轴对称知识点总结大全
关于轴对称的知识点

关于轴对称的知识点在日常生活中,轴对称经常出现在各种图形、物品和自然事物中。
轴对称是一种基本的几何概念,是我们理解图形、计算面积和体积等几何问题的重要基础。
本篇文章将重点讨论轴对称的概念、性质和应用,帮助读者全面了解轴对称的知识点。
一、轴对称的基本概念轴对称是指平面上的一个点、线或面,将图形沿着该点、线或面折叠后,两侧重合的现象。
例如,一个圆可以沿着其圆心为轴对称,一个矩形可以沿着其中心的对角线为轴对称。
轴对称的基本概念包括以下几个要素:1. 轴:轴是平面上的一个点、直线或面,用于将图形分割成对称的两部分。
2. 对称中心:对称中心是轴对称的中心点或中心线,是图形对称的基准点。
3. 对称轴:对称轴是指通过对称中心的直线或平面,用于确定图形的对称位置。
4. 对称面:对称面是指沿着某个平面进行对称的现象,例如,一个立方体可以沿着一个面为对称面。
二、轴对称的性质轴对称是一种基本的几何概念,具有一些重要的性质,包括:1. 对称关系:轴对称的两侧是对称关系,互为镜像。
例如,一个字母“S”在其对称轴的两侧是相似的镜像形。
2. 对称轴必须经过对称中心:轴对称的对称轴必须经过对称中心,这是其对称的基准点。
3. 对称轴是唯一的:轴对称的对称轴是唯一的,它既可以是一条直线,也可以是一个平面。
4. 对称图形具有相同的面积和周长:轴对称的图形具有相同的面积和周长,这意味着,我们可以通过测量一侧的面积和周长,计算出整个图形的面积和周长。
三、轴对称的应用轴对称是一种重要的几何概念,在各种领域都有广泛的应用,包括:1. 在工程绘图中,轴对称被广泛用于设计对称性的零件和构件。
例如,一个机器零件可能需要在两侧具有相等的重量和力学性能,这就需要使用轴对称进行设计。
2. 在纹样和图案设计中,轴对称是一种常见的设计手段。
例如,一些印度图案和中国的剪纸,都是基于轴对称设计的。
3. 在数学中,轴对称被广泛应用于计算面积和体积。
例如,计算一个图形的面积,可以将其沿着某个轴对称的线分割成对称的两部分,计算一部分的面积后,再乘以2。
轴对称知识点总结

轴对称知识点总结 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C-轴对称与轴对称图形一、知识点:1.什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。
2.什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
3.轴对称与轴对称图形的区别与联系:区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。
②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。
联系:①两部分都完全重合,都有对称轴,都有对称点。
②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。
常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等。
4.线段的垂直平分线:(也称线段的中垂线)5.轴对称的性质:⑴成轴对称的两个图形全等。
⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
6.怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点。
二、举例:例1:判断题:①角是轴对称图形,对称轴是角的平分线;()②等腰三角形至少有1条对称轴,至多有3条对称轴;()③关于某直线对称的两个三角形一定是全等三角形;()④两图形关于某直线对称,对称点一定在直线的两旁。
()例2:下图曾被哈佛大学选为入学考试的试题.请在下列一组图形符号中找出它们所蕴含的内在规律,然后把图形空白处填上恰当的图形.例3:如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为一个轴对称图形:例4:如图,已知:ΔABC和直线l,请作出ΔABC关于直线l的对称三角形。
《轴对称》知识点总结

1、轴对称图形:一个图形沿一条直线对折,直线两旁的部分能够完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
2、轴对称:两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
3、轴对称图形与轴对称的区别与联系:(1)区别。
轴对称图形讨论的是“一个图形与一条直线的对称关系” ;轴对称讨论的是“两个图形与一条直线的对称关系”。
(2)联系。
把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴 对称的“两个图形看作一个整体”便是轴对称图形。
4、轴对称的性质:(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
5、线段的垂直平分线:(1)定义。
经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。
如图2,∵CA=CB ,直线m ⊥AB 于C , ∴直线m 是线段AB 的垂直平分线。
(2)性质。
线段垂直平分线上的点与线段两端点的距离相等。
如图3,∵CA=CB ,直线m ⊥AB 于C ,点P 是直线m 上的点。
∴PA=PB 。
mCAB图1图2m CABPD'D C'B'A'K J I H(3)判定:与线段两端点距离相等的点在线段的垂直平分线上。
如图3,∵PA=PB ,直线m 是线段AB 的垂直平分线, ∴点P 在直线m 上 。
6、等腰三角形:(1)定义。
有两条边相等的三角形,叫做等腰三角形。
✍相等的两条边叫做腰。
第三条边叫做底。
✍两腰的夹角叫做顶角。
✍腰与底的夹角叫做底角。
说明:顶角=180°- 2底角;底角=顶角顶角21-902180︒=-︒可见,底角只能是锐角。
(2)性质。
✍等腰三角形是轴对称图形,其对称轴是“底边的垂直平分线” ,只有一条。
✍等边对等角。
如图5,在△ABC 中,∵AB=AC ∴∠B=∠C 。
轴对称古代知识点总结

轴对称古代知识点总结一、轴对称的概念轴对称,又称对称轴,是指物体上的某条直线,对这条直线上的点作对称变换时,这条直线是对称变换的轴。
也就是说,沿着轴对称的直线将物体划分为两部分,两部分是完全相似的,只是在轴对称线上的点的位置互相翻折。
轴对称是几何图形中的一种对称性。
在古代的数学中,轴对称的概念并不是以轴对称的名义出现的,但在古代的几何学和美学中,对称性的概念得到了充分的重视。
古希腊的几何学家欧几里得在其著作《几何原本》中系统地论述了几何学的基本概念,其中包括了对称性的讨论。
在古代的雕塑和建筑中,对称性也被广泛地应用,因此,轴对称的概念在古代的数学和美学中得到了广泛的应用和发展。
二、轴对称的性质1、轴对称的稳定性轴对称的稳定性是指物体在轴对称的直线上做对称变换后,物体的形状、大小、质地等性质不变。
这个性质使得轴对称的直线成为了一种特殊的对称轴,因为它不仅能够将物体分为两部分,还能够保持物体的形状和结构不变。
2、轴对称的唯一性在平面上,物体的轴对称轴是唯一的。
也就是说,如果一个物体有轴对称,那么它的轴对称轴是唯一的。
这个性质在数学和美学中都得到了广泛的应用,因为它使得研究轴对称的直线更加简洁和明了。
3、轴对称的延伸性轴对称的直线可以被延伸到整个空间中。
也就是说,轴对称的性质并不仅仅局限于平面上,而是可以延伸到三维空间中。
这个性质使得轴对称的概念更加普遍和实用。
三、轴对称的应用1、在建筑中的应用古代的建筑中,轴对称的概念被广泛地运用。
古罗马的庞贝城就是一个典型的例子。
在庞贝城的建筑中,轴对称的对称性得到了充分的体现。
建筑师们利用轴对称的直线将建筑物分成了对称的部分,使得整个建筑物看起来更加整齐和谐。
2、在绘画中的应用古代的绘画中,轴对称的概念被广泛地运用。
例如,在中国的绘画中,轴对称的直线被用来构建绘画作品的结构。
在古代的绘画作品中,轴对称的直线被用来分割画面,使得画面更加平衡和和谐。
3、在雕塑中的应用古代的雕塑中,轴对称的概念被广泛地运用。
轴对称知识点总结

轴对称知识点总结轴对称是几何学中一个重要的概念,它在我们日常生活和各个学科中都有广泛的应用。
轴对称是指某个图形或物体通过一个轴线进行对称时,两边完全一致的性质。
在本文中,我们将讨论轴对称的定义、性质和应用,并且介绍一些与轴对称相关的重要知识点。
首先,让我们来了解一下轴对称的定义。
轴对称是指一个图形或物体相对于某个轴线对称,也就是说,通过这个轴线,图形或物体的两边是完全一致的。
轴对称可以在平面图形中看到,如圆、正方形和矩形,也可以在三维物体中观察到,如立方体和圆柱体。
轴对称是指对称性的一种表现形式,它使得物体更加稳定、对称和美观。
轴对称具有一些重要的性质。
首先,任何图形或物体都可以有轴对称的特性,但并不是所有的图形都有轴对称。
例如,一个长方形具有轴对称性,而一个任意形状的图形则不一定具有轴对称性。
其次,在一个轴对称图形中,与轴线对称的两个点之间的距离是相等的。
这是因为轴对称性要求两边完全一致,在不损失对称性的前提下,点与轴线的距离必须相等。
最后,轴对称图形可以通过折叠沿着轴线重叠在一起。
这是因为两边完全一致,所以它们可以完全叠在一起。
轴对称具有广泛的应用。
在艺术领域,轴对称可以被用来组织和设计画作、雕塑和建筑物。
许多艺术品都运用了轴对称来增强美感和视觉效果。
在生活中,轴对称也经常出现在日用品中。
例如,镜子是常见的具有轴对称特性的物体。
它们通过镜面上下左右的对称,可以反射出完整的镜像。
在科学研究中,轴对称也有着广泛的应用。
例如,轴对称可以用于研究分子的结构、晶体的对称性以及光学中的偏振等。
除了轴对称的基本概念外,还有其他一些与轴对称相关的重要知识点。
首先是轴对称图形的判定方法。
判定一个图形是否具有轴对称性的方法之一是观察图形是否可以通过某条直线进行对折,如果两边重合,那么它就是轴对称的。
其次是轴对称和平移的关系。
轴对称性是平移不变性的一种特例。
也就是说,如果一个图形具有轴对称性,并且在平移下保持不变,那么它就是具有轴对称性的。
轴对称知识点总结

(2) 对称轴与连结“对应点的线段”垂直。 (3) 对应点到对称轴的距离相等。 (4) 对应点的连线互相平行。 5、 线段的垂直平分线: (1)
定义。经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。 如图2, ∵CA=CB, 直线m⊥AB于C, ∴直线m是线段AB的垂直平分线。
图2
(2) 性质。线段垂直平分线上的点与线段两端点的距离相等。
重要结论。在Rt△中,30°角所对直角边等于斜边的一半。
如图7, ∵在Rt△ABC中, ∠C=90°,∠A=30° ∴BC=AB 或AB=2BC
图7
坐标轴(或直线)成轴对称的图形,只需根
据作出各顶点的对称点,再顺次连结各对称点。对称点的作法见 11(1)。 9、 对称轴的画法:
等边三角形的三个内角都等于60°。 如图6,在△ABC中
∵AB=AC=BC ∴∠A=∠B=∠C=60°。
图6
(3) 判定。 三条边都相等的三角形是等边三角形。 如图6,在△ABC中
∵AB=AC=BC ∴△ABC是等边三角形 。 三个内角都相等的三角形是等边三角形。 如图6,在△ABC中 ∵∠A=∠B=∠C ∴△ABC是等边三角形 。 有一个内角是60°的等腰三角形是等边三角形。 如图6,在△ABC中 ∵AB=AC(或AB=BC,AC=BC) ∠A=60°(∠B=60°,∠C=60°) ∴△ABC是等边三角形 。 (4)
添加辅助线口诀 几何证明难不难,关键常在辅助线;知中点、作中线,倍长中线把线连. 线段垂直平分线,常向两端来连线.线段和差及倍分,延长截取全等现; 公共角、公共边,隐含条件要挖掘;平移对称加旋转,全等图形多变换. 角平分线取一点,可向两边作垂线; 也可将图对折看,对称之后关系现; 角平分线加平行,等腰三角形来添; 角平分线伴垂直,三线合一试试看。
关于对称知识点总结

关于对称知识点总结一、对称的定义对称是指一个物体的一部分关于某个中心或轴旋转、翻转等操作后,与另一部分完全重合的性质。
简单地说,就是一个物体可以通过某种变换保持不变。
在几何学中,对称通常涉及到轴对称和中心对称两种类型。
1. 轴对称:轴对称是指存在一个直线,使得图形绕这条直线旋转180度后,图形仍然不变。
这条直线就被称为轴线,而关于轴线的对称变换就被称为轴对称变换。
轴对称的图形通常具有左右对称或上下对称的性质。
2. 中心对称:中心对称是指存在一个点,使得图形绕这个点旋转180度后,图形仍然不变。
这个点就被称为中心,而关于中心的对称变换就被称为中心对称变换。
中心对称的图形通常具有圆形或椭圆形的性质。
二、对称的性质对称具有许多重要的性质,在数学中,这些性质对于解题和证明都具有重要的作用。
下面我们来介绍一些常见的对称性质:1. 对称性质:对称性是物体的一种基本性质。
一个图形如果关于某个中心或轴对称,那么它的两部分互为镜像,即完全重合。
这种性质在几何学中有很广泛的应用,比如在证明定理、计算面积等方面。
2. 对称轴:对称轴是指一个图形能够关于其上的直线旋转180度后仍保持不变的直线。
对称轴通常具有一些特殊的性质,比如在研究多边形的对称性质时,我们常常需要找到多边形的对称轴来简化问题。
3. 对称中心:对称中心是指一个图形能够关于其上的点旋转180度后仍保持不变的点。
对称中心通常具有一些特殊的性质,比如在研究圆的对称性质时,我们常常需要找到圆的对称中心来简化问题。
4. 对称图形:对称图形是指具有轴对称或中心对称性质的图形。
对称图形通常具有美观性和稳定性,因此在设计建筑、家具等方面都得到了广泛的应用。
三、对称的分类在数学中,对称的分类通常以轴对称和中心对称为基础进行划分。
不同类型的对称性质具有不同的特点和应用,下面我们来介绍一些常见的对称类型:1. 轴对称图形:轴对称图形是指具有轴对称性质的图形。
轴对称图形通常都具有左右对称或上下对称的性质,比如矩形、正方形、等腰三角形等都是轴对称图形。
13章 轴对称知识点总结(适合学生自查)

轴对称知识点归纳(适合学生自查)
1、对称轴是一条 .
等腰三角形的对称轴是 平分线、 的高线、 中线所在的直线
2、轴对称图形的对称轴,是任何一对对应点所连线段的 。
3.成轴对称的两个图形 全等;两个图形全等 成轴对称.(填“一定”或“不一定”)
4. ,•叫做这条线段的垂直平分线(或 ).
5.线段的垂直平分线上的点 ;反过来,•与一条线段两个端点距离相等的点在 .(证明
是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.
6.关于哪一轴对称,哪个坐标就不变,另一坐标互为 。
7.等腰三角形性质:
等腰三角形的两个底角相等,简写成:
等腰三角形的 、 、 相互重合。简称
8.等腰三角形的判定:
如果一个三角形有两个角相等,那么这两个角所对的边也相等,简称
9.三条边都相等的三角形,叫 三角形。它是特殊的等腰三角形。
等边三角形的三个内角都相等,并且每一个角都等于 。
等边三角形的判定方法: 、 、
10.在直角三角形中,如果一个锐角等于30º,那么它所对的直角边等于 。
11..到三边距离相等的点是 的交点
到三顶点距离相等的点是 的交点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴对称知识点总结大全第一篇:轴对称知识点总结大全轴对称与轴对称图形一、知识点:1.什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。
2.什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
3.轴对称与轴对称图形的区别与联系:区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。
②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。
联系:①两部分都完全重合,都有对称轴,都有对称点。
②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。
常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等。
l A B 4.线段的垂直平分线:垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。
(也称线段的中垂线)5.轴对称的性质:⑴成轴对称的两个图形全等。
⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
6.怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点。
二、举例:例1:判断题:① 角是轴对称图形,对称轴是角的平分线;()②等腰三角形至少有1条对称轴,至多有3条对称轴;()③关于某直线对称的两个三角形一定是全等三角形;()④两图形关于某直线对称,对称点一定在直线的两旁。
()例2:下图曾被哈佛大学选为入学考试的试题.请在下列一组图形符号中找出它们所蕴含的内在规律,然后把图形空白处填上恰当的图形.例3:如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为一个轴对称图形:方法1 方法2 方法3 例4:如图,已知:ΔABC和直线l,请作出ΔABC关于直线l的对称三角形。
l B A C l B A C l B A C C A D B 例5:如图,DA、CB是平面镜前同一发光点S发出的经平面镜反射后的反射光线,请通过画图确定发光点S的位置,并将光路图补充完整。
例6:如图,四边形ABCD是长方形弹子球台面,有黑白两球分别位于E、F两点位置上,试问怎样撞击黑球E,才能使黑球先碰撞台边AB反弹后再击中白球F?例7:如图,要在河边修建一个水泵站,向张庄A、李庄B送水。
修在河边什么地方,可使使用的水管最短?· · A B a 例8:如图,OA、OB是两条相交的公路,点P是一个邮电所,现想在OA、OB上各设立一个投递点,要想使邮电员每次投递路程最近,问投递点应设立在何处?· P B O A 线段、角的轴对称性l A B M 一、知识点:1.线段的轴对称性:① 线段是轴对称图形,对称轴有两条;一条是线段所在的直线,另一条是这条线段的垂直平分线。
②线段的垂直平分线上的点到线段两端的距离相等。
③到线段两端距离相等的点,在这条线段的垂直平分线上。
结论:线段的垂直平分线是到线段两端距离相等的点的集合2.角的轴对称性:①角是轴对称图形,对称轴是角平分线所在的直线。
②角平分线上的点到角的两边距离相等。
③到角的两边距离相等的点,在这个角的平分线上。
结论:角的平分线是到角的两边距离相等的点的集合二、举例:例1:已知ABC中,AB=AC=10,DE垂直平分AB,交AC于E,已知BEC的周长是16。
求ABC的周长.· C B O A · D 例2:如图,已知∠AOB及点C、D,求作一点P,使PC=PD,并且使点P到OA、OB的距离相等。
l · · A B 例3:如图,已知直线及其两侧两点A、B。
(1)在直线上求一点P,使PA=PB;(2)在直线上求一点Q,使平分∠AQB。
例4:如图,直线a、b、c表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,可供选择的地址有几处?如何选? O D C B A E 例5:已知:如图,在ΔABC中,O是∠B、∠C外角的平分线的交点,那么点O在∠A的平分线上吗?为什么? O D C B A 1 2 3 4 例6:如图,已知:AD和BC相交于O,∠1=∠2,∠3=∠4。
试判断AD和BC的关系,并说明理由。
例7:已知:如图,△ABC中,BC边中垂线ED交BC于E,交BA 延长线于D,过C作CF⊥BD于F,交DE于G,DF=BC,试说明∠FCB=∠B 例8:已知:在∠ABC中,D是∠ABC平分线上一点,E、F 分别在AB、AC上,且DE=DF。
试判断∠BED与∠BFD的关系,并说明理由.2、已知:在ΔABC中,D是BC上一点,DE⊥BA于E,DF⊥AC于F,且DE=DF.。
试判断线段AD与EF有何关系?并说明理由。
3、如图,已知:在△ABC中,∠BAC=90°,BD平分∠ABC,DE⊥BC于E。
试说明BD垂直平分AE 等腰三角形的轴对称性一、知识点:3.等腰三角形的性质:①等腰三角形是轴对称图形,顶角平分线所在直线是它的对称轴;②等腰三角形的两个底角相等;(简称“等边对等角”)③等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
(简称“三线合一”)4.等腰三角形的判定:①如果一个三角形有2个角相等,那么这2个角所对的边也相等;(简称“等角对等边”)②直角三角形斜边上的中线等于斜边上的一半。
3.等边三角形:① 等边三角形的定义:三边相等的三角形叫做等边三角形或正三角形。
② 等边三角形的性质:等边三角形是轴对称图形,并且有3条对称轴;等边三角形的每个角都等于600。
③等边三角形的判定:3个角相等的三角形是等边三角形;有两个角等于600的三角形是等边三角形;有一个角等于600的等腰三角形是等边三角形。
4.三角形的分类:斜三角形:三边都不相等的三角形。
三角形只有两边相等的三角形。
等腰三角形等边三角形二、举例:例1、如图,已知D、E两点在线段BC上,AB=AC,AD=AE,试说明BD=CE的理由? A B C E D 例2:如图,已知:△ABC中,AB =AC,BD和CE分别是∠ABC和∠ACB的角平分线,且相交于O点。
①试说明△OBC是等腰三角形;②连接OA,试判断直线OA与线段BC的关系?并说明理由。
A E DBC O OD C B A 1 2 3 4 例3:如图,已知:AD和BC相交于O,∠1=∠2,∠3=∠4。
试判断AD和BC的关系,并说明理由。
E D C B A 例4:如图,已知:△ABC中,∠C=900,D、E是AB 边上的两点,且AD=AC,BD=BC。
求∠DCE的度数。
G F E D C B A · · 例5:如图,已知:△ABC中,BD、CE分别是AC、AB边上的高,G、F分别是BC、DE的中点。
试探索FG与DE的关系。
A F E DBC M 例6:如图,已知:△ABC中,∠C=900,AC=BC,M是AB的中点,DE⊥BC于E,DF⊥AC于F。
试判断△MEF的形状?并说明理由。
E D C B A 例7:如图,已知:△ABC为等边三角形,延长BC到D,延长BA到E,AE=BD,连结EC、ED,试说明CE=DE。
A F C EB D M P 例8:如图,在等边△ABC中,P为△ABC内任意一点,PD⊥BC于D,PE⊥AC于E,PF⊥AB于F,AM⊥BC于M,试猜想AM、PD、PE、PF之间的关系,并证明你的猜想.等腰梯形的轴对称性一、知识点:5.等腰梯形的定义:①梯形的定义:一组对边平行,另一组对边不平行为梯形。
梯形中,平行的一组对边称为底,不平行的一组对边称为腰。
A D CB ②等腰梯形的定义:两腰相等的梯形叫做等腰梯形。
6.等腰梯形的性质:①等腰梯形是轴对称图形,是两底中点的连线所在的直线。
②等腰梯形同一底上两底角相等。
③等腰梯形的对角线相等。
3.等腰梯形的判定:③ 在同一底上的2个底角相等的梯形是等腰梯形。
④ 补充:对角线相等的梯形是等腰梯形。
二、举例:例1:填空:1、等腰梯形的腰长为12cm,上底长为15cm,上底与腰的夹角为120°,则下底长为cm.2、如果一个等腰梯形的二个内角的和为1000,那么此梯形的四个内角的度数分别为. 3、等腰梯形上底的长与腰长相等,而一条对角线与一腰垂直,则梯形上底角的度数是______;4、已知等腰梯形的一个底角等于600,它的两底分别为13cm和37cm,它的周长为_______;A D CB 5、如图,在梯形ABCD中,AD∥BC,AB=CD,∠A=120°,对角线BD平分∠ABC,则∠BDC的度数是;又若AD=5,则BC=.6、如图,在等腰梯形ABCD中,AD∥BC,AB = AD,BD = BC,则∠C= 0。
例2:如图,等腰梯形ABCD中,AD∥BC,对角线AC、BD相交于点O.试说明:AO=DO.例3:如图,梯形ABCD中,AD∥BC,AC=BD。
试说明:梯形ABCD是等腰梯形。
A DBC E 例4:如图,在等腰梯形ABCD中,AD∥BC,AD=3cm,BC=7cm,E为CD的中点,四边形ABED的周长比△BCE的周长大2 cm,试求AB的长.例5:如图,在等腰梯形ABCD中,AD∥BC,AB=CD,M为BC中点,则:(1)点M到两腰AB、CD的距离相等吗?请说出你的理由。
(2)若连结AM、DM,那么△AMD是等腰三角形吗?为什么?(3)又若N为AD的中点,那么MN⊥AD一定成立.你能说明为什么吗? A D B C E F M A D E F C B 例6、如图,在等腰梯形ABCD中,AD∥BC,AB=CD,E为CD中点,AE与BC的延长线交于F.(1)判断S△ABF 和S梯形ABCD有何关系,并说明理由.(2)判断S△ABE和S梯形ABCD有何关系,并说明理由.(3)上述结论对一般梯形是否成立?为什么? A D E C B 例7、如图,在梯形ABCD中,AD∥BC,E为CD的中点,AD+BC=AB.则:(1)AE、BE分别平分∠DAB、∠ABC吗?为什么?(2)AE⊥BE吗?为什么? A P D Q B C 例8:在梯形ABCD中,∠B=900,AB=14cm,AD=18cm,BC=21cm,点P从点A开始沿AD边向点D以1 cm/s 的速度移动,点Q从点C开始沿CB向点B以2cm/s的速度移动,如果点P、Q分别从两点同时出发,多少秒后,梯形PBQD是等腰梯形?中心对称与中心对称图形一、知识点:1、图形的旋转:在平面内,将一个图形绕一个定点旋转一定的角度,这样的图形运动称为图形的旋转,这个定点称为旋转中心,旋转的角度称为旋转角。