFTs和GTP反应,重新生成EFTu-GTP,参加下一轮反应。
EFTu水解GTP前后构象不同,错误的转运RNA会离去,而正确的则与两种状态都有强相互作用。
蛋白质转运的四种方式

蛋白质转运的四种方式1.引言1.1 概述蛋白质是生物体内的重要分子之一,扮演着许多关键生物过程的重要角色。
然而,蛋白质在细胞内的运输过程是一个复杂而精确的过程。
蛋白质需要通过转运来从一个细胞区域运输到另一个细胞区域,以完成其特定的功能。
在这篇文章中,我们将介绍蛋白质转运的四种方式。
蛋白质转运可以通过四种方式实现:扩散转运、被动转运、主动转运和胞吞作用。
每种方式都有其特定的机制和规律。
首先,扩散转运是一种passiveway 的转运方式,它依赖于蛋白质在细胞膜上的渗透过程。
这种转运方式不需要能量的消耗,通过膜的孔道或者渗透因子等物质,使蛋白质自由地从高浓度区域向低浓度区域扩散。
其次,被动转运是一种passiveway 的转运方式,它依赖于蛋白质在细胞膜上的结构和性质。
在被动转运过程中,蛋白质通过膜上的通道或者载体蛋白,被主动物质的浓度梯度所驱动,从高浓度区域移动到低浓度区域。
第三种方式是主动转运,它是一种actives方式的转运方式,需要耗费能量。
在主动转运过程中,蛋白质通过特殊的载体蛋白,逆着物质浓度梯度进行转运,这使得蛋白质能够从低浓度区域向高浓度区域移动。
最后一种方式是胞吞作用,它是一种endocytosis 和exocytosis 的转运方式。
在胞吞作用中,细胞通过细胞膜的包裹和膜囊的形成,将蛋白质包裹在内,并通过吞噬体或囊泡的运动将蛋白质从一个细胞区域转运到另一个细胞区域。
通过对这四种蛋白质转运方式的介绍,我们可以更好地理解蛋白质在细胞内传递和运输的机制。
进一步的研究将有助于揭示细胞内的生物过程,并为未来的药物研发和治疗提供新的思路和方法。
1.2文章结构1.2 文章结构本文将围绕蛋白质转运的四种方式展开详细讨论。
下面将对每个章节的内容进行简要介绍:2.1 第一种方式:在这一部分,我们将深入探讨蛋白质通过膜蛋白的主动转运的过程。
首先将介绍膜蛋白的特征及其在细胞中的重要性。
然后,我们将详细讨论通过膜蛋白实现蛋白质转运的机制和过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蛋白质的折叠
重要性:形成动力学和热力学稳定的三维结构 , 从而产生活性或功能。
折叠错误:功能丧失,疾病。
一些协助折叠的蛋白质:
分子伴侣:细胞内辅助新生肽折叠的蛋白质,序 列上无相关性,而有共同功能的保守蛋白质。
热休克蛋白:应激性反应蛋白,HSP70、 HSP40和GrpE三个家族。
蛋白质前体的加工
4、切除新生肽链中非功能片段
前胰岛素原蛋白翻译后成熟过程
蛋白质前
蜂毒蛋白只有经蛋白酶水解切除N-端的22个氨基 酸以后才有生物活性。该胞外蛋白酶只能特异性切割 X-Y2肽,其中X是丙氨酸(A),天门冬氨酸(N)和谷氨酸 (E),Y是丙氨酸(A)或脯氨酸(P)。
它所带的氨基也能与生 长中的肽链上的羧基反 应生成肽键,反应的产 物是一条3’羧基端挂了 一个嘌呤霉素残基的小 肽,肽酰嘌呤霉素随后从 核糖体上解离出来。
嘌呤霉素是AA-tRNA的结构类似物
通过提前释放肽链来 抑制蛋白质合成的
蛋白质合成的抑制剂
氯霉素阻止mRNA与核糖体的结合;
蛋白质运转机制
两种运转机制:
翻译运转同步机制(co-translational):某个 蛋白质的合成和运转是同时发生的
翻译后运转机制(post-translational):蛋白 质从核糖体上释放后才发生的运转,这两 种运转方式都涉及到蛋白质分子内特定区 域与细胞膜结构的相互关系。
其中一些具有线粒体定位信号或核定 位信号。
2、二硫键的形成 蛋白质的二硫键是蛋白质合成后通过两个半
胱氨酸的氧化作用生成的。
二硫键的正确形成对稳定蛋白质的天然构象 具有重要的作用。
蛋白质前体的加工
3、特定氨基酸的修饰氨基酸侧链的修饰作用 包括: 磷酸化(如核糖体蛋白质) 糖基化(如各种糖蛋白) 甲基化(如组蛋白、肌肉蛋白质) 乙酰化(如组蛋白) 羟基化(如胶原蛋白) 羧基化等……
第四章:生物信息的传递(下) —从mRNA到蛋白质
蛋白质前体的加工、折叠
细胞中蛋白质的转运机制
蛋白质前体的加工
新生的多肽链大多数没有功能,必须 经过加工修饰才能转变为活性蛋白质。
蛋白质的前体加工包括:
N端fMet或Met的切除 二硫键的形成 特定氨基酸的修饰 切除新生肽链中的非功能片段
蛋白质前体的加工
磷酸化 ✓ 主要由多种蛋白激酶催化, ✓ 发生在丝氨酸、苏氨酸和酪氨酸等三种氨基酸的侧
链。 糖基化 ✓ 糖蛋白主要是蛋白质侧链上的天冬氨酸、丝氨酸、
苏氨酸残基加上糖基形成的; ✓ 内质网可能是蛋白质N-糖基化的主要场所。 ✓ 所有的分泌蛋白和膜蛋白几乎都是糖基化蛋白质。
伴侣素:HSP60和HSP10
分子伴侣防止折叠错误、提高折叠效率,不参
与终产物形成
蛋白质合成的抑制剂
蛋白质生物合成的抑制剂主要是一些抗生 素,如嘌呤霉素、链霉素、四环素、氯霉 素、红霉素等。
此外,5-甲基色氨酸、环已亚胺、白喉毒 素、蓖麻蛋白和其他核糖体灭活蛋白都能 抑制蛋白质的合成。
干扰素是真核细胞感染病毒后产生的一类有 抗病毒作用的蛋白质。它可抑制病毒繁殖, 保护宿主。
蛋白质运转机制
由于细胞各部分都有特定的蛋 白质组分,因此合成的蛋白质必须 准确无误地定向运送才能保证生命 活动的正常进行!
蛋白质在两种场所内合成
大部分蛋白质是由细胞质中的核糖体合 成的
新生蛋白质经蛋白酶切割后变成有功能
的成熟蛋白质
左: 新生蛋白质在去掉N端一部分残基后变成有功能的蛋白质 右: 某些病毒或细菌可合成无活性的多聚蛋白质,经蛋白酶切割 后成为有功能成熟蛋白。
蛋白质前体的加工
1、N端fMet或Met的切除 无论原核生物还是真核生物,N端的甲硫氨酸 往往在多肽链合成完毕前就被切除。
蛋白质运转机制
翻译时运转的蛋白质: 在合成过程中与内质网膜结合,核糖 体是“膜结合”的。
合成后,蛋白质进入内质网,经高尔 基体后穿出细胞质膜。
如果这些蛋白质具有某种信号,则可 能驻留在运输途径中的某一环节,也可 直接定位于其它细胞器(溶酶体等)。
翻译后运转的蛋白质:
在细胞质中游离核糖体上合成之后释 放入细胞质,
能干扰fMet-tRNA与核糖体的结合,从而 阻止蛋白质合成的正确起始,
也会导致mRNA的错读。若以多聚(U)作 模板,则除苯丙氨酸(UUU)外,异亮 氨酸(AUU)也会被掺入。
链霉素的作用位点在30S亚基上。
不需要延伸因子就可以 结合在核糖体的A位上, 抑制AA-tRNA的进入。
四环素类阻止AA-tRNA与核糖体的结合;
链霉素、新霉素、卡那霉素干扰AA-tRNA 与核糖体结合而产生错读。
蛋白质合成的抑制剂
青霉素、四环素和红霉素只与原核细胞核糖 体发生作用,从而阻遏原核生物蛋白质的合 成,抑制细菌生长。
氯霉素和嘌呤霉素既能与原核细胞核糖体结 合,又能与真核生物核糖体结合,妨碍细胞 内蛋白质合成,影响细胞生长。
小部分蛋白质是由某些器官,如线粒体、 叶绿体中的核糖体合成的
在细胞质中合成的蛋白质根据其位置又分 为: 1、与膜结合的;2、不与膜结合的。
思考题
蛋白质怎样从合成的部位运送至功能部位 的?
它们又是如何跨膜运送的? 跨膜之后又是依靠什么信息到达各自“岗
位”?
蛋白质合成的抑制剂
蛋白质生物合成的抑制剂的作用原理
阻止mRNA与核糖体的结合; 阻止AA-tRNA与核糖体的结合; 干扰AA-tRNA与核糖体结合而产生错读; 作为竞争性抑制剂抑制蛋白质的合成。
蛋白质合成的抑制剂
链霉素是一种碱性三糖,可以多种方式抑 制原核生物核糖体: