数学《1.3.2 秦九邵算法》

合集下载

1.3.2算法案例(秦九韶算法)

1.3.2算法案例(秦九韶算法)
后教Ⅰ
学生交流、补充回答自学指导中的问题,教师进行补充及纠正总结,引导学生加强对知识的理解深度。
1.强调利用常规自然的运算方法,运算量大,若用前面的计算结果,直接计算后面的式子,可以减少运算量,提高运算效率。
2.强调作为常识性的知识,让学生了解到计算机进行乘法运算比加法运算花的时间要长的多,故而在程序编写中,需要进行运算,尽量使用加法。
3.让学生明确秦九韶算法的作用和意义。
4.通过交流关于秦九韶的简介,突破本节课的情感态度与价值观目标,教师鼓励学生要增强学习数学的信心。附:
秦九韶(公元1202-1261),字道古,安岳人。秦九韶与李冶、杨辉、朱世杰并称宋元数学四大家。其父秦季栖,进士出身,官至上部郎中、秘书少监。秦九韶聪敏勤学。宋绍定四年(1231),秦九韶考中进士,先后担任县尉、通判、参议官、州守、同农、寺丞等职。先后在湖北、安徽、江苏、浙江等地做官,1261年左右被贬至梅州(今广东梅县),不久死于任所。他在政务之余,对数学进行虔心钻研,并广泛搜集历学、数学、星象、音律、营造等资料,进行分析、研究。宋淳祜四至七年(1244至1247),他在为母亲守孝时,把长期积累的数学知识和研究所得加以编辑,写成了闻名的巨著《数学九章》,并创造了“大衍求一术”。这不仅在当时处于世界领先地位,在近代数学和现代电子计算设计中,也起到了重要作用,被称为“中国剩余定理”。他所论的“正负开方术”,被称为“秦九韶程序”。现在,世界各国从小学、中学到大学的数学课程,几乎都接触到他的定理、定律和解题原则。秦九韶在数学方面的研究成果,比英国数学家取得的成果要早800多年。秦九韶字道古.普州安岳(今四川安岳)人.南宋嘉泰二年(1202年)生;约景定二年(1261年)卒于梅州(今广东梅县).
示标
1.学会用秦九韶算法求多项式的值。

高中数学1.3.2算法案例—秦九韶算法教案新人教A版必修

高中数学1.3.2算法案例—秦九韶算法教案新人教A版必修

学 目
技能目标
模仿秦九韶计算方法,体会古人计算构思的巧妙;探究计算 机算法与数学算法的区别。

情感态度价值观
通过对秦九韶算法的学习,了解中国古代数学家对数学的贡 献,充分认识到我国文化历史的悠久。
重点 理解秦九韶算法的思想。
难点 用循环结构表示算法的步骤。
问题与情境及教师活动
学生活动
一.复习引入
大家都喜欢吃苹果吧,我们吃苹果都是从外到里一口一口的
(((an x an1)x an2 )x a1) a0
1 河北武邑教师教案
问题与情境及教师活动
学生活动
思考 2:对于由内向外逐层计算一次多项式
f (x) an xn an1xn1 a1x a0 (( an x an1)x an2 )x a1)x a0
的值,其算法步骤如何?
程序框图如下图:
2 河北武邑教师教案 问题与情境及教师活动
学生活动
INPUT “n=”;n
INPUT “an=”;a
INPUT “x=”;x
v=a
i=n-1
WHILE i>=0
PRINT “i=”;i

INPUT “ai=”;a
v=v*x+a

i=i-1
WEND

PRINT v
ENDห้องสมุดไป่ตู้
程 思考 3:该程序框图对应的程序如何表述?
第一步,输入多项式次数 n、最高次的系数 an 和 x 的值. 第二步,将 v 的值初始化为 an,将 i 的值初始化为 n-1. 第三步,输入 i 次项的系数 ai. 第四步,v=vx+ai,i=i-1. 第五步,判断 i 是否大于或等于 0.若是,则返回第三步;

1.3.2秦九韶算法

1.3.2秦九韶算法
即先计算x2,然后依次计算
x2 x, (x2 x) x, ((x2 x) x) x
的值. 这析计算上述多项式的值,与第一种做法 相比,乘法的运算次数减少了,因而能提高运算 效率.
[问题3]探索更好的算法,来解决
f(x)=2x5-5x4-4x3+3x2-6x+7当x=5时的值。
1.3.2 案例2 秦九韶(约1202--1261),字道
秦九韶算法
古,四川安岳人。先后在湖北,安 徽,江苏,浙江等地做官,1261
年左右被贬至梅州,(今广东梅
县),不久死于任所。他与李冶,
杨辉,朱世杰并称宋元数学四大家。
早年在杭州“访习于太史,又尝从
隐君子受数学”,1247年写成著
名的《数书九章》。《数书九章》
程序 x=5
f=2*x^5-5*x^4-4*x^3+3*x^2-6*x+7
PRINT f
END
点评:上述算法一共做了5+4+3+2+1=15次 乘法运算,5次加法运算.优点是简单,易懂;缺点是 计算效率不高.
[问题2]有没有更高效的算法?
分析:计算x的幂时,可以利用前面的计算结 果,以减少计算量,
f(x)=2x5-5x4-4x3+3x2-6x+7 v0=2 =(2x4-5x3-4x2+3x-6)x+7 v1=v0x-5=2×5-5=5 =((2x3-5x2-4x+3)x-6)x+7 v2=v1x-4=5×5-4=21 =(((2x2-5x-4)x+3)x-6)x+7 v3=v2x+3=21×5+3=108 =((((2x-5)x-4)x+3)x-6)x+7 v4=v3x-6=108×5-6=534

1.3.2算法案例2

1.3.2算法案例2

要求多项式的值,应该先算最内层的一次多项式 的值,即 v 1 a n x an 1 然后,由内到外逐层计算一次多项式的值,即
v 2 v1 x an 2 v 3 v 2 x an 3
最后的一 项是什么?

vn vn1 x a0
这种将求一个n次多项式f(x)的值转化成求n个一 次多项式的值的方法,称为秦九韶算法.
所以,当x = 5时,0、a1、a2、a3、a4、a5 输入x0 n=0 v=a5 v= v· 0+a5-n x
n=n+1
n < 5? 否 输出v 结束
秦九韶算法检验

练习、已知多项式f(x)=x5+5x4+10x3+10x2+5x+1
f ( x) an x n an1 x n1 a1 x a0
对该多项式按下面的方式进行改写:
f ( x) an x n an1 x n1 a1 x a0
(an x n1 an1 x n2 a1 ) x a0
这是怎样的 一种改写方 式?最后的 结果是什么?
算法步骤:
第一步:输入多项式次数n、最高次项的系数an和x 的值. 第二步:将v的值初始化为an,将i的值初始化为n-1. 第三步:判断i是否大于或等于0,若是,则返回第
四步;否则,转第六步
第四步:输入i次项的系数ai 第五步:v=vx+ai, i=i-1 第六步:输出多项式的值v。
程序框图:
开始
v1 5 5 2 27 v2 27 5 3.5 138.5 v 3 138.5 5 2.6 689.9 v4 689.9 5 1.7 3451.2 v5 3451.2 5 0.8 17255.2

1.3.2 算法案例---秦九韶算法

1.3.2   算法案例---秦九韶算法

1.3.2 算法案例---秦九韶算法一、教学要求:了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数、提高计算效率的实质;理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用.二、教学过程:[复习准备]1. 分别用辗转相除法和更相减损术求出两个正数623和1513的最大公约数.2. 设计一个求多项式5432()254367f x x x x x x =--+-+当5x =时的值的算法. (学生自己提出一般的解决方案:将5x =代入多项式进行计算即可)提问:上述算法在计算时共用了多少次乘法运算?多少次加法运算?此方案有何优缺点?(上述算法一共做了5+4+3+2+1=15次乘法运算,5次加法运算. 优点是简单、易懂;缺点是不通用,不能解决任意多项式的求值问题,而且计算效率不高.)[讲授新课]1. 教学秦九韶算法:① 提问:在计算x 的幂值时,可以利用前面的计算结果,以减少计算量,即先计算2x ,然后依次计算2x x ⋅,2()x x x ⋅⋅,2(())x x x x ⋅⋅⋅的值,这样计算上述多项式的值,一共需要多少次乘法,多少次加法?(上述算法一共做了4次乘法运算,5次加法运算) ② 结论:第二种做法与第一种做法相比,乘法的运算次数减少了,因而能提高运算效率,而且对于计算机来说,做一次乘法所需的运算时间比做一次加法要长得多,因此第二种做法能更快地得到结果.③ 更有效的一种算法是:将多项式变形为 5432()254367((((25)4)3)6)7f x x x x x x x x x x x =--+-+=--+-+,依次计算 2555⨯-=,55421⨯-=,2153108⨯+=,10856534⨯-=,534572677⨯+=故(5)2677f =.――这种算法就是“秦九韶算法”. (注意变形,强调格式)④ 练习:用秦九韶算法求多项式432()2351f x x x x x =+-++当4x =时的值.(学生板书→师生共评→教师提问:上述算法共需多少次乘法运算?多少次加法运算?)⑤ 如何用秦九韶算法完成一般多项式1110()n n n n f x a x a xa x a --=++++的求值问题?改写:11101210()(()))n n n n n n n f x a x a x a x a a x a x a x a x a ----=++++=+++++.首先计算最内层括号内一次多项式的值,即11n n v a x a -=+,然后由内向外逐层计算一次多项式的值,即212n v v x a -=+,323n v v x a -=+,,10n n v v x a -=+.⑥ 结论:秦九韶算法将求n 次多项式的值转化为求n 个一次多项式的值,整个过程只需n 次乘法运算和n 次加法运算;观察上述n 个一次式,可发出k v 的计算要用到1k v -的值,若令0n v a =,可得到下列递推公式:01,(1,2,,)n k k n k v a v v x a k n --=⎧⎨=+=⎩. 这是一个反复执行的步骤,因此可用循环结构来实现.试画出程序框图,并设计出程序;程序框图: 程序设计:⑦ 练习:用秦九韶算法求多项式5432()52 3.5 2.6 1.70.8f x x x x x x =++-+-当5x =时的值并画出程序框图.[小结] 秦九韶算法的特点及其程序设计三、巩固练习:1、练习:教材P45第2题 2、作业:教材P48第2题。

必修三课件:1.3.2秦九韶算法(共14张PPT)

必修三课件:1.3.2秦九韶算法(共14张PPT)
算法步骤 第一步:输入多项式次数n、最高次项的系数an和x的值 第二步:将v的值初始化为an,将i的值初始化为n-1 第三步:输入i次项的系数ai 第四步:v=vx+ai,i=i-1. 第五步:判断i是否大于或等于0,若是, 则返回第三步;否则,输出多项式的值v.
秦九韶算法的程序设计
程序框图
第一步:输入多项式次数n、最 高次项的系数an和x的值 第二步:将v的值初始化为an, 将i的值初始化为n-1
算法1:因为f(x) =x5+x4+x3+x2+x+1
所以f(5)=55+54+53+52+5+1
=3125+625+125+25+5+1
= 3906 10次的乘法运算,5次的加法运算
算法2:
f(5)=55+54+53+52+5+14次的乘法运算,5次的加法运算
=5×(54+53+52+5+1) +1 =5×(5×(53+52+5 +1 )+1 ) +1 =5×(5×( 5× (52+5 +1) +1 )+1 ) +1 =5×(5×( 5× (5× (5+1 ) +1 ) +1 )+1 ) +1
1.3.2 案例2、秦九韶算法
复习
1、求两个数的最大公约数的两种方法分别是( )和
( ).
辗转相除法 更相减损术
2、两个数21672,8127的最大公约数是(A )
A、2709 B、2606 C、2703 D、2706
案例2、秦九韶算法
秦九韶算法是求一元多项式的值的一种方法。
怎样求多项式f(x)=x5+x4+x3+x2+x+1当x=5时的值呢?
=5x5x5x5x5+5x5x5x5+5x5x5+5x5+5+1 =3125+625+125+25+5+1

1.3.2 秦九韶算法与排序

§1.3秦九韶算法与排序【学习目标】:(1)了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数提高计算效率的实质.(2)掌握数据排序的原理能使用直接排序法与冒泡排序法给一组数据排序,进而能设计冒泡排序法的程序框图及程序,理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用.【学习重点】秦九韶算法的特点及其程序设计,两种排序法的排序步骤及其程序设计(重点放在循环语句的应用上)【学习难点】秦九韶算法的先进性理解及其程序设计,排序法的计算机程序设计【学法与学习用具】:学法:探究秦九韶算法对比一般计算方法中计算次数的改变,体会科学的计算;模仿排序法中数字排序的步骤,理解计算机计算的一般步骤,领会数学计算在计算机上实施的要求.学习用具:计算机,TI-voyage200图形计算器【课堂过程】秦九韶计算多项式的方法例1设计求多项式f(x)=2x5-5x4-4x3+3x2-6x+7当x=5时的值的算法,并写出程序.个别学生提出一般的解决方案,如:x=5y=2 * x^5 – 5 * x^4 – 4 * x^3 + 3 * x^2 – 6 * x + 7PRINT“y=”;yEND提问:例1计算时需要多少次乘法计算?多少次加法计算?有什么优缺点?答:上述算法一共做了解15次乘法运算,5次加法运算,优点是简单、易懂.缺点是不通用,不能解决任意多项式的求值问题,而且计算效率不高.提问:计算x的幂时,可以利用前面的计算结果,以减少计算量,即先计算x2,然后依次计算x2.x,(x2.x).x,((x2.x).x).x的值,这样计算上述多项式的值,一共需要多少次乘法,多少次加法?答:上述算法一共做了解4次乘法运算,5次加法运算.结论:第二种做法与第一种做法相比,乘法的运算次数减少了,因而能提高运算效率,而且对于计算机来说,做一次乘法所需的运算时间比做一次加法要长得多,因此第二种做法更快地得到结果.我们把多项式变形为:f(x)= 2x5-5x4-4x3+3x2-6x+7=((((2x-5)x-4)x+3)x-6)x+7从内到外,如果把每一个括号都看成一个常数,x的系数依次是什么?用图表可以表示为:最后的系数2677即为所求的值, 请描述上述计算过程.上述算法就是“秦九韶算法”.如何应用秦九韶算法完成一般的多项式f(x)=a n x n+a n-1x n-1+….+a1x+a0求值问题?f(x)=a n x n+a n-1x n-1+….+a1x+a0=( a n x n-1+a n-1x n-2+….+a1)x+a0=(( a n x n-2+a n-1x n-3+….+a2)x+a1)x+a0=......=(...( a n x+a n-1)x+a n-2)x+...+a1)x+a0求多项式的值时,首先计算最内层括号内依次多项式的值,即v1=a n x+a n-1然后由内向外逐层计算一次多项式的值,即v2=v1x+a n-2v3=v2x+a n-3......v n=v n-1x+a0这样,把n次多项式的求值问题转化成求n个一次多项式的值的问题观察秦九韶算法的数学模型,计算v k时要用到v k-1的值,若令v0=a n,我们可以得到下面的递推公式:v0=a nv k=v k-1+a n-k(k=1,2,…n)这是一个在秦九韶算法中反复执行的步骤,可以用循环结构来实现.例2已知一个五次多项式f(x)=5x5+2x4+3.5x3-2.6x2+1.7x-0.8用秦九韶算法求当x=5时多项式的值.分析:先画出程序框图(见课本)再利用TI-voyage200图形计算器操作:运行(其中{}5,2,3.5, 2.6,1.7,0.8--表示f(x)=5x5+2x4+3.5x3-2.6x2+1.7x-0.8的系数,可以随意改变,通过图形计算器,学生很快的把系数的输入换成用数组来代替,从而得到更普遍的程序,激发学生的求学创新精神)排序大家考完试后如果要排一下成绩的话,单靠人手该怎样操作呢?如果你们用计算机里的软件(如:电子表格)又如何操作?排序的算法很多,课本主要介绍里两种排序方法:直接插入排序和冒泡排序1. 直接插入排序基本思想插入排序的思想就是读一个,排一个.将第1个数放入数组的第1个元素中,以后读入的数与已存入数组的数进行比较,确定它在从大到小的排列中应处的位置.将该位置以及以后的元素向后推移一个位置,将读入的新数填入空出的位置中.(由于算法简单,可以举例说明)2. 冒泡排序基本思想依次比较相邻的两个数,把大的放前面,小的放后面.即首先比较第1个数和第2个数,大数放前,小数放后.然后比较第2个数和第3个数......直到比较最后两个数.第一趟结束,最小的一定沉到最后.重复上过程,仍从第1个数开始,到最后第2个数......由于在排序过程中总是大数往前,小数往后,相当气泡上升,所以叫冒泡排序.例3 用冒泡法对数据7,5,3,9,1从小到大进行排序.以下是第一趟排序,最后我们得到新数列为:5,3,7,9,1按上述方法我们进行第二趟、第三趟......排序,直到这5个数按从小到大进行排序为止:如下图所示:第二趟 第三趟 第四趟利用TI-voyage200图形计算器操作,把冒泡排序变成程序为:运行结果为:注意:可以把 “If r[i]>r[i+1] then ” 改为“if r[i]<r[i+1] then ”则排序的方向就是按照从大到小的顺序进行。

高一数学秦九韶算法1


f ( x) x 5 x 4 x 3 x 2 x 1当 x 5 时的值,并统计所做的计算的种类及计算次数。
根据我们的计算统计可以得出我们共需要 10 次乘法运算,5 次加法运算。 我们把多项式变形为: f ( x) x 2 (1 x(1 x(1 x))) x 1 再统计一下计算当 x 5 时的 值时需要的计算次数,可以得出仅需 4 次乘法和 5 次加法运算即可得出结果。显然少了 6 次乘法运算。这种算法就叫秦九韶算法。 怎 样 求 f(x)=x^5+…+1 当 x=5 时的值 呢?: 秦九韶算法 通过实例讲解, 点 出秦九韶算法的 优越性 生:用一般用传统的方法解答 师:点出传统做法计算的次数并由课本内容点出用秦九 韶算法解题的方法
例题 2 讲解 通过例题 ,加深对 秦九韶算法的理 解 师 : 例 1 已 知 一 个 5 次 多 项 式 为
f ( x) 5x 5 2x 4 3.5x 3 2.6x 2 1.7 x 0.8
用秦九韶算法求这个多项式当 x 5 时的值。 解:P40
练习:利用秦九韶算法计算 f ( x) 0.83x 0.41x 0.16x 0.33x 0.5x 1
f ( x) x 2 (1 x(1 x(1 x))) x 1 用的计算次数少
秦九韶计算多项式的方法
f ( x) a n x n a n 1 x n 1 a n 2 x n2 a1 x a0 (a n x n 1 a n 1 x n2 a n2 x n 3 a1 ) x a0 ((a n x n 2 a n 1 x n3 a 2 ) x a1 ) x a0 ( ((a n x a n 1 ) x a n2 ) x a1 ) a0

福建省永安第十二中学高中数学人教B版必修三:1.3.2秦九韶算法 (教案)

《秦九韶算法》教案永安十二中 罗上尧 .11.25(星期五)课题秦九韶算法 课型新授课授课班级 高二( )班教学目标知识与技能目标:1.了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数提高计算效率的实质.2.能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序.过程与方法目标:模仿秦九韶计算方法,体会古人计算构思的巧妙.情感、态度、价值观目标:通过对秦九韶算法的学习,了解中国古代数学家对数学的贡献,充分认识到我国文化历史的悠久.重点:秦九韶算法的特点,对秦九韶算法的先进性理解. 教学资源: PPT难点:秦九韶算法思想的理解及用循环结构表示算法步骤.教学互动内容设计意图 一、创设情景,揭示课题 1.秦九韶人物简介2.问题是数学的心脏,带着问题思考数学的智慧 二、新课探究知识探究(一):秦九韶算法的基本思想思考1:怎样求多项式1)(2345+++++=x x x x x x f 当5=x 时的值呢? 算法1:将5=x 代入1)(2345+++++=x x x x x x f计算得(5)3906f =,并统计所做的计算的种类及计算次数。

(共需要10次乘法运算,5次加法运算)算法2:在计算x 的幂值时,可以利用前面的计算结果,以减少计算量,即先计算2x ,然后依次计算2x x ⋅,2()x x x ⋅⋅,2(())x x x x ⋅⋅⋅的值,这样计算上述多项式的值,一共需要多少次乘法,多少次加法?(上述算法一共做了4次乘法运算,5次加法运算)结论:第二种做法与第一种做法相比,乘法的运算次数减少了,因而能提高运算效率,而且对于计算机来说,做一次乘法所需的运算时间比做一次加法要长了解数学史及中国古代数学对世界数学的贡献,激发学生的爱国主义情怀.通过学生的操作认识算法1的算法种类和计算次数.帮助学生建立改进算法,提高计算效率的意识.得多,因此第二种做法能更快地得到结果.算法3:我们把多项式变形为:()((((1)1)1)1)1f x x x x x x =+++++再统计一下计算当5=x 时的值时需要的计算次数,可以得出仅需4次乘法和5次加法运算即可得出结果。

1.3.2秦九韶算法

(an x n1 an1 x n2 a1 ) x a0

(( an x
n2
an1 x
n 3
a2 ) x a1 ) x a0
((an x an1 ) x an2 ) x a1 ) x a0
f ( x) ((an x an1 ) x an2 ) x a1 ) x a0
再将第二种方法与第三种方法比较,两种方法都是利用 上一步的结果进行运算。两种方法哪种更有效?我们将上题 加上系数再比较。
f ( x) 5x 2x 3.5x 2.6x 1.7 x 0.8
5 4 3 2
算法二:
f ( x) 5x( x( x x2 )) 2x( x x2 ) 3.5x x2 2.6x2 1.7x 0.8
共做了4次乘法,5次加法。 共做了10次乘法,5次加法。
f(5)=55+54+53+52+5+1 =(54+53+52+5+1)×5+1 =((53+52+5+1)×5+1)×5+1 =(((52+5 +1)×5+1)×5+1)×5+1 =((((5+1)×5+1)×5+1)×5+1)×5+1
共做了4次乘法,5次加法。
你从中看到了 怎样的规律? 怎么用程序框 图来描述呢?
所以,当x = 5时,多项式的值等于17255.2
特点:通过一次式的反复计算,逐步得出 高次多项式的值,对于一个n次多项式, 只需做n次乘法和n次加法即可。
利用秦九韶算法求多项式Байду номын сангаас
f(x)=anxn+an-1xn-1+…+a1x+a0的值: 先化为f(x)=(…((anx+an-1)x+an-2)x+…+a1)x+a0,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省长沙市一中卫星远程学校
《优化设计》P37页例2: 用秦九韶算法求多项式
f ( x) 7 x 6x 5x 4x 3x 2x x, x 3
7 6 5 4 3 2
的值。
湖南省长沙市一中卫星远程学校
《优化设计》P38页例3: 用秦九韶算法求多项式
f ( x) 3x 2x 4x 2, x 2
4 2
的值。
湖南省长沙市一中卫星远程学校
小结作业
评价一个算法好坏的一个重要标志 是运算的次数,如果一个算法从理论上 需要超出计算机允许范围内的运算次 数,那么这样的算法就只能是一个理论 算法.在多项式求值的各种算法中, 秦九 韶算法是一个优秀算法.
湖南省长沙市一中卫星远程学校
1.3 算法案例
第二课时
高中新课程数学必修③
湖南省长沙市一中卫星远程学校
问题提出
1.辗转相除法和更相减损术,是求两个 正整数的最大公约数的优秀算法,我们将算 法转化为程序后,就可以由计算机来执行运 算,实现了古代数学与现代信息技术的完美 结合.
2.对于求 n 次多项式的值,在我国古代 数学中有一个优秀算法,即秦九韶算法,我 们将对这个算法作些了解和探究.
湖南省长沙市一中卫星远程学校
湖南省长沙市一中卫星远程学校
知识探究(一):秦九韶算法的基 x 1, 求f (5). 21325 算法1: 需要(5+4+3+2+1)=15次乘法,5次加法
5 4 3 2
算法2:秦九韶算法 需要5次乘法,5次加法 思考2 已知f ( x ) 7 x 6 x 5 x 4 x 3 2 3 x 2 x x 1, 求f ( 3). 18556
7 6 5 4
湖南省长沙市一中卫星远程学校
思考 3:利用后一种算法求多项式 n n-1 f(x)=anx +an-1x +…+a1x+a0 的值,这个多 项式应写成哪种形式?
f(x)=anxn+an-1xn-1+…+a1x+a0 =(anxn-1+an-1xn-2+…+a2x+a1)x+a0 =((anxn-2+an-1xn-3+…+a2)x+a1)x+a0 =… =(…((anx+an-1)x+an-2)x+…+a1)x+a0.
湖南省长沙市一中卫星远程学校
思考5:上述求多项式 f(x)=anxn+an-1xn-1+…+a1x+a0的值的方法 称为秦九韶算法,利用该算法求f(x0)的 值,一共需要多少次乘法运算,多少次 加法运算?
思考6:在秦九韶算法中,记v0=an,那么 第k步的算式是什么?
vk=vk-1x+an-k (k=1,2,…,n)
湖南省长沙市一中卫星远程学校
思考4:对于f(x)=(…((anx+an-1)x+ an-2)x+…+a1)x+a0,由内向外逐层计算 一次多项式的值,其算法步骤如何?
第一步,计算v1=anx+an-1.
第二步,计算v2=v1x+an-2.
第三步,计算v3=v2x+an-3. …
第n步,计算vn=vn-1x+a0.
相关文档
最新文档