第五节蛋白质合成后的加工及转运

合集下载

蛋白质的合成、转运、加工与修饰

蛋白质的合成、转运、加工与修饰
蛋白质 rRNA
沉降系数 蛋白质
原核细胞 16S-rRNA
30S 21种 5S-rRNA 23S-rRNA
50S 34种 70S
真核细胞 18S-rRNA
40S ~33种 5S-rRNA 5.8S-rRNA 28S-rRNA 60S ~49种 80S
E.coli核糖体小亚基中rRNA与r蛋白的相互关系示意图
Brenner 等 用 实 验 证 实 : 用 噬 菌 体 T2 感 染大肠杆菌后,几乎所有在细胞内合成 的蛋白质都不再是细胞本身的蛋白质, 而是噬菌体所编码的蛋白质;大肠杆菌 内出现了少量半衰期很短的新类型RNA, 其代谢速度极快,它们的碱基组成与噬 菌体DNA是一致的。
Spiegelman用分子杂交技术证明:经噬 菌体感染后新合成的RNA可以与噬菌体 DNA相杂交。
Kozak序列:a favorable context for efficient
eukaryotic
translation
initiation
(PuNNATGPu)。(S)
典型的Poly(A)加尾信号:AATAAA。(S)
cDNA末端快速扩增法(rapid amplification of
Tu TGsTP
Ts Tu GDP
5'
AUG
3'
2. 肽链延长的第二步:成肽
在转肽酶的催化下,P位上的tRNA所携的甲酰蛋氨酰 基转移给A位上的新进入的氨酰-tRNA,形成肽链。原 在P位上的、脱去甲酰蛋氨酰基的tRNA从复合物中迅速 脱落,使P位留空。
3. 肽链延长的第三步:转位
在转位酶/延长因子G(EF-G)的催化下,在A位的二 肽连同mRNA从A位进入P位。实际是整个核糖体的相对 位置移动。第三位氨基酸按密码的指引进入A位注册,开 始下一轮循环。

《蛋白质合成及转运》幻灯片

《蛋白质合成及转运》幻灯片

34种
49种
2021/5/20
12
• 原核生物5S rRNA可与tRNA互补,与23S rRNA 互补
• 16S rRNA的3’端ACCUCCUUA与mRNA的SD 序列互补,翻译起始定位;与23S rRNA互补,大 小亚基结合
• 23S rRNA与起始tRNA互补
2021/5/20
13
2、核糖体的结构与功能
成有活性的蛋白质
2021/5/20
34
2.个别氨基酸的共价修饰
二硫键的形成:2个Cys-SH间脱氢氧 化 辅助因子的连接:
与糖、脂类、血红素等结合形成结合蛋白质
亚基聚合:Hb的4个亚基聚合成四级结构
个别氨基酸的化学修饰
编码氨基酸:20种;蛋白质AA:>100种——编码AA化学修 饰
2021/5/20
细菌核糖体:3种rRNA、57个Pr,Mw 270万
真核生物核糖体:4种rRNA、约82个Pr,Mw
420万
原核生物 真核生物
小 rRNA 16S-rRNA 18S-rRNA

基 蛋白质
21种
33种
rRNA 5S-rRNA 5S-rRNA

23S-rRNA 28S-rRNA

5.8S-rRNA
基 蛋白质
2021/5/20
31
RRF
2021/5/20
32
四、肽链翻译后的加工修饰与转运
(一)肽链的翻译后的加工修饰:一级结构的修饰、多肽链的 折叠、三维结构的修饰等
1.肽链的N端切割: 去除N端fMet残基
2021/5/20
33
信号肽及部分肽段的切除
蛋白质完成跨膜运输,信号肽酶切除信号肽 往往还含有一段与活性无关的其他肽段,切除后才能形

蛋白质合成及转运PPT通用课件.ppt

蛋白质合成及转运PPT通用课件.ppt

遗传密码:
mRNA分子上从5’-3’的方向,每三个碱基形 成的三联体,组成一个遗传密码子 (codon)。
遗传密码的基本特点(5个性): 1、密码子的简并性 2、密码子的连续性 3、密码子的不重叠性 4、密码子的摆动性(变偶性) 5、密码子的通用性
1、密码子的简并性
一个氨基酸具有多个密码子的现象称 为密码子的简并性(degeneracy)。
一、氨基酸的活化——氨酰-tRNA的形成
氨酰-tRNA合成酶催化两步反应,酶的专一性表现在:
a) 识别一个特定的氨基酸 b) 识别tRNA(一个或多个) c) 具有纠错功能
总反应式 对每个AA的活化来说,净消耗的是两个高能磷酸键。
二、肽链的合成
1、30S-mRNA复合物的形成(IF3)
2、30S预起始复合物(IF1,IF2,GTP) 起始阶段
3、70S起始复合物
4、进位(EF-Ts,EF-Tu,GTP)
5、转肽
延长阶段
6、移位(EF-G,GTP)
7、识别终止密码子
8、水解
终止阶段
9、释放(RF,GTP)
1、30S-mRNA复合物的形成(IF3)
此反应须起始因子3(IF3)使已结束蛋白质合成的核 糖体30S和50S亚基分开。
2、30S预起始复合物(IF1,IF2,GTP)
原核生物核糖体
5S rRNA, 23S rRNA 50S
34种蛋白质 70S
16S rRNA 30S
21种蛋白质
真核生物核糖体
60S 80S
40S
5SrRNA, 5.8SrRNA, 28SrRNA 49种蛋白质
18SrRNA
33种蛋白质
2.肽链的起始:

蛋白质的合成、转运、修饰

蛋白质的合成、转运、修饰

蛋⽩质的合成、转运、修饰蛋⽩质的合成蛋⽩质的种类是由基因决定的,也就是说⼈类基因组有多少个基因,⼈体就有多少种蛋⽩质,只是蛋⽩质表达的时期和部位不同.根据⼈类基因组计划分析得知:全部⼈类基因组约有2.91Gbp,约有39000多个基因;也就是说⼈体蛋⽩质的种类有39000多种蛋⽩质⽣物合成可分为五个阶段,氨基酸的活化、多肽链合成的起始、肽链的延长、肽链的终⽌和释放、蛋⽩质合成后的加⼯修饰⼀.氨基酸的活化分散在胞液中的各种氨基酸需经特异的氨基酰-tRNA合成酶催化,ATP供能,并需Mg2+或Mn2+参与在氨基酸的羧基上进⾏活化,⽣成中间复合物()后者再与相应的tRNA作⽤,将氨基酰转移到tRNA分⼦的氨基酸臂上,即3′末端腺苷酸中核糖的3′(或2′)羟基以酯键相结合形成氨基酰-tRNA【氨基酰tRNA的⽣成】tRNA各种tRNA的⼀级结构互不相同,但它们的⼆级结构都呈三叶草形三叶草形结构的主要特征是:含有四个螺旋区、三个环和⼀个附加叉四个螺旋区构成四个臂,其中含有3′末端的螺旋区称为氨基酸臂,因为此臂的3′-末端都是C-C-A-OH序列,可与氨基酸连接三个环分别⽤Ⅰ、Ⅱ、Ⅲ表⽰环Ⅰ含有5,6⼆氢尿嘧啶,称为⼆氢尿嘧啶环(DHU环)环Ⅱ顶端含有由三个碱基组成的反密码⼦,称为反密码⼦环;反密码⼦可识别mRNA分⼦上的密码⼦,在蛋⽩质⽣物合成中起重要的翻译作⽤环Ⅲ含有胸苷(T)、假尿苷(ψ)、胞苷(C),称为假尿嘧啶环(TψC环);此环可能与结合核糖体有关tRNA在⼆级结构的基础上进⼀步折叠成为倒“L”字母形的三级结构起始因⼦原核起始因⼦只有三种(IF1、IF2、IF3)真核起始因⼦(简称为eIF)种类多且复杂,已鉴定的真核起始因⼦共有12种延长因⼦原核⽣物(简称EF)由三部分组成:EF-Tu,EF-Ts,和EF-GEF-Tu它介导氨酰-tRNA进⼊核糖体的空位EF-Ts充当EF-Tu亚基的鸟嘌呤核苷酸交换因⼦,催化EF-Tu释放GDPEF-G催化tRNA的移位和多肽延伸的每个循环后期mRNA从核糖体上掉下来真核⽣物(简称eEF)真核⽣物中分为:eEF-1和eEF-2eEF-1有两个亚基,α和βγα相当于原核⽣物中的EF-Tu亚基,它介导氨酰-tRNA进⼊核糖体的空位Βγ相当于原核⽣物中EF-Ts,核苷酸交换因⼦α,催化GDP从α上释放eEF-2相当于原核⽣物的EF-G,催化tRNA的移位和多肽延伸的每个循环后期mRNA从核糖体上掉下来终⽌因⼦(释放因⼦)原核⽣物细胞的释放因⼦(简称RF):识别终⽌密码⼦引起完整的肽链和核糖体从mRNA 上释放的蛋⽩质释放因⼦1(RF1):能识别终⽌密码⼦UAA和UAG⽽终⽌蛋⽩质合成的细菌释放因⼦释放因⼦2(RF2):能识别终⽌密码⼦UAA和UGA⽽终⽌蛋⽩质合成的细菌释放因⼦释放因⼦3(RF3):与延长因⼦EF-G有关的细菌蛋⽩质合成终⽌因⼦当它终⽌蛋⽩质合成时,它使得因⼦RF1和RF2从核糖体上释放真核⽣物细胞只有⼀种终⽌因⼦(称为eRF)能识别所有的终⽌密码⼦因为它没有与GTP结合的位点,所以它不能帮助完成合成的多肽从P位点的tRNA的释放在真核⽣物内可能还存在能与eRF合作、帮组多肽从核糖体释放的蛋⽩质核糖体的活性部位单个核糖体上存在四个活性部位,在蛋⽩质合成中各有专⼀的识别作⽤1.A部位:氨基酸部位或受位:主要在⼤亚基上,是接受氨酰基-tRNA的部位2.P部位:肽基部位或供位:主要在⼩亚基上,是释放tRNA的部位3.肽基转移酶部位(肽合成酶),简称T因⼦:位于⼤亚基上,催化氨基酸间形成肽键,使肽链延长4.GTP酶部位:即转位酶(EF-G),简称G因⼦,对GTP具有活性,催化肽键从供体部位→受体部位核糖体上还有许多与起始因⼦、延长因⼦、释放因⼦以及各种酶相结合的位点核糖体的⼤⼩是以沉降系数S来表⽰,S数值越⼤、颗粒越⼤、分⼦量越⼤原核细胞与真核细胞核糖体的⼤⼩亚基是不同的⼆.核糖体循环(肽链合成)1.肽链启动阶段在蛋⽩质⽣物合成的启动阶段,核蛋⽩体的⼤、⼩亚基,mRNA与⼀种具有启动作⽤的氨基酸tRNA共同构成启动复合体。

15蛋白质合成及转运

15蛋白质合成及转运

2019/11/7
33
信号肽及部分肽段的切除
蛋白质完成跨膜运输,信号肽酶切除信号肽 往往还含有一段与活性无关的其他肽段,切除后才能形
成有活性的蛋白质
2019/11/7
34
2.个别氨基酸的共价修饰
二硫键的形成:2个Cys-SH间脱氢氧 化 辅助因子的连接:
与糖、脂类、血红素等结合形成结合蛋白质
结合
的起始因子IF-2同时结合,形成五元起始复合物
GTP水解释放能量,促使大亚基结合成完
整的核糖体,IF-1、IF-2、IF-3脱离复合体
m201R9/N11/A7 、fMet-tRNAfMet和核糖体构成三元起始复
24
真核生物起始阶段与原核生物的不同点
无SD序列,但有5’帽子、3’polyA尾巴
3、转肽酶活性 催化肽键的形成
4、识别mRNA的位点 小亚基上,可容纳2个密码
2019/11/7
14
3、核糖体存在场所 粗面内质网(主要) 细胞质 线粒体、叶绿体
细菌细胞:约20,000个核糖体
真核细胞:106个
未成熟蟾蜍卵细胞:1012个
2019/11/7
15
密码子的特点
帽子结合蛋白促使小亚基与mRNA结合
起始因子——eIF,有10种以上
小亚基先与Met-tRNAMet结合,再与mRNA的
AUG结合
(与原核相反)
注意:
启动过程消耗GTP
复合体含3种RNA、蛋白质和Met,无
2019/11/7
DNA
25
(三)在肽链延长过程中有3个重复的延伸反应 注册
(一) mRNA:蛋白质合成的模 板 辨认起始密码子(AUG):

蛋白质合成及转运生科课件.ppt

蛋白质合成及转运生科课件.ppt

●胰岛素原的加工:
间插序列(C肽区)
HS SH
HS SH HS
C A链区
B链区
SH
核糖体上合成出无规 则卷曲的前胰岛素原
切除信号肽后
折叠成稳定构
信号肽
象的胰岛素原
N
N
S-S
C
S
S
S
S
胰岛素原
切除C肽后,形成 成熟的胰岛素分子
N
S S N
A链 C
S
C B链
S
胰岛素
Thanks
6、蛋白因子帮助合成的起始:
● 蛋白质合成的起始、延伸和终止的每一个阶段,都涉及到一组不同 的蛋白质因子的帮助.
● 原核生物(大肠杆菌): 三个起始因子(initiation factor):IF1、IF2、IF3 真核生物:更多种的起始因子帮助.
①IF1、IF3与30S小亚基结合:
IF3防止30S亚基与50S 亚基过早结合.
● 真核生物最靠近5’端的AUG序列通常就是起始密码.
● 原核生物mRNA 5’端的SD序列—识别16S rRNA
SD序列:在细菌的mRNA的5’端起始AUG序列上游10个碱基左右的位置, 有一段富含嘌呤碱基的序列,能与细菌的16S核糖体RNA3’端的7个嘧啶 碱基互补性识别,这段序列由Shine-Dalgarno发现,称为S-D序列.
● 由同一种tRNA合成酶合成:起始因子识别tRNAiMet
延伸因子识别tRNAMet
● 原核生物中的第一个蛋氨酸要进行甲酰化 修饰---甲酰Met:
fMet - tRNAiMet
5、翻译起始于mRNA与核糖体的结合:
● 真核生物mRNA分子的5’端有核糖体进入部位: 帽子结构帮助识别mRNA分子与核糖体的结合位点. 核糖体沿着 mRNA分子5’ → 3’扫描至起始密码AUG.

第五节蛋白质合成后的加工及转运(共73张PPT)

第五节蛋白质合成后的加工及转运(共73张PPT)

〔四〕、叶绿体的蛋白质转运
转运到基质的前体蛋白具有典型的N端序列。转运到叶绿 体内膜和类囊体膜的前体蛋白含有两个N端信号序列,第一个 被切除后,暴露出第二个信号序列,将蛋白导向内膜或 类囊体膜。
叶绿体的蛋白质定向 转运
〔五〕、进入到细胞核的蛋白质的 运转:
1、核孔的结构及作用; 2、核质蛋白上的入核信号;
e、转移通道的开启与关闭
膜上存在一个直径1.5nm的孔道,平时由Bip蛋白封闭。 当新生肽链达70个氨基酸左右的长度时,转移通道开启,信
号肽结合在通道上。合成蛋白通过内质网膜人腔,一旦合成 结束,Bip蛋白又将孔道封闭
转移通道的开启
f、蛋白质进入ER腔
信号肽的切除; 信号肽移到脂双层中,最终被降解;
Blobel因此项发现获1999年诺贝尔生理医学奖。
〔2〕、蛋白质定位的信号:
A、信号序列〔signal sequence〕:存在于蛋白质 一级结构上的线性序列,通常15-60个氨基酸残基, 可以指导新合成的蛋白质发生定向转移。有些信号序 列在完成蛋白质的定向转移后被信号肽酶〔signal peptidase〕切除.
③对所牵引的蛋白质没有特异性要求,非线粒体蛋白连接上此 类信号序列,也会被转运到线粒体。
前体蛋白信号序列特点
3、蛋白质输入线粒体的过程
〔1〕、进入外膜的蛋白:具有N端信号序列,其后还有疏 水性序列作为停止转移序列,然后蛋白质被TOM复合体安 装到外膜上,如线粒体的各类孔蛋白。
〔2〕、进入线粒体基质蛋白质:可以先通过TOM复合体进入 膜间隙,然后通过TIM复合体进入基质。也可以通过线粒体 内、外膜间的接触点,一步进入基质,在接触点上TOM与TIM 协同作用完成蛋白质向基质的输入。
①胞质环〔cytoplasmic ring〕,位于核孔复合体胞质一侧,环上有8 条纤维伸向胞质; ②核质环〔nuclear ring〕,位于核孔复合体பைடு நூலகம்质一侧,上面伸出8条 纤维,纤维端部与端环相连,构成笼子状的结构;

大连理工大学生物化学课件--蛋白质合成与转运

大连理工大学生物化学课件--蛋白质合成与转运

二、蛋白质生物合成过程
• • • • 蛋白质生物合成过程包括三大步骤: ①氨基酸的活化与搬运; ②活化氨基酸在核蛋白体上的缩合; ③多肽链合成后的加工修饰。
核糖体主要存在于粗面ER
核糖体存在的场所 (1)粗面内质网(主要) 一个细菌细胞内约有20000个核糖体 • (2)细胞溶液 • 真核细胞内可达106个 (3)线粒体和叶绿体 • 在未成熟的蟾蜍卵细胞内则高达1012个
(二)肽链延长阶段:
1.进位:与mRNA下一个密码相对应 的氨基酰tRNA进入核蛋白体的受位(A 位),需GTP,Mg2+,和EF参与。 2.成肽:在转肽酶的催化下,将给位 上的tRNA所携带的甲酰蛋氨酰基或肽 酰基转移到受位上的氨基酰tRNA上, 与 其 α- 氨 基 缩 合 形 成 肽 键 。 此 步 骤 需 Mg2+,K+。给位上已失去蛋氨酰基或肽 酰基的tRNA从核蛋白上脱落。
8、供能物质和无机离子
• 多肽链合成时,需ATP、GTP作为供能物质,并需 Mg2+、K+参与。
• 氨基酸活化时需消耗2分子高能磷酸键,肽键形成 时又消耗2分子高能磷酸键,故缩合一分子氨基酸 残基需消耗4分子高能磷酸键。
氨酰- tRNA合成酶
氨基酸 + tRNA + ATP
无机磷酸酶
氨酰- tRNA + AMP + 2Pi
一、参与蛋白质生物合成的物质
• 生物体内的各种蛋白质都是利用生物体内的氨基酸 为原料自行合成的。参与蛋白质生物合成的各种因 素构成了蛋白质合成体系,该体系包括: ① mRNA:作为蛋白质生物合成的模板,决定多肽链 中氨基酸的排列顺序; ② tRNA:搬运氨基酸的工具; ③ 核蛋白体:蛋白体生物合成的场所; ④ 酶及其他蛋白质因子;氨酰-tRNA合成酶; ⑤ 供能物质及无机离子。ATP和GTP, Mg2+、K+ ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、蛋白质合成后的转运:
(一)、转运的方式;
(二)、进入到内质网中的蛋白质的运转;
(三)、进入叶绿体中、线粒体、细胞核中的蛋白 质的运转; (四)、进入到高尔基体、溶酶体、及细胞外蛋白 质的运转-膜泡运输。
(一)、蛋白质运输的途径
蛋白质的分选运输途径主要有三类:
1、门控运输(gated transport):如核孔可以 选择性的主动运输大分子物质和RNP复合体。
2、跨膜运输(transmembrane transport):蛋 白质通过跨膜通道进入目的地。如细胞质中合 成的蛋白质在信号序列的引导下,通过线粒体 上的转位因子进入线粒体或叶绿体中。
3、膜泡运输(vesicular transport):蛋白质被选 择性地包装成运输小泡,定向转运到靶细胞器。如 内质网向高尔基体的物质运输、高尔基体分泌形成 溶酶体、细胞摄入某些营养物质或激素,都属于这 种运输方式。
The signal-recognition particle (SRP)
③转移通道:存在与内质网膜上的跨膜通道。 ④。 SRP受体(SPR receptor),是膜的整合蛋白, 为异二聚体蛋白,存在于内质网上,可与SRP特异结合。 ⑤停止转移序列(stop transfer sequence),肽链上的 一段特殊序列,与转移通道蛋白亲合力很高,能阻止肽 链继续进入内质网腔。
蛋 白 质 转 移 通 道
2、内质网上蛋白质进入ER腔的过程
a、游离核糖体先与mRNA分子结合,翻译信号肽序列。 b.信号肽与SRP结合形成SRP核糖体复合物。导致翻译的
第五节 蛋白质合成后的加 工及转运
本节内容:
一、蛋白质合成后的细胞定位;
二、蛋白质合成后的转运;
三、蛋白质合成后的加工及修饰;
一、蛋白质合成后的细胞定位:
1、蛋白质是在细胞中游离的核糖体上或者是在糙面内 质网上的核糖体上合成的。
2、蛋白质合成后需要运转到特定的位点起作用:
(1)、内质网驻留蛋白、高尔基体驻留蛋白质、溶酶 体蛋白质、分泌蛋白质、膜蛋白等这些蛋白是由位于 糙面内质网上的核糖体合成的。然后进入内质网腔或 内质网膜。
➢ Blobel因此项发现获1999年诺贝尔生理医学奖。
(2)、蛋白质定位的信号: A、信号序列(signal sequence):存在于蛋白
质一级结构上的线性序列,通常15-60个氨基酸残 基,可以指导新合成的蛋白质发生定向转移。有些 信号序列在完成蛋白质的定向转移后被信号肽酶 (signal peptidase)切除.
进入内质网腔中蛋白质经过高尔基体,然后成为溶酶 体蛋白或成为分泌蛋白。
进入到内质网膜的蛋白质经过膜泡运输而成为各种 内膜蛋白和细胞膜蛋白。
(2)、对于线粒体、叶绿体来说虽然可以合成一 些蛋白质,但大部分蛋白质是由核基因编码的, 并且是由位于胞质中的游离核糖体合成的。
• 这些蛋白质合成后的定位机制是什么?
这几种运输机制都涉及信号序列的引导和靶细胞 器上受体蛋白的识别。
(二)、进入到内质网中的蛋 白质的运转:
1、进入到内质网中的蛋白质的分子基础;
2、蛋白质进入到内质网腔的过程;
3、蛋白质进入到内质网膜的过程。
1、分子基础
①信号肽(signal peptide),是引导新合成肽链转移 到内质网上的一段多肽,位于新合成肽链的N端,一般 16~30个氨基酸残基。由于信号肽又是引导肽链进入内 质网腔的一段序列,又称开始转移序列(start transfer sequence)。
(3)、对于细胞核中的蛋白质来说,它们也是由 游离核糖体合成,然后输入到细胞核中的。
3、蛋白质细胞分选的机制-信号假说:
(1)、假说的发现:
➢ C. Milstein(1972)发现从骨髓瘤细胞提取的免疫 球蛋白分子N端要比分泌到细胞外的N端多出一段。
➢ G. Blobel和D. Sabatini等根据进一步的实验,提出 了信号假说(Signal hypothesis):认为蛋白质上存 在信号肽,指导蛋白质转至内质网上。
-Ser-Lys-Leu-COO-
+H3N-Met-Met-Ser-Phe-Val-Ser-Leu-Leu-Leu-ValGly-Ile-Leu-Phe-Trp-Ala-Thr-Glu-Ala-Glu-Gln-LeuThr-Lys-Cys- Glu-Val-Phe-Gln-
Lys-Asp-Glu-Leu-COO-(KDEL)
蛋白质
信号序列
Preproalbumin
Met-Lys-Trp-Val-Thr-Phe-Leu-Leu-Leu-Leu-PheIle-Ser- Gly-Ser-Ala-Phe-Ser↓Arg...
Pre-IgG light chain
Prelysozyme
Met-Asp-Met-Arg-Ala-Pro-Ala-Gln-Ile-Phe-GlyPhe-Leu- Leu-Leu-Leu-Phe-Pro-Gly- Thr-ArgCys↓Asp...
Met-Arg-Ser-Leu-Leu-Ile-Leu-Val-Leu-Cys-PheLeu-Pro-Leu-Ala-Ala-Leu-Gly↓Lys...
②信号识别颗粒(signal recognition particle,SRP), 由几种结构不同的多肽组成,结合一个7S RNA,属 于一种核糖核蛋白(ribonucleoprotein)。 SRP与信号序列结合,导致蛋白质合成暂停。
信号序列
B、信号斑(signal patch):存在于完成折叠 的蛋白质中,构成信号斑的信号序列之间可以 不相邻,折叠在一起构成蛋白质分选的信号。
信号斑
(3)、一些典型的定位信号
功能
信号序列输入细胞核-Pro-Pro-Lys-Lys-Lys-Arg-Lys-Val-
输出细胞核 输入线粒体 输入过氧化物酶体
输入内质网 返回内质网
-Leu-Ala-Leu-Lys-Leu-Ala-Gly-Leu-AspIle-
+H3N-Met-Leu-Ser-Leu-Arg-Gln-Ser-Ile-Arg-Phe-PheLys-Pro-Ala-Thr-Arg-Thr-Leu-Cys-Ser-Ser-Arg-Tyr-LeuLeu-
相关文档
最新文档