八年级数学上册最短路径问题专项练习
人教版初中数学八年级上册《13.4 课题学习 最短路径问题》同步练习卷

人教新版八年级上学期《13.4 课题学习最短路径问题》同步练习卷一.选择题(共6小题)1.如图,矩形ABCD中,AB=2,BC=6,P为矩形内一点,连接P A,PB,PC,则P A+PB+PC 的最小值是()A.4+3B.2C.2+6D.42.如图,∠ABC=30°,点D、E分别在射线BC、BA上,且BD=2,BE=4,点M、N 分别是射线BA、BC上的动点,当DM+MN+NE最小时,(DM+MN+NE)2的值为()A.20B.26C.32D.363.如图.已知△ABC.∠ACB=30°,CP为∠ACB的平分线,且CP=6,点M、N分别是边AC和BC上的动点,则△PMN周长的最小值为()A.4B.6C.6D.104.△ABC中,∠ABC=97.5°,P、Q两点在AC边上,PB=2,BQ=3,PQ=,若点M、N分别在边AB、BC上,当四边形PQNM的周长最小时,(MP+MN+NQ)2的值为()A.18+8B.24+8C.22+6D.31+5.如图,在矩形ABCD中,对角线AC=6,过点D作DE⊥AC,垂足为E,AE=3CE,点F,G分别在AC,BC上,则AG+FG的最小值为()A.2B.C.2D.36.Rt△ABC中,∠ACB=90°,AC=4,BC=8,D,E是AB和BC上的动点,连接CD,DE,则CD+DE的最小值为()A.8B.C.D.二.填空题(共14小题)7.已知:如图,直线MN和直线l相交于点O,其中两直线相交所构成的锐角等于45°,且OM=6,MN=2,若点P为直线l上一动点,那么PM+PN的最小值是.8.如图,△ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP 的最小值为2,则BC=.9.如图,在矩形ABCD中,AB=10,AD=6,动点P满足S△P AB=S矩形ABCD,则点P到A,B两点距离之和P A+PB的最小值为.10.如图,菱形ABCD的边长为3,∠BAD=60°,点E、F在对角线AC上(点E在点F 的左侧),且EF=1,则DE+BF最小值为11.如图,在菱形ABCD中,AB=6,∠A=135°,点P是菱形内部一点,且满足S△PCD =,则PC+PD的最小值是.12.如图所示,已知点C(1,0),直线y=﹣x+7与两坐标轴分别交于A,B两点,D,E 分别是AB,OA上的动点,则△CDE周长的最小值是.13.如图,在等腰三角形ABC中,∠ABC=120°,点P是底边AC上一个动点,M、N分别是AB、BC的中点,若PM+PN的最小值为4,则△ABC的周长是.14.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.AC与网格线交于点D,点P,Q分别为线段BC,AB上的动点.(I)线段CD的长为;(Ⅱ)当PD+PQ取得最小值时,用无刻度的直尺.画出线段PD,PQ,并简要说明点P和点Q的位置是如何找到的.15.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D.若AC=4,CD =1,E是AC的中点,P是AD上的一个动点,则PC+PE的最小值为.16.已知A(﹣2,0),B(0,2),P是x轴上动点,将B绕P点顺时针旋转90°得到点C,则AC+CP的最小值是.17.如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+ PC的最小值为;PD+4PC的最小值为.18.如图,在△ABC中,∠ACB=90°,AC=6,BC=8,CD平分∠ACB交AB于点D.点E为CD的中点.在BC上有一动点P,则PD+PE的最小值是19.如图,在正方形ABCD中,BC=2,对角线AC与BD交于点O,P、Q为BD的两个动点,且BP=OQ,则△APQ的周长的最小值是.20.在△ABC中,∠ABC=60°,BC=8,AC=10,点D、E在AB、AC边上,且AD=CE,则CD+BE的最小值.三.解答题(共30小题)21.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.22.如图已知EF∥GH,AC⊥EF于点C,BD⊥EF于点D交HG于点K.AC=3,DK=2,BK=4.(1)若CD=6,点M是CD上一点,当点M到点A和点B的距离相等时,求CM的长;(2)若CD=,点P是HG上一点,点Q是EF上一点,连接AP,PQ,QB,求AP+PQ+QB 的最小值.23.如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,(1)求△ABC的面积;(2)如图②,BH为∠ABC的角平分线,点O为线段BH上的动点,点G为线段BC上的动点,请直接写出OC+OG的最小值.24.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上.(1)求出AB的长.(2)求出△ABC的周长的最小值?25.已知△ABC中,AC=6cm,BC=8cm,AB=10cm,CD为AB边上的高.动点P从点A 出发,沿着△ABC的三条边逆时针走一圈回到A点,速度为2cm/s,设运动时间为ts.(1)求CD的长;(2)t为何值时,△ACP为等腰三角形?(3)若M为BC上一动点,N为AB上一动点,是否存在M,N使得AM+MN的值最小?如果有请求出最小值,如果没有请说明理由.26.如图,山娃星期天从A处赶了几只羊到草地l1放羊,然后赶羊到小河l2饮水,之后再回到B处的家,假设山娃赶羊走的都是直路,请你为它设计一条最短的路线,标明放羊与饮水的位置.27.已知点P在∠MON内.(1)如图1,点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,连接OG、OH、OP.①若∠MON=50°,则∠GOH=;②若PO=5,连接GH,请说明当∠MON为多少度时,GH=10;(2)如图2,若∠MON=60°,A、B分别是射线OM、ON上的任意一点,当△P AB的周长最小时,求∠APB的度数.28.在如图所示的网格中,线段AB和直线l如图所示:(1)借助图中的网格,在图1中作锐角△ABC,满足以下要求:①C为格点(网格线交点);②AB=AC.(2)在(1)的基础上,请只用直尺(不含刻度)在图(1)中找一点P,使得P到AB、AC的距离相等,且P A=PB.(友情提醒:请别忘了标注字母!)(3)在图2中的直线l上找一点Q,使得△QAB的周长最小,并求出周长的最小值是.29.用三角板和直尺作图.(不写作法,保留痕迹)如图,点A,B在直线l的同侧.(1)试在直线l上取一点M,使MA+MB的值最小.(2)试在直线l上取一点N,使NB﹣NA最大.30.如图,∠XOY内有一点P,试在射线OX上找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.31.在如图所示的方格中,点A,B,C,D都在格点上,且AB=BC=2CD=4,P是线段BC上的动点,连结AP,DP.(1)设BP=x,用含字母x的代数式分别表示线段AP,DP的长,求x=2时,AP+DP的值;(2)AP+DP是否存在最小值?若存在,求出其最小值.(3)根据(2)中的结论,请构图求出代数式+的最小值.32.如图,在平面直角坐标系xOy中,已知点A(﹣1,0),点B(0,2),点C(3,0),直线a为过点D(0,﹣1)且平行于x轴的直线.(1)直接写出点B关于直线a对称的点E的坐标;(2)若P为直线a上一动点,请求出△PBA周长的最小值和此时P点坐标.33.(1)如图1,在AB直线一侧C、D两点,在AB上找一点P,使C、D、P三点组成的三角形的周长最短,找出此点并说明理由.(2)如图2,在∠AOB内部有一点P,是否在OA、OB上分别存在点E、F,使得E、F、P 三点组成的三角形的周长最短,找出E、F两点,并说明理由.(3)如图3,在∠AOB内部有两点M、N,是否在OA、OB上分别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最短,找出E、F两点,并说明理由.34.如图,C为线段BD上一动点,分别过点B,D作AB⊥BD,ED⊥BD,连接AC,EC.已知AB=5,DE=3,BD=15,设BC=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C在什么位置时,AC+CE的值最小,求出这个最小值;(3)根据(2)中的规律和结论,作出图形并求出代数式+的最小值.35.如图,在△ABC中,AB=10,BC=12,BC边上的中线AD=8.(1)证明:△ABC为等腰三角形;(2)点H在线段AC上,试求AH+BH+CH的最小值.36.如图所示,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,求DN+MN的最小值.37.已知:三点A(a,1)、B(3,1)、C(6,0),点A在正比例函数y=x的图象上.(1)求a的值;(2)点P为x轴上一动点.①当△OAP与△CBP周长的和取得最小值时,求点P的坐标;②当∠APB=20°时,求∠OAP+∠PBC的度数.38.如图,C为线段BD上一动点,分别过点B,D作AB⊥BD,ED⊥BD,连结AC、EC.已知AB=5,DE=1,BD=8,设CD=x(1)用含x的代数式表示AC+CE的长;(2)试求AC+CE的最小值.39.如图,点A是半圆上的三等分点,B是弧AN的中点,P是直径MN上一动点,⊙O的半径是1,问点P在直线MN上什么位置是(在图中标注),AP+BP的值最小?并求出最小值.40.如图,梯形ABCD中,AD∥BC,∠BAD=90°,AD=1,E为AB的中点,AC是ED 的垂直平分线.(1)求证:DB=DC;(2)在图(2)的线段AB上找出一点P,使PC+PD的值最小,标出点P的位置,保留画图痕迹,并求出PB的值.41.如图,把两个全等的腰长为8的等腰直角三角形沿他们的斜边拼接得到四边形ABCD,N是斜边AC上一动点.(1)若E、F为AC的三等分点,求证:∠ADE=∠CBF;(2)若M是DC上一点,且DM=2,求DN+MN的最小值;(注:计算时可使用如下定理:在直角△ABC中,若∠C=90°,则AB2=AC2+BC2)(3)若点P在射线BC上,且NB=NP,求证:NP⊥ND.42.如图等腰梯形ABCD中,AD∥BC,AB=CD,其中AD=2,BC=5.(1)尺规作图,作等腰梯形ABCD的对称轴a;(2)在直线a上求作一点P,使PD+PC和最小;并求此时PD:PC的值.43.如右图,∠POQ=20°,A为OQ上的点,B为OP上的一点,且OA=1,OB=2,在OB上取点A1,在AQ上取点A2,设l=AA1+A1A2+A2B,求l的最小值.44.如图,在平面直角坐标系中,A,B两点的坐标分别为A(﹣2,0),B(8,0),以AB 为直径的半圆与y轴交于点M,以AB为一边作正方形ABCD.(1)求C,M两点的坐标;(2)连接CM,试判断直线CM是否与⊙P相切?说明你的理由;(3)在x轴上是否存在一点Q,使得△QMC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由.45.如图,正方形ABCD边长为4,DE=1,M,N在BC上,且MN=2.求四边形AMNE 周长的最小值.46.如图,点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN+MN 的值最小,保留作图痕迹,不写作法.47.如图,在铁路l的同侧有A、B两个工厂,要在铁路边建一个货场C,货场应建在什么地方,才能使A、B两厂到货场C的距离之和最短?48.如图,已知点M是以AB为直径的半圆上的一个三等分点,点N是弧BM的中点,点P 是直径AB上的点.若⊙O的半径为1.(1)用尺规在图中作出点P,使MP+NP的值最小(保留作图痕迹,不写作法);(2)求MP+NP的最小值.49.已知△ABC中,BC=a,AB=c,∠B=30°,P是△ABC内一点,求P A+PB+PC的最小值.50.如图,五羊大学建立分校,校本部与分校隔着两条平行的小河,l1∥l2表示小河甲,l3∥l4表示小河乙,A为校本部大门,B为分校大门,为方便人员来往,要在两条小河上各建一座桥,桥面垂直于河岸.图中的尺寸是:甲河宽8米,乙河宽10米,A到甲河垂直距离为40米,B到乙河垂直距离为20米,两河距离100米,A、B两点水平距离(与小河平行方向)120米,为使A、B两点间来往路程最短,两座桥都按这个目标而建,那么,此时A、D两点间来往的路程是多少米?人教新版八年级上学期《13.4 课题学习最短路径问题》2019年同步练习卷参考答案与试题解析一.选择题(共6小题)1.如图,矩形ABCD中,AB=2,BC=6,P为矩形内一点,连接P A,PB,PC,则P A+PB+PC 的最小值是()A.4+3B.2C.2+6D.4【分析】将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.【解答】解:将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE 的长即为所求.由旋转的性质可知:△PFC是等边三角形,∴PC=PF,∵PB=EF,∴P A+PB+PC=P A+PF+EF,∴当A、P、F、E共线时,P A+PB+PC的值最小,∵四边形ABCD是矩形,∴∠ABC=90°,∴tan∠ACB==,∴∠ACB=30°,AC=2AB=4,∵∠BCE=60°,∴∠ACE=90°,∴AE==2,故选:B.【点评】本题考查轴对称﹣最短问题、矩形的性质、旋转变换等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题,属于中考常考题型.2.如图,∠ABC=30°,点D、E分别在射线BC、BA上,且BD=2,BE=4,点M、N 分别是射线BA、BC上的动点,当DM+MN+NE最小时,(DM+MN+NE)2的值为()A.20B.26C.32D.36【分析】如图,作点D关于BA的对称点G,作点E关于BC的对称点H,连接GH交AB 有M,交BC有N,连接DM、EN,此时DM+MN+NE的值最小.再证明∠HBG=90°,利用勾股定理即可解决问题;【解答】解:如图,作点D关于BA的对称点G,作点E关于BC的对称点H,连接GH交AB有M,交BC有N,连接DM、EN,此时DM+MN+NE的值最小.根据对称的性质可知:BD=BG=2,BE=BH=4,DM=GM,EN=NH,∴DM+MN+NE的最小值为线段GH的长,∵∠ABC=∠GBM=∠HBC=30°,∴∠HBG=90°,∴GH2=BG2+BH2=20,∴当DM+MN+NE最小时,(DM+MN+NE)2的值为20,故选:A.【点评】本题考查轴对称﹣最短问题、勾股定理等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.3.如图.已知△ABC.∠ACB=30°,CP为∠ACB的平分线,且CP=6,点M、N分别是边AC和BC上的动点,则△PMN周长的最小值为()A.4B.6C.6D.10【分析】作点P关于AC的对称点E,点P关于BC的对称点F,连接EF交AC于M,交BC于N,连接CE、CF.此时△PMN的周长最小.【解答】解:作点P关于AC的对称点E,点P关于BC的对称点F,连接EF交AC于M,交BC于N,连接CE、CF.此时△PMN的周长最小.由对称的性质可知,∠ACP=∠ACE,∠PCB=∠BCF,CP=CE=CF=6,∵∠ACB=30°,∴∠ECF=60°,∴△CEF是等边三角形,∴EF=CE=6,∴△PMN的周长的最小值=PM+MN+PN=EM+MN+NF=EF=6,故选:B.【点评】本题考查轴对称﹣最短问题、等边三角形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.4.△ABC中,∠ABC=97.5°,P、Q两点在AC边上,PB=2,BQ=3,PQ=,若点M、N分别在边AB、BC上,当四边形PQNM的周长最小时,(MP+MN+NQ)2的值为()A.18+8B.24+8C.22+6D.31+【分析】如图,作点P关于AB的对称点P′,点Q关于BC的对称点Q′,连接P′Q′交AB于M,交BC于N,此时四边形PQNM的周长最小.作PH⊥BQ于H.【解答】解:如图,作点P关于AB的对称点P′,点Q关于BC的对称点Q′,连接P′Q′交AB于M,交BC于N,此时四边形PQNM的周长最小.作PH⊥BQ于H.∴PH2=PB2﹣BH2=PQ2﹣HQ2,∴22﹣BH2=()2﹣(3﹣BH)2,解得BH=,∴PH2=4﹣2=2,∴PH=,∴PH=BH=,∴∠PBQ=45°,∵∠ABP=∠ABP′,∠CBQ=∠CBQ′,∴∠P′BQ′=2(∠ABC﹣∠PBQ)+∠PBQ=2∠ABC﹣∠PBQ=150°,作Q′K⊥P′B于K.在Rt△BKQ′中,∠KBQ′=30°,BQ′=BQ=3,∴KQ′=,BK=,在Rt△P′Q′K中,KP′=2+,KQ′=,∴P′Q′2=(2+)2+()2=22+6,∴(MP+MN+NQ)2P′Q′2=22+6.故选:C.【点评】本题考查轴对称最短问题、解直角三角形、勾股定理、直角三角形30度角的性质等知识,解题的关键是学会利用轴对称解决最短问题,学会添加常用辅助线,根据直角三角形解决问题,属于中考选择题中的压轴题.5.如图,在矩形ABCD中,对角线AC=6,过点D作DE⊥AC,垂足为E,AE=3CE,点F,G分别在AC,BC上,则AG+FG的最小值为()A.2B.C.2D.3【分析】作点A关于BC的对称点M,连接CM,作AH⊥CM于H,交BC于G,作GF⊥AC于F,此时AG+GF的值最小,最小值=AH的长.想办法证明∠DAE=30°即可解决问题;【解答】解:作点A关于BC的对称点M,连接CM,作AH⊥CM于H,交BC于G,作GF⊥AC于F,此时AG+GF的值最小,最小值=AH的长.∵四边形ABCD是矩形,∴∠ADC=90°,∵DE⊥AC,AE=3CE,设EC=a,则AE=3a,∴∠AED=∠DEC=90°,∴a+3a=6,∴a=,∴EC=,AE=,∵∠DAE+∠ADE=90°,∠ADE+∠EDC=90°,∴∠DAE=∠EDC,∴△ADE∽△DCE,∴DE2=AE•EC,∴DE=,∴tan∠DAE==,∴∠DAE=30°,∵AD∥CB,∴∠DAE=∠ACB=∠BCM=30°,∴∠ACH=60°,∴AH=AC•sin60°=3,故选:D.【点评】本题考查轴对称﹣最短问题,矩形的性质,相似三角形的判定和和性质,锐角三角函数等知识,解题的关键是学会添加常用辅助线,利用垂线段最短解决最短问题,属于中考常考题型.6.Rt△ABC中,∠ACB=90°,AC=4,BC=8,D,E是AB和BC上的动点,连接CD,DE,则CD+DE的最小值为()A.8B.C.D.【分析】如图,作∠ABG=∠ABC,CF⊥BG于F,交AB于D,作DE⊥BC于E,此时DC+DE 的值最小,最小值=CF的长.再利用相似三角形的性质求出CF即可.【解答】解:如图,作∠ABG=∠ABC,CF⊥BG于F,交AB于D,作DE⊥BC于E,此时DC+DE的值最小,最小值=CF的长.取AB中点T,连接CT,作CH⊥AB于H.在Rt△ABC中,AB==4,∴CH==.CT=AB=2,∵TC=TB,∴∠TBC=∠TCB=∠ABG,∵∠ADC=∠TBC+∠TCB=2∠DBC,∠CBF=2∠DBC,∴∠CTH=∠CBF,∴sin∠CTH=sin∠CBF,∴=,∴=,∴CF=,故选:D.【点评】本题考查轴对称﹣最短问题、勾股定理、相似三角形的判定和性质、垂线段最短等知识,解题的关键是学会添加常用辅助线,利用垂线段最短解决最短问题,属于中考常考题型.二.填空题(共14小题)7.已知:如图,直线MN和直线l相交于点O,其中两直线相交所构成的锐角等于45°,且OM=6,MN=2,若点P为直线l上一动点,那么PM+PN的最小值是10.【分析】作点M关于直线l的对称点M',连接NM',交直线l于P,连接NP,则MP=M'P,依据轴对称的性质,即可得到OM=OM'=6,∠NOM'=90°,再根据勾股定理即可得到PM+PN的最小值.【解答】解:如图,作点M关于直线l的对称点M',连接NM',交直线l于P,连接NP,则MP=M'P,∴PM+PN的最小值等于线段M'N的长,∵OM=OM',OP=OP,PM=PM',∴△OPM≌△OPM'(SSS),∴∠POM=∠POM'=45°,OM=OM'=6,∴∠NOM'=90°,∴Rt△NM'O中,M'N===10,∴PM+PN的最小值是10,故答案为:10.【点评】此题主要考查了利用轴对称求最短路径问题和勾股定理等知识,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.8.如图,△ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP 的最小值为2,则BC=﹣.【分析】如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.首先证明当M,G,P,C共线时,P A+PB+PC的值最小,最小值为线段CM的长,想办法求出AC的长即可解决问题;【解答】解:如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.∵AB=AC,AH⊥BC,∴∠BAP=∠CAP,∵P A=P A,∴△BAP≌△CAP(SAS),∴PC=PB,∵MG=PB,AG=AP,∠GAP=60°,∴△GAP是等边三角形,∴P A=PG,∴P A+PB+PC=CP+PG+GM,∴当M,G,P,C共线时,P A+PB+PC的值最小,最小值为线段CM的长,∵AP+BP+CP的最小值为2,∴CM=2,∵∠BAM=60°,∠BAC=30°,∴∠MAC=90°,∴AM=AC=2,作BN⊥AC于N.则BN=AB=1,AN=,CN=2﹣,∴BC===﹣.故答案为﹣.【点评】本题考查轴对称﹣最短问题,等腰三角形的性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用两点之间线段最短解决问题,属于中考常考题型.9.如图,在矩形ABCD中,AB=10,AD=6,动点P满足S△P AB=S矩形ABCD,则点P到A,B两点距离之和P A+PB的最小值为2.【分析】首先由S△P AB=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l 上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即P A+PB的最小值.【解答】解:设△ABP中AB边上的高是h.∵S△P AB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=4,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5=10,AE=4+4=8,∴BE===2,即P A+PB的最小值为2.故答案为:2.【点评】本题考查了轴对称﹣最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.10.如图,菱形ABCD的边长为3,∠BAD=60°,点E、F在对角线AC上(点E在点F 的左侧),且EF=1,则DE+BF最小值为【分析】作DM∥AC,使得DM=EF=1,连接BM交AC于F,由四边形DEFM是平行四边形,推出DE=FM,推出DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,由四边形ABCD是菱形,在Rt△BDM中,根据BM=计算即可.【解答】解:如图,作DM∥AC,使得DM=EF=1,连接BM交AC于F,∵DM=EF,DM∥EF,∴四边形DEFM是平行四边形,∴DE=FM,∴DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,∵四边形ABCD是菱形,AB=3,∠BAD=60°∴AD=AB,∴△ABD是等边三角形,∴BD=AB=3,在Rt△BDM中,BM==∴DE+BF的最小值为.故答案为.【点评】本题考查菱形的性质、平行四边形的判定和性质、两点之间线段最短、勾股定理等知识,解题的关键是学会添加常用辅助线,把问题转化为两点之间线段最短解决,属于中考填空题中的压轴题.11.如图,在菱形ABCD中,AB=6,∠A=135°,点P是菱形内部一点,且满足S△PCD =,则PC+PD的最小值是2.【分析】如图在BC上取一点E,使得EC=BC=2,作EF∥AB,作点C关于EF的对称点C′,CC′交EF于G,连接DC′交EF于P,连接PC,此时此时S△PDC=,PD+PC的值最小.【解答】解:如图在BC上取一点E,使得EC=BC=2,作EF∥AB,作点C关于EF的对称点C′,CC′交EF于G,连接DC′交EF于P,连接PC,此时此时S△PDC=,PD+PC的值最小.PC+PD的最小值=PD+PC′=DC′,∵四边形ABCD是菱形,∠A=135°,∴∠B=∠CEG=45°,∠BCD=135°∵∠CGE=90°,CE=2,∴CG=GE=GC′=,∴∠GCE=45°,∠DCC′=90°,∴DC′==2,故答案为2.【点评】本题考查轴对称﹣最短问题,三角形的面积,勾股定理等知识,解题的关键是学会利用轴对称解决最短问题.12.如图所示,已知点C(1,0),直线y=﹣x+7与两坐标轴分别交于A,B两点,D,E 分别是AB,OA上的动点,则△CDE周长的最小值是10.【分析】点C关于OA的对称点C′(﹣1,0),点C关于直线AB的对称点C″(7,6),连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,可以证明这个最小值就是线段C′C″.【解答】解:如图,点C关于OA的对称点C′(﹣1,0),点C关于直线AB的对称点C″,∵直线AB的解析式为y=﹣x+7,∴直线CC″的解析式为y=x﹣1,由解得,∴直线AB与直线CC″的交点坐标为K(4,3),∵K是CC″中点,∴可得C″(7,6).连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,△DEC的周长=DE+EC+CD=EC′+ED+DC″=C′C″==10.故答案为10.【点评】本题考查轴对称﹣最短问题、两点之间距离公式等知识,解题的关键是利用对称性在找到点D、点E位置,属于中考常考题型.13.如图,在等腰三角形ABC中,∠ABC=120°,点P是底边AC上一个动点,M、N分别是AB、BC的中点,若PM+PN的最小值为4,则△ABC的周长是8+4.【分析】本题首先要明确P点在何处,通过M关于AC的对称点M′,根据勾股定理就可求出MN的长,根据中位线的性质及三角函数分别求出AB、BC、AC的长,从而得到△ABC的周长.【解答】解:作M点关于AC的对称点M′,连接M'N,则与AC的交点即是P点的位置,∵M,N分别是AB,BC的中点,∴MN是△ABC的中位线,∴MN∥AC,∴=1,∴PM′=PN,即:当PM+PN最小时P在AC的中点,∴MN=AC∴PM=PN=2,MN=2∴AC=4 ,AB=BC=2PM=2PN=4,∴△ABC的周长为:4+4+4 =8+4 .故答案为:8+4.【点评】本题考查等腰三角形的性质和轴对称及三角函数等知识的综合应用.正确确定P 点的位置是解题的关键.14.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.AC与网格线交于点D,点P,Q分别为线段BC,AB上的动点.(I)线段CD的长为;(Ⅱ)当PD+PQ取得最小值时,用无刻度的直尺.画出线段PD,PQ,并简要说明点P和点Q的位置是如何找到的作DQ′⊥BE于Q′交BC于P,作PQ⊥AB于Q,根据垂线段最短可知,此时PD+PQ=PD+PQ′=DQ′最短..【分析】(I)添加辅助线,构造相似三角形即可解决问题;(Ⅱ)作DQ′⊥BE于Q′交BC于P,作PQ⊥AB于Q,根据垂线段最短可知,此时PD+PQ =PD+PQ′=DQ′最短;【解答】解:(I)作DF∥AB交BC于F,作CH⊥AB于H,交DF于G.∵DF∥AB,∴△CDF∽△CAB,∴=,∴=,∴CD=,故答案为.(Ⅱ)如图构造边长为5的菱形ABEC,作DQ′⊥BE于Q′交BC于P,作PQ⊥AB于Q,根据垂线段最短可知,此时PD+PQ=PD+PQ′=DQ′最短.故答案为:作DQ′⊥BE于Q′交BC于P,作PQ⊥AB于Q,根据垂线段最短可知,此时PD+PQ=PD+PQ′=DQ′最短.【点评】本题考查轴对称﹣最短问题,勾股定理、菱形的性质、垂线段最短就、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型.15.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D.若AC=4,CD =1,E是AC的中点,P是AD上的一个动点,则PC+PE的最小值为.【分析】作点E关于AD的对称点E′,连接CE′交AD于P,连接PE,此时PE+PC的值最小,作E′H⊥AC于H,DG⊥AB于G.设BD=x,BG=y.成本法求出E′H,CH,利用勾股定理即可解决问题;【解答】解:作点E关于AD的对称点E′,连接CE′交AD于P,连接PE,此时PE+PC 的值最小,作E′H⊥AC于H,DG⊥AB于G.设BD=x,BG=y.∵DA平分∠CAB,DG⊥AB,DC⊥AC,∴DG=DC,∵AD=AD,∴Rt△ADG∽Rt△ADC,∴DG=DC=1,AG=AC=4,∵△BGD∽△BCA,∴==,∴==,∴x=,y=,∵E′H∥BC,∴==,∴E′H=,AH=,∴CH=4﹣=,∴PE+PC的最小值=CE′==.故答案为=.【点评】本题考查轴对称最短问题、角平分线的性质定理、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用轴对称解决最短问题.16.已知A(﹣2,0),B(0,2),P是x轴上动点,将B绕P点顺时针旋转90°得到点C,则AC+CP的最小值是2.【分析】如图,在x轴上取一点M(2,0),连接CM交y轴于N.首先证明△OBP∽△MBC,推出∠MBC=∠BOP=90°,推出点C在直线CN上运动,因为BC=PC,可得AC+ PC=CA+CB,延长BM到B′,使得MB′=BM,连接AB′交CN于C′,此时AC′+BC′的值最小,最小值=线段AB′的长;【解答】解:如图,在x轴上取一点M(2,0),连接CM交y轴于N.∵A(﹣2,0),B(0,2),M(2,0),∴OA=OB=OM=2,∴△OBM,△PBC都是等腰直角三角形,∴∠OBM=∠CBP=45°,∴∠OBP=∠MBC,∵==,∴△OBP∽△MBC,∴∠MBC=∠BOP=90°,∴点C在直线CN上运动,∵BC=PC,∴AC+PC=CA+CB,延长BM到B′,使得MB′=BM,连接AB′交CN于C′,此时AC′+BC′的值最小,最小值=线段AB′的长,∵A(﹣2,0),B′(4,﹣2),∴AB′==2,故答案为2.【点评】本题考查轴对称﹣最短问题、坐标与图形的性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.17.如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+ PC的最小值为5;PD+4PC的最小值为10.【分析】①如图,连接PB、在BC上取一点E,使得BE=1.只要证明△PBE∽△CBE,可得==,推出PD+PC=PD+PE,再根据三角形的三边关系PE+PD≤DE即可解决问题;②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.只要证明△PBE∽△DBP,可得==,推出PE=PD,推出PD+4PC=4(PD+PC)=4(PE+PC),根据三角形的三边关系PE+PC≤EC即可解决问题;【解答】解:①如图,连接PB、在BC上取一点E,使得BE=1.∵PB2=4,BE•BC=4,∴PB2=BE•BC,∴=,∵∠PBE=∠CBE,∴△PBE∽△CBE,∴==,∴PD+PC=PD+PE,∵PE+PD≤DE,在Rt△DCE中,DE==5,∴PD+PC的最小值为5.②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.∵PB2=4,BE•BD=×4=4,∴BP2=BE•BD,∴=,∵∠PBE=∠PBD,∴△PBE∽△DBP,∴==,∴PE=PD,∴PD+4PC=4(PD+PC)=4(PE+PC),∵PE+PC≥EC,在Rt△EFC中,EF=,FC=,∴EC=,∴PD+4PC的最小值为10.故答案为5,10.【点评】本题考查轴对称最短问题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,学会根据相似三角形解决问题,属于中考填空题中的压轴题.18.如图,在△ABC中,∠ACB=90°,AC=6,BC=8,CD平分∠ACB交AB于点D.点E为CD的中点.在BC上有一动点P,则PD+PE的最小值是【分析】构建如图坐标系,利用一次函数构建方程组求出点D、E坐标,作点E关于BC的对称点E′,连接DE′交BC于P,此时PD+PE的值最小,最小值为DE′的长;【解答】解:根据如图坐标系:由题意:A(0,6),B(8,0),∴直线AB的解析式为y=﹣x+6,∵CD平分∠ACB,∴直线CD的解析式为y=x,由,解得,∴D(,),∵CE=DE,∴E(,),作点E关于BC的对称点E′(,﹣),连接DE′交BC于P,此时PD+PE的值最小,最小值为DE′的长,∵DE′=,∴PD+PE的最小值为,故答案为.【点评】本题考查轴对称﹣最短问题、一次函数的应用等知识,解题的关键是学会构建平面直角坐标系,利用一次函数解决问题,属于中考常考题型.19.如图,在正方形ABCD中,BC=2,对角线AC与BD交于点O,P、Q为BD的两个动点,且BP=OQ,则△APQ的周长的最小值是+.【分析】BP=OQ=x.易知△APQ的周长=++,欲求△QP A周长的最小值,相当于在x轴上找一点M(x,0),使得点M到E(0,)和F(,)的距离之和的最小值,作点E关于x轴的对称点E′,连接FE′交x轴于M,此时ME+MF的值最小,求出直线E′F的解析式即可;【解答】解:设BP=OQ=x.∵四边形ABCD是正方形,BC=2,∴OB=OA=OD=OC=,∵BP=OQ,∴PQ=OB=,∴△APQ的周长=++,欲求△QP A周长的最小值,相当于在x轴上找一点M(x,0),使得点M到E(0,)和F(,)的距离之和的最小值,作点E关于x轴的对称点E′,连接FE′交x轴于M,此时ME+MF的值最小,∵E′(0,﹣),F(,),∴直线FE′的解析式为y=2x﹣,∴M(,0),∴x=时,∴△P AQ的周长最小,最小值=+.故答案为+.【点评】本题考查轴对称最短问题、正方形的性质、勾股定理、一次函数的应用等知识,解题的关键是学会利用转化的思想思考问题,属于中考填空题中的压轴题.20.在△ABC中,∠ABC=60°,BC=8,AC=10,点D、E在AB、AC边上,且AD=CE,则CD+BE的最小值2.【分析】如图作CK∥AB,使得CK=CA.作BG⊥KC交KC的延长线于G.首先证明EK =CD,可得CD+BE=EK+EB≥BK,推出CD+BE的最小值为BK的长;【解答】解:如图作CK∥AB,使得CK=CA.作BG⊥KC交KC的延长线于G.∵CK∥AB,∴∠KCE=∠A,∵CK=CA,CE=AD,∴△CKE≌△CAD,∴CD=KE,∵CD+BE=EK+EB≥BK,∴CD+BE的最小值为BK的长,在Rt△BCG中,∵∠G=90°,BC=8,∴CG=BC=4,BG=4,在Rt△KBG中,BK===2.故答案为2.【点评】本题考查轴对称﹣最短问题、勾股定理等知识,解题的关键是学会构造全等三角形解决问题,属于中考填空题中的压轴题.三.解答题(共30小题)。
人教版八年级数学上册13.4课题学习最短路径问题同步练习

新人教版八年级数学上册课题学习最短路径问题同步练习要点感知在解决最短路径问题时,我们平时利用_____、 _____等变换把已知问题转变成简单解决的问题 ,从而作出最短路径的选择.预习练习已知,如图 ,在直线 l 的同侧有两点A, B.(1)在图 1 的直线上找一点P 使 PA+PB最短;(2)在图 2 的直线上找一点P,使 PA-PB最长 .知识点路径最短问题1.以下列图,P为∠AOB内一点,P1,P2分别是P关于OA,OB的对称点,P1P2交OA于M,交OB于N,若P1P2=8 cm,则△ PMN 的周长是 ( )A.7 cmB.5 cmC.8 cmD.10 cm2.如图,在等腰Rt△ABC中,D是BC边的中点,E是AB边上一动点,要使EC+ED最小,请找点E的地址.3.如图,农村A,B位于一条小河的两侧,若河岸 a,b 互相平行 ,现在要建设一座与河岸垂直的桥CD,问桥址应如何选择,才能使 A 村到 B 村的行程近来?4.如图,在△ABC中,AB=AC,AD均分∠CAB,N点是AB上的必然点,M是AD上一动点,要使MB+MN最小,请找点 M 的地址 .BC, CD 上分别找一点M ,N, 5.(兰州中考改编)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在使△ AMN 周长最小时 ,求∠ AMN+ ∠ ANM 的度数 .挑战自我6.(济宁中考)如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是坐标轴上一个动点,且 A、 B、C 三点不在同一条直线上,当△ ABC的周长最小时,点 C 的坐标是 ( )A.(0, 0)B.(0, 1)C.(0, 2)D.(0, 3)参照答案课前预习要点感知轴对称平移预习练习(1)作点 B 关于直线l 的对称点C,连接 AC交直线 l 于点 P,连接 BP.点 P 即为所求 .图略 .(2)连接 AB 并延长 ,交直线 l 于点 P.图略 .当堂训练1.C2.作点C关于AB的对称点C′ ,连接 C′ D 与 AB 的交点为 E 点 .图略 .3.①过点A作AP⊥a,并在AP上向下截取AA′,使AA′=河的宽度;②连接A′B交b于点D;③过点D 作 DE∥ AA′交 a 于点 C;④连接 AC.则 CD即为桥的地址 .图略 .课后作业4.连接NC与AD的交点为M 点 .点 M 即为所求 .图略 .5.作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,连接AM,AN,则A′A″即为△AMN 的周长最小值 .作DA 延长线AH.∵∠DAB=120°,∴∠HAA′=60° .∴∠AA′M+∠A″=∠HAA′=60 ° .∵∠ MA ′ A=∠ MAA ′ ,∠ NAD=∠ A″ ,且∠ MA′ A+∠ MAA′ =∠ AMN, ∠ NAD+∠ A″ =∠ANM,∴∠ AMN+ ∠ANM= ∠ MA′ A+∠ MAA′ +∠ NAD+∠ A″ =2(∠AA′ M+ ∠A″ )=2× 60°=120° .6.D。
部编数学八年级上册专题10最短路径问题(解析版)含答案(1)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!2023--2024学年度人教版数学八年级上册期末复习核心考点三种题型精炼专题10 最短路径问题1.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为 .【答案】120°【解析】考点有轴对称(最短路线问题),三角形三边关系,三角形外角性质,等腰三角形的性质。
根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案:如图,作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值。
人教版八年级数学上册课题学习最短路径问题同步练习题

人教版八年级数学试题课后训练基础巩固1.有两棵树位置如图,树脚分别为A,B.地上有一只昆虫沿A—B的路径在地面上爬行.小树顶D处一只小鸟想飞下来抓住小虫后,再飞到大树的树顶C处,问小鸟飞至AB 之间何处时,飞行距离最短,在图中画出该点的位置.2.已知,如图所示,甲、乙、丙三个人做传球游戏,游戏规则如下:甲将球传给乙,乙将球立刻传给丙,然后丙又立刻将球传给甲.若甲站在∠AOB内的P点,乙站在OA上,丙站在OB上,并且甲、乙、丙三人的传球速度相同.问乙和丙必须站在何处,才能使球从甲到乙、乙到丙、最后丙到甲这一轮所用的时间最少?3.如图所示,P,Q为△ABC边上的两个定点,在BC上求作一点R,使△PQR的周长最小.4.七年级(1)班同学做游戏,在活动区域边OP放了一些球(如图),则小明按怎样的路线跑,去捡哪个位置的球,才能最快拿到球跑到目的地A?能力提升5.公园内两条小河MO,NO在O处汇合,两河形成的半岛上有一处景点P(如图所示).现计划在两条小河上各建一座小桥Q和R,并在半岛上修三段小路,连通两座小桥与景点,这两座小桥应建在何处才能使修路费用最少?请说明理由.6.如图,牧童在A处放牛,其家在B处,A,B到河岸CD的距离分别为AC,BD,且AC=BD,若A到河岸CD的中点的距离为500 m.(1)牧童从A处把牛牵到河边饮水后再回家,试问在何处饮水,所走路程最短?在图中作出该处,并说明理由;(2)最短路程是多少?参考答案1.解:如图,作D关于AB的对称点D′,连接CD′交AB于点E,则点E就是所求的点.2.解:如图所示,(1)分别作点P关于OA,OB的对称点P1,P2;(2)连接P1P2,与OA,OB分别相交于点M,N.因为乙站在OA上,丙站在OB上,所以乙必须站在OA上的M处,丙必须站在OB上的N处才能使传球所用时间最少.3.解:(1)作点P关于BC所在直线的对称点P′;(2)连接P′Q,交BC于点R,则点R就是所求作的点(如图所示).4.解:如图,作小明关于活动区域边线OP的对称点A′,连接AA′交OP于点B,则小明行走的路线是小明→B→A,即在B处捡球,才能最快拿到球跑到目的地A.5.解:如图,作P关于OM的对称点P′,作P关于ON的对称点P″,连接P′P″,分别交MO,NO于Q,R,连接PQ,PR,则P′Q=PQ,PR=P″R,则Q,R就是小桥所在的位置.理由:在OM上任取一个异于Q的点Q′,在ON上任取一个异于R的点R′,连接PQ′,P′Q′,Q′R′,P″R′,PR′,则PQ′=P′Q′,PR′=P″R′,且P′Q′+Q′R′+R′P″>P′Q+QR+RP″,所以△PQR的周长最小,故Q,R就是我们所求的小桥的位置.6.解:(1)作法:如图作点A关于CD的对称点A′;连接A′B交CD于点M.则点M即为所求的点.证明:在CD上任取一点M′,连接AM′,A′M′,BM′,AM,因为直线CD是A,A′的对称轴,M,M′在CD上,所以AM=A′M,AM′=A′M′,所以AM+BM=A′M+BM=A′B,在△A′M′B中,因为A′M′+BM′>A′B,所以AM′+BM′=A′M′+BM′>AM+BM,即AM+BM最小.(2)由(1)可得AM=A′M,A′C=AC=BD,所以△A′CM≌△BDM,即A′M=BM,CM=DM,所以M为CD的中点,且A′B=2AM,因为AM=500m,所以A′B=AM+BM=2AM=1 000 m.即最短路程为1 000 m.习题试解预习法检验预习效果的最佳途径数学学科有别于其他学科的一大特点就是直接用数学知识解决问题。
八年级数学上册等腰三角形、最短路径问题专项练习(含解析)

等腰三角形、最短路径问题专项练习一.等腰三角形1.如图,在△ABC中,AB=BC,∠A=36°,AB的垂直平分线DE交AB于点D,交AC于点E,若AB=10,则CE的长为()A.5 B.8 C.10 D.102.如图,AD是等边△ABC的一条中线,若在边AC上取一点E,使得AE=AD,则∠EDC的度数为()A.30°B.20°C.25°D.15°3.如图,已知∠AOB=60°,点P在OA边上,OP=8cm,点M、N在边OB上,PM=PN,若MN =2cm,则OM为()A.2cm B.3cm C.4cm D.1cm4.如图,△ABC中,AB=AC,作△BCE,点A在△BCE内,点D在BE上,AD垂直平分BE,且∠BAC=m°,则∠BEC=()A.90°﹣m°B.180°﹣2m°C.30°+m°D.m°5.如图,在边长为4的等边三角形ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,连接DF,则DF的长为.6.如图,在△ABC中,AB=AC,AD平分∠BAC,PD垂直平分AB,连接BD并延长,交边AC于点E.若△BCE是等腰三角形,则∠BAC的度数为.7.如图,∠ABC的平分线BF与△ABC中∠ACB的相邻外角∠ACG的平分线相交于点F,过F作DF ∥BC交AB于D,若BD=8cm,DE=3cm,则CE的长为.8.如图,在△ABC中,AB=AC,∠A=120°,BC=15cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为cm.9.求证:等腰锐角三角形腰上的高与底边的夹角等于顶角的一半.10.已知等腰三角形一边上的高与另一边的夹角为20°,求这个等腰三角形顶角的度数?(画出符合题意的图形,直接写出答案即可)11.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BD=CE,BE=CF.(1)求证:△DEF是等腰三角形;(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.12.已知:在△ABC中,AB=AC,DE∥AB,DF∥AC.求证:AC=DE+DF.二.最短路径1.如图,点A,B在直线l的同侧,在直线l上找一点P,使P A+PB最小,则下列图形正确的是()A.B.C.D.2.如图,等腰△ABC的底边BC长为6,腰长为8,EF垂直平分AB,点P为直线EF上一动点,则BP+CP的最小值()A.6 B.8 C.10 D.143.如图,在四边形ABCD中,∠A=∠C=90°,∠B=32°,在边AB,BC上分别找一点E,F使△DEF 的周长最小,此时∠EDF=()A.110°B.112°C.114°D.116°4.如图,在五边形ABCDE中,∠BAE=152°,∠B=∠E=90°,AB=BC,AE=DE.在BC,DE上分别找一点M,N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为()A.55°B.56°C.57°D.58°5.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,∠ABC的平分线交AC于点D,点E,F分别是BD、AB上的动点,则AE+EF的最小值为()A.2 B.2.4 C.2.5 D.36.如图,在△AOB中,∠OAB=∠AOB=15°,OB=6,OC平分∠AOB,点P在射线OC上,点Q 为边OA上一动点,则P A+PQ的最小值是()A.1 B.2 C.3 D.47.等腰三角形ABC的底边BC长为6,面积是21,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为.8.如图,四边形ABCD中,∠C=58°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为.9.如图,在△ABC中,AB=6,BC=7,AC=4,直线m是△ABC中BC边的垂直平分线,P是直线m上的一动点,则△APC的周长的最小值为.10.如图等腰三角形ABC的底边BC长为6,面积是24,腰AB的垂直平分线EF分别交AB,AC于点E,F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为.11.如图,在Rt△ABC中,∠ACB=90°,CM平分∠ACB,点D为CM上一点,点P为边AC上一动点(不与点A,C重合),连结DP,BP.已知CD=BC,当DP+BP的值最小时,∠CDP的度数为.12.如图,点A、B在直线l同侧,请你在直线l上画出一点P,使得P A+PB的值最小,画出图形并证明.13.如图,在△ABC中,∠ACB=90°,以AC为边在△ABC外作等边三角形ACD,过点D作AC的垂线,垂足为F,延长DF交AB于点E,连接CE.(1)求证:CE=BE.(2)若AB=15cm,P是直线DE上的一点.则当P在何处时,PB+PC最小?并求出此时PB+PC的值.14.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=3,DF是线段AC的垂直平分线;交AC边于点D,交AB边于点E,以BE为边作等边△BEF,连接CF、AF.(1)求证:△ACF是等边三角形;(2)若点P是直线DE上一动点,连接BP、CP,当点P运动到何处时,BP+CP的值最小?并求出该最小值.参考答案与试题解析一.等腰三角形1.如图,在△ABC中,AB=BC,∠A=36°,AB的垂直平分线DE交AB于点D,交AC于点E,若AB=10,则CE的长为()A.5 B.8 C.10 D.10【解答】解:∵在△ABC中,AB=BC=10,∠A=36°,∴∠C=∠A=36°,∵AB的垂直平分线是DE,∴AE=BE,∴∠ABE=∠A=36°,∴∠EBC=∠ABC﹣∠ABE=108°﹣36°=72°,∵∠BEC=∠A+∠ABE=72°∴∠BEC=∠EBC,∴CE=BC=10,故选:C.2.如图,AD是等边△ABC的一条中线,若在边AC上取一点E,使得AE=AD,则∠EDC的度数为()A.30°B.20°C.25°D.15°【解答】解:∵△ABC为等边三角形,∴∠BAC=60°,∵AD是等边△ABC的一条中线,∴AD⊥BC,∠CAD=∠BAC=30°,∵AE=AD,∴∠ADE=∠AED,∵∠ADE+∠AED+∠CAD=180°,∴∠ADE=75°,∴∠EDC=90°﹣75°=15°,故选:D.3.如图,已知∠AOB=60°,点P在OA边上,OP=8cm,点M、N在边OB上,PM=PN,若MN =2cm,则OM为()A.2cm B.3cm C.4cm D.1cm【解答】解:过P作PD⊥OB于D,∵PM=PN,MN=2cm,∴MD=ND=1(cm),∵PD⊥OB,∴∠PDO=90°,∵∠POB=60°,∴∠OPD=30°,∴OD=OP,∵OP=8cm,∴OD=4(cm),∴OM=OD﹣MD=3(cm),故选:B.4.如图,△ABC中,AB=AC,作△BCE,点A在△BCE内,点D在BE上,AD垂直平分BE,且∠BAC=m°,则∠BEC=()A.90°﹣m°B.180°﹣2m°C.30°+m°D.m°【解答】解:∵AD垂直平分BE,∴AB=AE,∴∠ABE=∠AEB,∵AB=AC,∴AE=AC,∴∠AEC=∠ACE,∴∠BEC=∠BEA+∠ACE,∵∠BAC=m°,∴∠ABC+∠ACB=180°﹣m°,∴∠BEC=(180°﹣∠ABC﹣∠ACB)=[180°﹣(∠ABC+∠ACB)]=[180°﹣(180°﹣m°)]=m°,故选:D.5.如图,在边长为4的等边三角形ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,连接DF,则DF的长为.【解答】解:如图,过点D作DH⊥AC于H.∵△ABC是等边三角形,∴AB=AC=BC=4,∠A=∠C=60°,∵AD=DB=2,BE=EC=2,∴AH=AD•cos60°=1,DH=AH=,CF=CE•cos60°=1,∴FH=AC﹣AH=CF=4﹣1﹣2=2,∴DF===.故答案为:.6.如图,在△ABC中,AB=AC,AD平分∠BAC,PD垂直平分AB,连接BD并延长,交边AC于点E.若△BCE是等腰三角形,则∠BAC的度数为45°或36°.【解答】解:∵AD平分∠BAC,∴∠BAD=∠CAD=α,∵AB=AC,∴∠ABC=∠C==90°﹣α,∵PD垂直平分AB,∴AD=BD,∴∠ABD=∠BAD=α,∠EBC=∠ABC﹣∠ABE=90°﹣2α,∴∠BEC=∠ABE+∠BAC=3α,当BE=BC时,∠BEC=∠C,即90°﹣α=3α,解得α=22.5°,∴∠BAC=2α=45°;当BE=CE时,∠EBC=∠C,此时点E和点A重合,舍去;当CE=BC时,∠BEC=∠EBC,即90°﹣2α=3α,解得α=18°,∴∠BAC=2α=36°.故∠BAC的度数为45°或36°.故答案为:45°或36°.7.如图,∠ABC的平分线BF与△ABC中∠ACB的相邻外角∠ACG的平分线相交于点F,过F作DF ∥BC交AB于D,若BD=8cm,DE=3cm,则CE的长为5cm.【解答】解:∵BF平分∠ABC,∴∠ABF=∠CBF,∵DF∥BC,∴∠DFB=∠CBF,∴∠ABF=∠DFB,∴BD=DF=8cm,同理,CE=EF,∵EF=DF﹣DE=5cm,∴CE=5cm,故答案为:5cm.8.如图,在△ABC中,AB=AC,∠A=120°,BC=15cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为5cm.【解答】解:连接AM、AN、过A作AD⊥BC于D,∵在△ABC中,AB=AC,∠A=120°,BC=15cm,∴∠B=∠C=30°,BD=CD=7.5cm,∴AB==5cm=AC,∵AB的垂直平分线EM,∴BE=AB=cm同理CF=cm,∴BM==5cm,同理CN=5cm,∴MN=BC﹣BM﹣CN=5cm,故答案是:5.9.求证:等腰锐角三角形腰上的高与底边的夹角等于顶角的一半.【解答】证明:如图:△ABC是等腰锐角三角形,AB=AC,BD是腰AC上的高.过点A作AE⊥BC于点E,∴∠EAC+∠C=90°,∵BD⊥AC,∴∠DBC+∠C=90°,∴∠DBC=∠EAC,∵AB=AC,AE⊥BC,∴∠EAC=∠BAC,∴∠DBC=∠BAC.10.已知等腰三角形一边上的高与另一边的夹角为20°,求这个等腰三角形顶角的度数?(画出符合题意的图形,直接写出答案即可)【解答】解:此题要分情况讨论:当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°;或顶角是180°﹣(90°﹣20°)×2=40°;底上的高在其内部,故顶角是20°×2=40°.当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°.故这个等腰三角形顶角的度数为70°或40°或110°.11.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BD=CE,BE=CF.(1)求证:△DEF是等腰三角形;(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.【解答】(1)证明:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,,∴△DBE≌△ECF,∴DE=FE,∴△DEF是等腰三角形;(2)当∠A=60°时,△DEF是等边三角形,理由:∵△BDE≌△CEF,∴∠FEC=∠BDE,∴∠DEF=180°﹣∠BED﹣∠EFC=180°﹣∠DEB﹣∠EDB=∠B 要△DEF是等边三角形,只要∠DEF=60°.所以,当∠A=60°时,∠B=∠DEF=60°,则△DEF是等边三角形.12.已知:在△ABC中,AB=AC,DE∥AB,DF∥AC.求证:AC=DE+DF.【解答】证明:∵DE∥AB,∴∠B=∠EDC,∵AB=AC,∴∠B=∠C,∴∠EDC=∠C,∴ED=EC,∵DE∥AB,DF∥AC,∴四边形AFDE为平行四边形,∴DF=EA,∴AC=AE+EC=DE+DF.二.最短路径1.如图,点A,B在直线l的同侧,在直线l上找一点P,使P A+PB最小,则下列图形正确的是()A.B.C.D.【解答】解:∵点A,B在直线l的同侧,∴作A点关于l的对称点A',连接A'B与l的交点为P,由对称性可知AP=A'P,∴P A+PB=P A′+PB=A′B为最小,故选:B.2.如图,等腰△ABC的底边BC长为6,腰长为8,EF垂直平分AB,点P为直线EF上一动点,则BP+CP的最小值()A.6 B.8 C.10 D.14【解答】解:连接AP,∵EF垂直平分AB,∴AP=BP,∴BP+CP≥AC,∴当PB+CP=AC时,BP+CP值最小,∵等腰△ABC腰长为8,∴AC=8,∴BP+CP的最小值为8,故选:B.3.如图,在四边形ABCD中,∠A=∠C=90°,∠B=32°,在边AB,BC上分别找一点E,F使△DEF 的周长最小,此时∠EDF=()A.110°B.112°C.114°D.116°【解答】解:如图,作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB于E′,交BC于F′,则点E′,F′即为所求.∵四边形ABCD中,∠A=∠C=90°,∠B=α,∴∠ADC=180°﹣α,由轴对称知,∠ADE′=∠P,∠CDF′=∠Q,在△PDQ中,∠P+∠Q=180°﹣∠ADC=180°﹣(180°﹣32°)=32°,∴∠ADE′+∠CDF′=∠P+∠Q=32°,∴∠E′DF′=∠ADC﹣(∠ADE′+∠CDF′)=180°﹣64°=116°.故选:D.4.如图,在五边形ABCDE中,∠BAE=152°,∠B=∠E=90°,AB=BC,AE=DE.在BC,DE上分别找一点M,N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为()A.55°B.56°C.57°D.58°【解答】解:如图,延长AB至A′,使A′B=AB,延长AE至A″,使A″E=AE,则BC垂直平分AA′,DE垂直平分AA″,∴AM=A′M,AN=A″N,根据两点之间,线段最短,当A′,M,N,A″四点在一条直线时,A′M+MN+NA″最小,则AM+MN+AN的值最小,即△AMN的周长最小,∵AM=A′M,AN=A″N,∴可设∠MAA′=∠MA′A=x,∠NAA″=∠NA″A=y,在△AA′A″中,x+y=180°﹣∠BAE=180°﹣152°=28°,∵∠AMN=∠MAA′+∠MA′A=2x,∠ANM=2y,∴∠AMN+∠ANM=2x+2y=56°,故选:B.5.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,∠ABC的平分线交AC于点D,点E,F分别是BD、AB上的动点,则AE+EF的最小值为()A.2 B.2.4 C.2.5 D.3【解答】解:作点A关于BD的对称点M,∵BD平分∠ABC,∴M落在BC上.∴BM=BA=4,过M作MF⊥AB于F,交BD于E,则AE+EF的最小值是MF的长.∵∠MFB=∠CAB=90°,∴MF∥CA,∴,即,MF=2.4,∴AE+EF=MF=2.4.故选:B.6.如图,在△AOB中,∠OAB=∠AOB=15°,OB=6,OC平分∠AOB,点P在射线OC上,点Q 为边OA上一动点,则P A+PQ的最小值是()A.1 B.2 C.3 D.4【解答】解:作AH⊥OB于H,交OC于P,作PQ⊥OA于Q,∵∠OAB=∠AOB=15°,∴PH=PQ,∴P A+PQ=P A+PH=AH,∴P A+PQ的最小值为AH,在Rt△ABH中,∵OB=AB=6,∠ABH=30°,∴AH=AB=3,∴P A+PQ的最小值为3,故选:C.7.等腰三角形ABC的底边BC长为6,面积是21,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为10.【解答】解:如图,连接AD.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=•BC•AD=×6×AD=21,∴AD=7,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短为AD+BD=AD+BC=10,故答案为:10.8.如图,四边形ABCD中,∠C=58°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为64°.【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,∵∠C=58°,∴∠DAB=122°,∴∠HAA′=58°,∴∠AA′E+∠A″=∠HAA′=58°,∵∠EA′A=∠EAA′,∠F AD=∠A″,∴∠EAA′+∠A″AF=58°,∴∠EAF=122°﹣58°=64°,故答案为:64°.9.如图,在△ABC中,AB=6,BC=7,AC=4,直线m是△ABC中BC边的垂直平分线,P是直线m上的一动点,则△APC的周长的最小值为10.【解答】解:∵直线m是△ABC中BC边的垂直平分线,∴BP=CP,∴△ACP的周长=AP+PC+AC=BP+AP+AC≥AB+AC,∴当A、B、P三点共线时,△ACP的周长最小,∵AB=6,BC=7,AC=4,∴△ACP的周长6+4=10,∴△ACP的周长最小值为10,故答案为10.10.如图等腰三角形ABC的底边BC长为6,面积是24,腰AB的垂直平分线EF分别交AB,AC于点E,F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为11.【解答】解:如图,连接AD.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=•BC•AD=×6×AD=24,∴AD=8,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短为AD+BD=AD+BC=11,故答案为:11.11.如图,在Rt△ABC中,∠ACB=90°,CM平分∠ACB,点D为CM上一点,点P为边AC上一动点(不与点A,C重合),连结DP,BP.已知CD=BC,当DP+BP的值最小时,∠CDP的度数为22.5.【解答】解:如图,作点B关于AC的对称点B′,连接DB′交AC于点P,当D,P,B′共线时,PD+PB的值最小.∵∠ACB=90°,CM平分∠ACB,∴∠DCB=×90°=45°,∵CB=CB′,CD=CB,∴CD=CB′,∴∠CDB′=∠B′,∵∠DCB=∠CDB′+∠B′,∴∠CDP=22.5°,故答案为:22.5.12.如图,点A、B在直线l同侧,请你在直线l上画出一点P,使得P A+PB的值最小,画出图形并证明.【解答】解:如图所示,作点B关于直线l的对称点B',连接AB',交直线l于点P,连接BP,则BP=B'P,∴AP+BP=AP+B'P=AB',∴P A+PB的值最小等于线段AB'的长,13.如图,在△ABC中,∠ACB=90°,以AC为边在△ABC外作等边三角形ACD,过点D作AC的垂线,垂足为F,延长DF交AB于点E,连接CE.(1)求证:CE=BE.(2)若AB=15cm,P是直线DE上的一点.则当P在何处时,PB+PC最小?并求出此时PB+PC 的值.【解答】解:(1)∵△ACD为等边三角形,DE⊥AC,∴DE垂直平分AC,∴∠AEF=∠FEC,∵∠ACB=∠AFE=90°,∴DE∥BC,∴∠AEF=∠EBC,∠FEC=∠ECB,∴∠ECB=∠EBC,∴CE=BE;(2)连接P A,PC,∵DE垂直平分AC,P在DE上,∴PC=P A,∵两点之间线段最短,∴当P与E重合时P A+PB最小为15 cm,∴PB+PC最小为15 cm.14.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=3,DF是线段AC的垂直平分线;交AC边于点D,交AB边于点E,以BE为边作等边△BEF,连接CF、AF.(1)求证:△ACF是等边三角形;(2)若点P是直线DE上一动点,连接BP、CP,当点P运动到何处时,BP+CP的值最小?并求出该最小值.【解答】(1)证明:在Rt△ABC中,∠ACB=90°,∠BAC=30°,∴∠ABC=60°,∵FD是线段AC的垂直平分线,∴FD⊥AC,CD=AD,∴CF=AF,∵∠ACB=∠ADF=90°,∴FD∥BC,∴BE=AE,∵△BEF是等边三角形,∴∠ABF=∠BEF=60°,BE=EF,∴EF=AE,∴∠EAF=∠EF A,∴2∠EAF=∠BEF=60°,∴∠EAF=30°,∴∠CAF=∠BAC+∠EAF=60°,∴△ACF是等边三角形;(2)解:∵FD是AC的垂直平分线,∴P A=PC,∴BP+PC=BP+P A,∵BP+P A≥AB,∴当点P运动到点E处时,BP+CP的值最小,最小值为AB.在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=3,∴AB=2BC=6,∴BP+CP的最小值为6.。
专题2.11运用勾股定理解决最短路径问题【八大题型】-2024-2025学年八年级[含答案]
![专题2.11运用勾股定理解决最短路径问题【八大题型】-2024-2025学年八年级[含答案]](https://img.taocdn.com/s3/m/d2fa9864366baf1ffc4ffe4733687e21af45ffc3.png)
专题2.11运用勾股定理解决最短路径问题【八大题型】【浙教版】【题型1正方体中的最短路径】【题型2长方体中的最短路径】【题型3圆柱中的最短路径】【题型4圆锥中的最短路径】【题型5台阶中的最短路径】【题型6由垂线段最短求最短路径】【题型7由将军饮马求最短路径】【题型8不规则图形中求最短路径】【题型1正方体中的最短路径】【例1】(23-24八年级·江西抚州·阶段练习)1.如图,在棱长为3cm的正方体上有一些线段,把所有的面都分成9个小正方形,每个小正方形的边长都为1cm.若一只蚂蚁每秒爬行2cm,则它从下底面A点沿表面爬行至右侧B 点最少要花多长时间?【变式1-1】(23-24八年级·四川乐山·期末)2.如图,正方体盒子的棱长为2,M为BC的中点,则一只蚂蚁从M点沿盒子的表面爬行到A点的最短距离为()A B C D 【变式1-2】(23-24八年级·山东青岛·期中)3.如图,有一棱长为3dm 的正方体盒子,现要按图中箭头所指方向从点A 到点D 拉一条捆绑线绳,使线绳经过ABFE 、BCGF 、EFGH 、CDHG 四个面,则所需捆绑线绳的长至少为( )dm .A .15B .9C .D .【变式1-3】(23-24八年级·河南郑州·期中)4.棱长分别为5cm 3cm ,两个正方体如图放置,点P 在11E F 上,且11113E P EF =,一只蚂蚁如果要沿着长方体的表面从点A 爬到点P ,需要爬行的最短距离是 .【题型2 长方体中的最短路径】【例2】(23-24八年级·黑龙江佳木斯·期末)5.如图是一块长、宽、高分别是6cm 4cm 、和3cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和顶点A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( )+B C DA.(3cm【变式2-1】(23-24八年级·全国·竞赛)6.如图,一个长方体建筑物的长、宽、高分别为3米、1米和6米,为了美观,现要在该建筑物上缠绕灯线以便安装小彩灯,灯线的绕法是从下底面的顶点A开始经过四个侧面绕到上底面的顶点B,如果缠绕的圈数是n,那么用在该建筑物上的灯线最短需要米.【变式2-2】(23-24八年级·安徽阜阳·期末)7.如图,在一个边长为6cm的正方形纸片ABCD上,放着一根长方体木块,已知该木块的较长边与AD平行,横截面是边长为1cm的正方形,一只蚂蚁从点A爬过木块到达蜂蜜C处需爬行的最短路程是cm.【变式2-3】(23-24八年级·陕西西安·期中)、、,点E到点D的距离为8.如图,一个长方体蛋糕盒的长、宽、商分别为40cm30cm20cm10cm.现有一只蚂蚁从点B出发,沿着长方体的表面爬行到点E处,则蚂蚁需要爬行的最短距离是()A.B.C.50cm D.45cm【题型3圆柱中的最短路径】【例3】(23-24八年级·广西北海·期中)BC=,点P移动9.如图,动点P从点A出发,沿着圆柱的侧面移动到BC的中点S,若6的最短距离为5,则圆柱的底面周长为()A.4B.4p C.8D.10【变式3-1】(23-24八年级·四川成都·阶段练习)10.如图,已知圆柱底面的周长为12dm,圆柱高为9dm,在圆柱的侧面上,过点A和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为dm.【变式3-2】(23-24八年级·陕西西安·期末)BC=,11.如图,圆柱底面圆的周长为6cm,CD、AB分别是上、下底面的直径,高3cm用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.【变式3-3】(23-24八年级·广西河池·阶段练习)12.如图所示,已知圆柱的底面周长为36,高5AB =,P 点位于圆周顶面13处,小虫在圆柱侧面爬行,从A 点爬到P 点,然后再爬回C 点,则小虫爬行的最短路程为 .【题型4 圆锥中的最短路径】【例4】(23-24八年级·内蒙古呼伦贝尔·期末)13.已知圆锥的底面半径是4cm ,母线长为12cm ,C 为母线PB 的中点,蚂蚁在圆锥侧面上从A 爬到C 的最短距离是 .【变式4-1】(23-24八年级·河北保定·期末)14.如图,小明用半径为20,圆心角为q 的扇形,围成了一个底面半径r 为5的圆锥.(1)扇形的圆心角q 为 ;(2)一只蜘蛛从圆锥底面圆周上一点A 出发,沿圆锥的侧面爬行一周后回到点A 的最短路程是 .【变式4-2】(23-24·内蒙古赤峰·中考真题)15.某班学生表演课本剧,要制作一顶圆锥形的小丑帽.如图,这个圆锥的底面圆周长为20πcm,母线AB长为30cm,为了使帽子更美观,要粘贴彩带进行装饰,其中需要粘贴一条从点A处开始,绕侧面一周又回到点A的彩带(彩带宽度忽略不计),这条彩带的最短长度是()vA.30cm B.cm C.60cm D.20πcm【变式4-3】(23-24八年级·安徽·单元测试)16.如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点,则在圆锥的侧面上从B点到P点的最短路线的长为()A B.C.D.【题型5台阶中的最短路径】【例5】(23-24八年级·重庆九龙坡·期中)17.如图是一个二级台阶,每一级台阶的长、宽、高分别为60cm、30cm、10cm.A和B 是台阶两个相对的端点,在B点有一只蚂蚁,想到A点去觅食,那么它爬行的最短路程是()A .60cmB .80cmC .100cmD .140cm【变式5-1】(23-24八年级·河北廊坊·阶段练习)18.如图,学校实验楼前一个三级台阶,它的每—级的长、宽、高分别为24dm ,3dm ,3dm ,点M 和点N 是这个台阶上两个相对的端点,M 点有一只蚂蚁,想到N 点处去吃可口的食物,则蚂蚁沿着台阶面爬行到点N 的最短路程( )A .10dmB .20dmC .30dmD .36dm【变式5-2】(23-24八年级·山东烟台·期中)19.如图,是一个三级台阶,它每一级长,宽,高分别为4m ,34m 和14m ,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁想到B 点去吃可口的食物,则它所走的最短路线长度为( )A .3.5mB .4.5mC .5mD .5.5m【变式5-3】(23-24八年级·山东济南·期末)20.如图,这是一个台阶的示意图,每一层台阶的高是20cm 、长是50cm 、宽是40cm ,一只蚂蚁沿台阶从点A 出发爬到点B ,其爬行的最短线路的长度是 .【题型6 由垂线段最短求最短路径】【例6】(12-13八年级·浙江杭州·阶段练习)21.如图,ABC V 中,90ACB Ð=°,4AC BC ==,点D ,E 分别是AB 、AC 的中点,在CD上找一点P ,连接AP 、EP ,当AP EP +最小时,这个最小值是 .【变式6-1】(23-24八年级·广西梧州·期中)22.如下图,某国道通过A 、B 两个村庄,而C 村庄离国道较远,为了相应政府“村村通公路”的号召,C 村决定采用自己筹集一部分,政府补贴一部分的方法修建一条水泥路直通国道,已知C 村到A 、B 两村的距离分别为6km 、8km ,A ,B 两村的距离为10km ,那么这条水泥路的最短距离为多少?【变式6-2】(23-24·四川宜宾·模拟预测)23.如图A ,B ,C 为三个村庄,A ,B 两村沿河而建且相距17千米,A ,C 相距B ,C 相距13千米,C 村需从河边修建一条引水渠到村庄,每千米造价1.5万元,则费用最低为( )万元A .6BC .4.5D .7.5【变式6-3】(23-24八年级·江苏南京·阶段练习)24.如图,在Rt ABC △中,90ACB Ð=°,3AC =,4BC =,5AB =,AD 平分CAB Ð交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE EF +的最小值为 .【题型7 由将军饮马求最短路径】【例7】(23-24八年级·福建宁德·阶段练习)25.如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家,他要完成这件事情所走的最短路径是 km .【变式7-1】(23-24八年级·云南昭通·期中)26.如图,河CD 的同侧有A 、B 两个村,且AB =,A 、B 两村到河的距离分别为2km AC =,6km BD =.现要在河边CD 上建一水厂分别向A 、B 两村输送自来水,铺设水管的工程费每千米需2000元.请你在河岸CD 上选择水厂位置O ,使铺设水管的费用最省,并求出铺设水管的总费用w (元).【变式7-2】(15-16八年级·江苏无锡·阶段练习)27.背景介绍:勾股定理是几何学中的明珠,充满着魅力.千百年来,人们对它的证明门庭若市,其中有著名的数学家,也有业余数学爱好者.向常春在1994年构造发现了一个新的证法.小试牛刀:把两个全等的直角三角形如图1放置,其三边长分别为a 、b 、c .显然,90DAB B Ð=Ð=°,AC DE ^.请用a 、b 、c 分别表示出梯形ABCD 、四边形AECD 、EBC V 的面积,再探究这三个图形面积之间的关系,可得到勾股定理:ABCD S =梯形______,EBC S =△______,AECD S =四边形______,则它们满足的关系式为______,经化简,可得到勾股定理222a b c +=.知识运用:(1)如图2,铁路上A 、B 两点(看作直线上的两点)相距40千米,C 、D 为两个村庄(看作两个点),AD AB ^,BC AB ^,垂足分别为A 、B ,25AD =千米,16BC =千米,则两个村庄的距离为______千米(直接填空);(2)在(1)的背景下,若40AB =千米,24AD =千米,16BC =千米,要在AB 上建造一个供应站P ,使得PC PD =,求出AP 的距离.()016x <<.【变式7-3】(23-24八年级·福建福州·期中)28.如图,已知直线a b ∥,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,12AB =,试在直线a 上找一点M ,在直线b 上找一点N ,满足M N a ⊥且AM MN NB ++的长度和最短,则此时AM NB += .【题型8 不规则图形中求最短路径】【例8】(23-24八年级·云南昆明·期中)29.如图,教室墙面ADEF 与地面ABCD 垂直,点P 在墙面上,若PA =米,2AB =米,点P 到AF 的距离是4米,一只蚂蚁要从点P 爬到点B ,它的最短行程是( )米A B C .5D 【变式8-1】(23-24八年级·河南郑州·期末)30.在一个长11cm ,宽5cm 的长方形纸片上,如图放置一根正三棱柱的木块,它的侧棱平行且大于纸片的宽AD ,它的底面边长为1cm 的等边三角形,一只蚂蚁从点A 处到点C 处的最短路程是 cm .【变式8-2】(23-24八年级·广东深圳·期末)31.如图是一个供滑板爱好者使用的U 型池,该U 型池可以看作是一个长方体去掉一个半圆柱而成,中间可供滑行部分的截面是半径为4m 的半圆,其边缘20m ==AB CD ,点E 在CD 上,4m =CE ,一滑行爱好者从A 点滑行到E 点,则他滑行的最短距离为 m (π的值为3).【变式8-3】(23-24八年级·河南郑州·期末)32.固定在地面上的一个正方体木块如图①所示,其棱长为4,沿其相邻三个面的对角线(图中虚线)去掉一角,得到如图②所示的几何体木块,一只蚂蚁沿着该木块的表面从点A 爬行到点B 的最短路程为( )A.+B.4+C.2D.41.()2.5s 【分析】把正方形的点A 所在的面展开,然后在平面内,由于展开图有两种情况:在直角三角形中,一条直角边长等于5,另一条直角边长等于2;一条直角边长等于4,另一条直角边长等于3;利用勾股定理求点A 和点B 间的线段长,即可得到蚂蚁爬行的最短距离.再比较即可得到答案.【详解】解:如图所示,分两种情况讨论:①如图1,将正方体的正前和右侧两面展开,使点A ,B 在同一平面内.则点A 到点B 的最短路径是线段AB ,由题意,得4cm =AO ,3cm BO =,根据勾股定理,得()5cm AB ===;②如图2,将正方体的正前和上底两面展开,使点A ,B 在同一平面内,则点A 到点B 的最短路径为线段AB ,由题意,得2cm AO =,5cm BO =,根据勾股定理.得)cm AB ===.5>,∴图1中的路径最短,∴这只蚂蚁至少要爬行的时间为()52 2.5s ¸=.【点睛】本题考查了勾股定理的拓展应用,“化曲面为平面”是解决“怎么爬行最近”这类问题的关键.2.B【分析】本题考查了两点之间线段最短、正方体的展开图、勾股定理等知识,先利用展开图确定最短路径,再由勾股定理求解即可,牢记相关概念和灵活应用是解题的关键.【详解】解:如图,蚂蚁沿路线AM 爬行路程最短,2BC =Q ,M 为BC 的中点,3,2M D A D \==,A M \==故选:B .3.C【分析】此题考查了勾股定理的应用,把此正方体的一面展开,然后在平面内,利用勾股定理求点A 和D 点间的线段长,即可得到捆绑线绳的最短距离.在直角三角形中,一条直角边长等于两个棱长,另一条直角边长等于3个棱长,利用勾股定理可求得,“化曲面为平面”是解决“怎样爬行最近”解题的关键.【详解】如图,将正方体展开,根据“两点之间,线段最短”知,线段AD 即为最短路线,展开后由勾股定理得:222AD AM DM =+,∴22296117AD =+=,即有:)cm AD =,故选:C .4..【分析】求出两种展开图PA 的值,比较即可判断;【详解】解:如图,有两种展开方法:方法一∶PA ==,方法二∶PA ==.故需要爬行的最短距离是.故答案为:.【点睛】本题考查平面展开-最短问题,解题的关键是学会用转化的思想思考问题,属于中考常考题型.5.C【分析】展成平面图形,根据两点之间线段最短,可求出解.本题考查平面展开路径问题、勾股定理,本题关键知道蚂蚁爬行的路线不同,求出的值就不同,有三种情况,可求出值找到最短路线.【详解】解:AB 就是蚂蚁爬的最短路线.但有三种情况:当:3AD =,4610DB =+=.AB .当4=AD ,639DB =+=.AB .当6AD =,347DB =+=AB .>>∴第三种情况最短.故选:C .6.【分析】本题主要考查最短路径问题,画出展开图,运用勾股定理求解即可.【详解】解:如图,8AA n ¢=米,6A B ¢=米,由勾股定理得,AB ===(米);故答案为:.7.10【分析】本题考查了勾股定理在最短路径中的应用,将长方体侧面展开得蚂蚁的爬行的最短路径为AC 的长,用勾股定理即可求解;能找出最短路径是解题的关键.【详解】解:如图,将长方体侧面展开得,\蚂蚁的爬行的最短路径为AC 的长,538AB \=+=(cm ),AC \==10=,\蚂蚁的爬行的最短路径为10cm ,故答案:10.8.C【分析】考虑蚂蚁从正面和上面沿直线爬到点E ,从正面和右侧面沿直线爬到点E ,从左侧面和上面沿直线爬到点E ,画出图形,利用勾股定理求出距离,进行比较即可解答.【详解】解:当蚂蚁从正面和上面沿直线爬到点E ,如图所示:此时40cm 20cm BC CD ==,,则30cm EC ED DC =+=,50cm BE \==;当蚂蚁从正面和右侧面沿直线爬到点E ,如图所示:此时20cm,40cm AB AD ==,则50cm AE AD DE =+=,BE \==;从左侧面和上面沿直线爬到点E ,如图所示:此时20cm,40cm AB AD ==,则60cm BD AB DA =+=,BE \==;50<<Q \蚂蚁需要爬行的报短距离是50cm ,故选:C .【点睛】此题考查了最短路径问题,利用了转化的思想,解题的关键是将立体图形展为平面图形,利用勾股定理的知识求解.9.C【分析】本题考查平面展开—最短路径问题,先根据题意画出圆柱的侧面展开图,然后连接AS ,再利用勾股定理即可得出AB 的长即可得到结论.利用勾股定理求解是解题的关键.【详解】解:如图,连接AS ,在圆柱的侧面展开图ABCD 中,6BC =,BC AB ^,设AB x =,∵点P 移动的最短距离为5,∴5AS =,∵点S 是BC 的中点,∴116322BS BC ==´=,∴4AB ===,∴圆柱的底面周长为:2248AB =´=.故选:C .10.【分析】本题考查了平面展开﹣最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC 的长度.∵圆柱底面的周长为12dm ,圆柱高为9dm ,∴9dm,6dm AB BC BC ¢===,∴22296117AC =+=,∴AC =,∴这圈金属丝的周长最小为2AC =.故答案为:.11.【分析】本题考查了平面展开-最短路线问题和勾股定理的应用,把立体图形展开成平面图形,依题意,从A 到C 缠绕了一圈半,则 1.569cm AB =´=,3cm BC =,根据两点之间线段最短求出AC 长即可解决问题.【详解】解:如图所示,∵无弹性的丝带从A 至C ,绕了1.5圈,∴展开后 1.569cm AB =´=,3cm BC =,由勾股定理得:AC ===故答案为:.12.1313【分析】本题主要考查了平面展开图最短路径问题,先“化曲面为平面”,把圆柱的侧面展开成矩形,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.再根据两点之间线段最短,由勾股定理可得出.【详解】解:如图,根据题意,5AB CD ==,AC BD ==36182=,∵P 点位于圆周顶面13处,∴136123BP =´=,6PD BD BP =-=,∴小虫爬行的最短路程13AP PC =+==故选:13.13.【分析】根据题意可得圆锥的底面周长是8cm p ,即可得圆锥侧面展开图的圆心角是120°,展开圆锥的侧面,构造直角三角形即可得.【详解】解:圆锥的底面周长是:()248cm p p ´=,则128180n p p ´=120n =°,即圆锥侧面展开图的圆心角是120°,如图所示,∴60APB Ð=°,∵PA PB =,∴PAB V 是等边三角形,∵C 是PB 的中点,∴AC PB ^,∴90ACB Ð=°,∵在圆锥侧面展开图中12AP cm =,6PC cm =,∴在圆锥侧面展开图中:)AC cm ===,∴蚂蚁在圆锥侧面上从A 爬到C 的最短距离是:,故答案为:.【点睛】本题考查了最短距离问题,解题的关键是掌握圆锥的计算,勾股定理,将最短距离转化为平面上两点间的距离并正确计算.14. 90°##90度 【分析】(1)由于圆锥的底面圆周长就是圆锥的侧面展开图的弧长,利用弧长公式即可求出侧面展开图的圆心角;(2)根据两点之间线段最短,把圆锥的侧面展开成平面图形,构造直角三角形根据勾股定理即可求得.【详解】解(1)Q 圆锥的底面周长2π510π=´=,π2010π180q ´\=,解得90q =°;故答案为90°.(2)圆锥的侧面展开图如图所示,构造Rt AOA ¢V ,根据两点之间线段最短得最短路程为:=.故答案为【点睛】本题考查了最短路径问题,根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径,在平面图形上构造直角三角形是解题的关键.15.B【分析】根据圆锥的底面圆周长求得半径为10,根据母线长求得展开后的扇形的圆心角为120°,进而即可求解.【详解】解:∵这个圆锥的底面圆周长为20πcm ,∴2π=20πr解得:10r =∵π3020π180n ´=解得:120n =∴侧面展开图的圆心角为120°如图所示,AC 即为所求,过点B 作BD AC ^,∵120ABC Ð=°,BA BC =,则30BAC Ð=°∵30AB =,则15BD =∴AD =2AC AD ==故选:B .【点睛】本题考查了圆锥侧面展开图的圆心角的度数,勾股定理解直角三角形,求得侧面展开图的圆心角为120°解题的关键.16.C【分析】求出圆锥底面圆的周长,则以AB 为一边,将圆锥展开,就得到一个以A 为圆心,以AB 为半径的扇形,根据弧长公式求出展开后扇形的圆心角,求出展开后90BAC Ð=°,连接BP ,根据勾股定理求出BP 即可.【详解】解:圆锥底面是以BC 为直径的圆,圆的周长是6BC p p =,以AB 为一边,将圆锥展开,就得到一个以A 为圆心,以AB 为半径的扇形,弧长是6l p =,设展开后的圆心角是n °,则66180n p p ´=,解得:180n =,即展开后1180902BAC Ð=´°=°,132AP AC ==,6AB =,则在圆锥的侧面上从B 点到P 点的最短路线的长就是展开后线段BP 的长,由勾股定理得:BP ===故选:C .【点睛】本题考查了圆锥的计算,平面展开-最短路线问题,勾股定理,弧长公式等知识点的应用,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.解题的关键是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决.17.C【分析】本题考查平面展开—最短路径问题,勾股定理.根据题意画出台阶的侧面展开图,再根据勾股定理求出AB的长即可得出结论.【详解】解:如图所示,()3010301080cm+++=,()AB==.100cm故选C.18.C【分析】本题考查的是平面展开-最短路线问题,根据题意画出台阶的平面展开图,再用勾股定理根据两点之间线段最短进行解答.【详解】解:如图所示,∵它的每一级的长宽高分别为24dm,3dm,3dm,∴30dmMN==即:蚂蚁沿着台阶面爬行到点N的最短路程是30dm,故选:C.19.C【分析】本题主要考查了勾股定理的应用,把立体几何图中的问题转化为平面几何图中的问题是解题的关键.将台阶展开为矩形,然后利用勾股定理计算AB 的值,则根据两点之间线段最短得到蚂蚁所走的最短路线长度.【详解】解:如下图,将台阶展开为矩形,线段AB 恰好是直角三角形的斜边,则4m AC =,3133m 44BC æö=+´=ç÷èø,在Rt ABC △中,5m AB ===,所以蚂蚁所走的最短路线长度为5m .故选:C .20.130cm【分析】展开成平面图形,根据勾股定理,即可求解,本题考查了勾股定理的应用,解题的关键是:利用两点之间线段最短.【详解】解:将台阶展开成平面图形:在Rt ABC △中,50cm AC =,120cm BC =,()130cm AB ===,其爬行的最短长度()130cm AB =,故答案为:130cm .21.【分析】连接BE ,BP ,根据等腰三角形的性质可得CD 垂直平分AB ,从而得到AP =BP ,进而得到BE 就是PA PE +的最小值,再由勾股定理求出BE ,即可求解.【详解】解:如图,连接BE ,BP ,∵4AC BC ==,点是的中点,∴CD 垂直平分AB ,∴AP =BP ,∴AP +PE =BP +PE ≥BE ,∴BE 就是PA PE +的最小值,∵Rt ABC V 中,4AC BC ==,点D ,E 分别是AB ,AC 的中点,∴2CE =,∴BE ==∴PA PE +的最小值是.故答案为:【点睛】本题主要考查等腰直角三角形的性质和轴对称及勾股定理等知识的综合应用,熟练掌握等腰直角三角形的性质和轴对称及勾股定理等知识是解题的关键.22.这条水泥路的最短距离为4.8km【分析】本题考查了勾股定理的逆定理,三角形的面积公式,根据垂线段最短确定这条水泥路的最短距离是解本题的关键;过点C 作CD AB ^,根据垂线段最短可知这条水泥路的最短距离为CD 的长度,利用勾股定理的逆定理得ABC V 为直角三角形,然后利用面积相等即可求解.【详解】解:过点C 作CD AB ^,垂足为D 点,则这条水泥路的最短距离为CD 的长度,,在ABC V 中,6km AC =,8km BC =,10km AB =,则2226810+=,即:222AC BC AB +=,∴ABC V 为直角三角形,1122ABC S AB CD AC BC =×=×V Q ∴()68 4.8km 10AC BC CD AB ´´===,\这条水泥路的最短距离为4.8km .23.D【分析】本题主要考查了勾股定理,正确理解勾股定理的含义是解题关键.过点C 作CH AB ^,设AH x =千米,则()17BH x =-千米,由勾股定理可得2222AC AH BC BH -=-,列出方程求解,再用勾股定理求出CH 即可得出答案.【详解】如图,过点C 作CH AB ^,设AH x =千米,则()17BH x =-千米,222222,CH AC AH CH BC BH =-=-Q ,2222AC AH BC BH \-=-,(()22221317x x \-=--,5x \=,5AH \=千米,5CH \===(千米),\费用最低为5 1.57.5´=万元.故选:D24.125【分析】本题主要考查的是轴对称的性质、勾股定理的应用、垂线段最短等知识,解题的关键是学利用对称,解决最短问题.如图所示:在AB 上取点F ¢,使AF AF ¢=,过点C 作CH AB ^,垂足为H .因为EF CE E C F E +=¢+,推出当C 、E 、F ¢共线,且点F ¢与H 重合时,FE EC +的值最小.【详解】解:如图所示:在AB 上取点F ¢,使AF AF ¢=,∵,FAE F AE AE AE ¢Ð=Ð=,∴()SAS FAE F AE ¢V V ≌,∴EF EF ¢=.在Rt ABC △中,90,3,4ACB AC BC Ð=°==\5AB ==.过点C 作CH AB ^,垂足为H .1122AC BC AB CH ×=×Q ,\125AC BC CH AB ×==,∵EF CE E C F E +=¢+,∴当C 、E 、F ¢共线,且点F ¢与H 重合时,EF EC +的值最小,最小值为CH 的长,EF EC +的值最小为125,故答案为:125.25.17【分析】如图(见详解),将小河看成直线MN ,由题意先作A 关于MN 的对称点,连接A `B ,构建直角三角形,则A `B 就是最短路线;在Rt △A `DB 中,∠A `DB =90°,BD =8km ,A `D =AD +A `A ,利用勾股定理即可求出A `B .【详解】如图,做出点A 关于小河MN 的对称点A `,连接A `B 交MN 于点P ,则A `B 就是牧童要完成这件事情所走的最短路程长度.在Rt △A `DB 中,由勾股定理求得()`km A B .则他要完成这件事情所走的最短路程是17km .【点睛】本题考查了轴对称—最短路线问题,掌握轴对称的性质和勾股定理是解题的关键.26.20000元【分析】作A 点关于CD 的对称点为A ¢,连接A B ¢交CD 于点O ,过点A 作AF BD ^于点F ,过点A ¢作A E BD ¢^交BD 的延长线于点E ,分别利用勾股定理求出AF 和A B ¢的长即可.【详解】解:如图,作点A 关于CD 的对称点A ¢,连接BA ¢交CD 于O ,点O 即为水厂的位置.分过点A ¢作A E CD ¢∥交BD 的延长线于点E ,过点A 作AF BD ^于点F ,则AF A E =¢,2km DF AC ==,2km DE A C =¢=.∴()624km BF BD FD =-=-=.在Rt ABF V 中,(22222436AF AB BF =-=-=,∴6km AF =,∴6km A E ¢=.在Rt A BE ¢V 中,8km BE BD DE =+=,由勾股定理得()10km A B ===¢.∴20001020000w =´=(元).故铺设水管的总费用为20000元.【点睛】本题主要考查了勾股定理的应用,构造直角三角形运用勾股定理是解题的关键.27.小试牛刀:()12a a b +;()12b a b -;212c ;()()2111222a a b b a b c +=-+;知识运用:(1)41;(2)16AP =(千米);知识迁移:20.【分析】小试牛刀:根据三角形的面积和梯形的面积可以表示出相应部分面积;知识运用:(1)连接CD ,过点C 作AD 的垂线,根据垂直得到边长之间的关系,再用勾股定理即可求得CD .(2)作CD 的垂直平分线,交AB 于点P ,分别在Rt APD V 和Rt PBC V 中用勾股定理表示出CP 与PD 联立方程求解即可.知识迁移:运用数形结合根据“轴对称-最短路径问题”求解即可.【详解】解:小试牛刀:()12ABCD S a a b =+梯形, ()12EBC S b a b =-V , 212AECD S c =四边形, 则它们满足的关系式为:()()2111222a ab b a bc +=-+.知识运用:(1)如图2①,连接CD ,作CE AD ^于点E ,40AB EC ==Q ,16AE BC ==,9ED \=,有勾股定理得到:222DE CE CD +=41CD \==(千米)∴两个村庄相距41千米.(2)连接CD ,作CD 的垂直平分线交AB 于点P ,设AP x =千米,则()40BP x =-千米,在Rt ADP V 中,2222224DP AP AD x =+=+ ,在Rt BPC △中,()222224016CP BP BC x =+=-+,∵PC PD =,∴()2222244016x x +=-+,解得,16x =,即16AP =千米.知识迁移:如图3,过AB 作点C 的对称点C ¢,连接DC ¢交AB 于点P ,过C ¢作C E AB ¢∥,根据对称性:3AE BC BC ¢===,设PB x =,则16AP x =-,有勾股定理得,PC PC ¢==DP =∴20DC DP PC ¢¢=+==.【点睛】本题考查了四边形综合以及用数形结合方式来证明勾股定理,解答本题的关键在于勾股定理的应用、最短线路问题、线段的垂直平分线以及用面积法证明勾股定理,本题是一道综合型较强的题目.28.【分析】MN 表示直线a 与直线b 之间的距离,是定值,只要满足AM NB +的值最小即可.过A 作直线a 的垂线,并在此垂线上取点A ¢,使得AA MN ¢=,连接A B ¢,则A B ¢与直线b 的交点即为N ,过N 作M N a ⊥于点M .则A B ¢为所求,利用勾股定理可求得其值.【详解】解:过A 作直线a 的垂线,并在此垂线上取点A ¢,使得4AA ¢=,连接A B ¢,与直线b 交于点N ,过N 作直线a 的垂线,交直线a 于点M ,连接AM ,过点B 作BE AA ¢^,交射线AA ¢于点E ,如图.AA a ¢^Q ,M N a ⊥,N AA M \¢^.又4AA MN ¢==Q ,\四边形AA NM ¢是平行四边形,AM A N ¢\=.由于AM MN NB ++要最小,且MN 固定为4,所以AM NB +最小.。
八年级数学上学期期中真题分类汇编(人教版):专题07 最短路径问题(解析版)(人教版)

专题07最短路径问题两条线段之和1.如图,点A 、B 在直线l 的同一侧.(1)如图①,在直线l 上找一点P ,使得PA PB (尺规作图,保留作图痕迹)(2)如图②,请借助三角尺和刻度尺在直线l 上找一点Q ,使得QA QB 最短.【答案】(1)见解析(2)见解析【分析】(1)连接AB ,作AB 的垂直平分线,与直线l 交于点P ;(2)利用工具作出点A 关于直线l 的垂线并延长,使得1AC A C ,连接1A B ,与直线l 交于点Q .【详解】(1)解:如图,点P 即为所求;(2)如图,点Q 即为所求.【点睛】本题考查了垂直平分线的作法和性质,最短路径问题,解题的关键是理解知识点,掌握相应的作图方法.2.如图,在ABC 中,AB 的垂直平分线EF 分别交AB AC 、边于点E 、F ,点K 为EF 上一动点,则BK CK 的最小值是以下哪条线段的长度()A .EFB .ABC .ACD .BC【答案】C 【分析】连接AK ,根据线段垂直平分线的性质得到AK BK ,求得BK CK AK CK ,得到AK CK 的最小值BK CK 的最小值,于是得到当AK CK AC 时,AK CK 的值最小,即BK CK 的值最小,即可得到结论.【详解】解:连接AK ,EF ∵是线段AB 的垂直平分线,AK BK ,BK CK AK CK ,AK CK 的最小值BK CK 的最小值,AK CK AC ∵,当AK CK AC 时,AK CK 的值最小,即BK CK 的值最小,BK CK 的最小值是线段AC 的长度,故选:C .【点睛】本题考查的是轴对称 最短路线问题,线段垂直平分线的性质,三角形的三边关系,熟知线段垂直平分线的性质是解答此题的关键.3.如图,在ACD 中,AB =AC =7,AD =8.3,点E 在AD 上,CE =CB ,CF 平分∠BCE 交AD 于点F .点P 是线段CF 上一动点,则EP +AP 的最小值为()A .6B .7C .7.5D .8.3【答案】B 【分析】连接BP ,由ECP BCP ≌得BP EP ,EP AP BP AP +,根据BP AP AB 知,当点P 在线段AB 上时,EP AP +的最小值是AB ,问题得解.【详解】解:连接BP ,CF ∵平分BCE 交AD 于点F ,ECP BCPCE CB ∵,CP CP ,ECP BCP SAS ≌,BP EP ,EP AP BP AP ∵+且BP AP AB ,当点P 在线段AB 上时,EP AP +的最小值是AB ,7AB ∵,EP AP +的最小值为7.故选:B【点睛】本题考查了轴对称图形的性质,两点之间线段最短,其中准确作出点关于对称轴对称的对称点是解题的关键.4.如图,ABC 的面积是2150cm ,最长边30cm AB ,AD 平分BAC ,点M ,N 分别是AD ,AC 上的动点,则CM MN 的最小值为cm .【答案】10【分析】过点C 作CE AB 于点E ,交AD 于点M ,过点M 作MN AC 于N ,则CE 的长即为CM MN 的最小值,再根据三角形的面积公式求出CE 的长即可.【详解】解:过点C 作CE AB 于点E ,交AD 于点M ,过点M 作MN AC 于N ,AD ∵平分BAC ,CE AB 于点E ,MN AC 于N ,ME MN ,CE CM ME CM MN ,根据垂线段最短可知,CE 的长即为CM MN 的最小值,∵ABC 的面积是2150cm ,最长边30cm AB ,1301502CE ,10CE ,即CM MN 的最小值为10.故答案为:10.【点睛】本题考查轴对称——最短路径问题,关键是根据垂线段最短将CM MN 的最小值转化为CE .5.如图,在等腰ABC 中,AB AC ,7BC ,作AD BC 于点D ,12AD AB,点E 为AC 边上的中点,点P 为BC 上一动点,则PA PE 的最小值为.【答案】72【分析】作点A 关于BC 的对称点A ,延长AD 至A ,使AD A D ,连接A E ,交BC 于P ,此时PA PE 的值最小,就是A E 的长,证明A E CD 即可.【详解】解:作点A 关于BC 的对称点A ,延长AD 至A ,使AD A D ,连接A E ,交BC 于P ,此时PA PE 的值最小,就是A E 的长,∵AB AC ,7BC ,AD BC ,72BD CD ,∵12AD AB ,30B ,60BAD CAD ,∵AD A D ,AA C 是等边三角形,∵点E 为AC 边上的中点,A E AC ,72A E CD ,即PA PE 的最小值为72,故答案为:72.【点睛】本题考查了轴对称,最短路径问题和直角三角形的性质,解题的关键是根据轴对称的性质作出对称点,掌握线段垂直平分线的性质和等边三角形的性质与判定的灵活运用.6.如图,等边ABC 和等边A B C △的边长都是4,点B C B ,,在同一条直线上,点P 在线段A C 上,则AP BP 的最小值为.【答案】8【分析】连接PE ,根据ABC 和A B C △都是边长为4的等边三角形,证明ACP B CP △≌△,可得AP B P ,所以AP BP BP B P ,进而可得当点P 与点C 重合时,AP BP 的值最小,正好等于BB 的长,即可求解.【详解】解:如图,连接PB ,∵ABC 和A B C △都是边长为4的等边三角形,∴60AC B C ACB A CB ,,∴60ACA ,∴ACA A CB ,在ACP △和B CP △中,AC B C ACA A CB CP CP,∴ SAS ACP B CP △≌△,∴AP B P ,∴AP BP BP B P ,∴当点P 与点C 重合时,点A 与点B 关于A C 对称,AP BP 的值最小,正好等于BB 的长,∴AP BP 的最小值为448 ,故答案为:8.【点睛】本题考查了轴对称—最短路线问题、全等三角形的判定和性质和等边三角形的性质,灵活运用所学知识求解是解决本题的关键.周长之和7.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM V 周长的最小值为()A .12B .8C .10D .20【答案】C【分析】连接AD ,由于ABC 是等腰三角形,点D 是BC 边的中点,故AD BC ,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AC 的垂直平分线可知,点C 关于直线EF 的对称点为点A ,故AD 的长为CM MD 的最小值,由此即可得出结论.【详解】解:连接AD ,∵ABC 是等腰三角形,点D 是BC 边的中点,∴AD BC ,122CD BC,∴1141622ABC S BC AD AD △,解得8AD ,∵EF 是线段AC 的垂直平分线,∴点C 关于直线EF 的对称点为点A ,∴AD 的长为CM MD 的最小值,∴CDM V 周长的最小值为8210CM MD CD AD CD .故选:C .【点睛】本题考查的是轴对称——最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.8.如图,边长为a 的等边ABC 中,BF 是AC 上中线且BF b ,点D 在BF 上,连接AD ,在AD 的右侧作等边ADE V ,连接EF ,则AEF △周长的最小值是()A .1223a b B .12a b C .12a +b D .32a 【答案】B【分析】由题意等边三角形性质和全等三角形判定得出 SAS BAD CAE ≌△△,进而作点A 关于直线CE 的对称点M ,连接FM 交CE 于E ,此时AE FE 的值最小,最后依据AEF △周长的最小值AF FE AE AF FM 求值即可得出答案.【详解】解:如图,∵ABC ADE △,△都是等边三角形,∴60AB AC a AD AE BAC DAE ABC,,∴BAD CAE∴SAS BAD CAE ≌△△∴ABD ACE∵12AF CF a BF b ,∴30ABD CBD ACE BF AC,∴点E 在射线CE 上运动(30ACE ),作点A 关于直线CE 的对称点M ,连接FM 交CE 于E ,此时AE FE 的值最小,∵60CA CM ACM,∴ACM △是等边三角形,∴AM AC∵BF AC∴FM BF b∴AEF △周长的最小值12AF FE AE AF FM a b.故选:B .【点睛】本题考查轴对称最短路径问题和等边三角形的性质和判定以及全等三角形的判定和性质等知识,解题的关键是利用轴对称性质得出AE FE 的值最小.角度问题9.如图,在五边形ABCDE 中,120BAE ,90B E ,AB BC ,AE DE ,在BC 、DE 上分别找到一点M 、N ,使得AMN 的周长最小,则AMN ANM +的度数为()A .100B .110C .120D .130【答案】C 【分析】根据要使AMN 的周长最小,即利用点的对称,让三角形的三边在同一直线上,A 关于BC和ED 的对称点'A ,''A ,即可得出''''60A A HAA ,进而得出 '''+2AMN ANM A A 即可得出答案.【详解】解:作A 关于BC 和ED 的对称点'A ,''A ,连接'A ,''A ,交BC 于M ,交ED 于N ,则'A ,''A 即为AMN 的周长最小值.作EA 延长线AH ,∵120BAE ,∴'60HAA ,∴''''60A A HAA ,∵''A MAA ,''A NAE ,且''A MAA AMN ,''A NAE ANM ,∴ '''''''+2260120A MAA NAE A AMN ANM A A ,故选:C .【点睛】此题主要考查了平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M ,N 的位置是解题关键.110.如图,22AOB ,点M ,N 分别是边OA ,OB 上的定点,点P ,Q 分别是边OA ,OB 上的动点,记MQP ,OPN ,当MQ QP PN 最小时,则α与β的数量关系为.【答案】44【分析】作M 关于OB 的对称点M ,N 关于OA 的对称点N ,连接M N 交OA 于P ,交OB 于Q ,则MQ QP PN 最小,易知OQM OQM NQP ,OPQ APN APN ,根据三角形的外角的性质和平角的定义即可得到结论.【详解】解:如图,作M 关于OB 的对称点M ,N 关于OA 的对称点N ,连接M N 交OA 于P ,交OB 于Q ,则MQ QP PN 最小,∴OQM OQM NQP ,OPQ APN APN ,∴ 111802218022PQN AOB MPQ ,∴44 ,故答案为:44 .【点睛】本题考查轴对称—最短问题、三角形的内角和定理.三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题.11.如图,在Rt ABC △中,90ACB ,AC BC ,点C 在直线MN 上,30BCN ,点P 为MN 上一动点,连接AP ,BP .当AP BP 的值最小时,CBP 的度数为度.【答案】15【分析】如图,作B 关于MN 的对称点D ,连接,,AD BD CD ,AP BP 的值最小,则MN 交AD 于P ,由轴对称易证CBP CDP ,结合30BCN 证得BCD △是等边三角形,可得AC CD ,结合已知根据等腰三角形性质可求出CDP ,即可解决问题.【详解】如图,作B 关于MN 的对称点D ,连接,,AD BD CD ,AP BP ∵的值最小,则MN 交AD 于P ,由轴对称可知:CB CD ,PB PD ,,,CBD CDB PBD PDB CBP CDP ,30BCN ∵,260BCD BCN ,BCD △是等边三角形,AC BC ∵,AC CD ,CAD CDA ,90ACB ∵,60BCD ,1180152CAD CDA ACB BCD ,15CBP CDP ,故答案为:15.【点睛】本题考查等边三角形判定和性质、轴对称的性质、最短路径问题、等腰三角形的性质;熟练掌握相关性质的联系与运用,会利用最短路径解决最值问题是解答的关键.12.如图,在三角形ABC 中,50BAC ,AB AC ,BD AC 于D ,M ,N 分别是线段BD ,BC 上的动点,BM CN ,当AM AN 最小时,MAD .【答案】12.5【分析】在BC 下方作CNA ,使CNA BMA ≌,连接AA ,则AM AN 最小值为AA ,此时A 、N 、A 三点在同一直线上,推出18010537.52A AC A,所以37.5BAM ,即可得到5037.512.5MAD BAC BAM .【详解】解:在BC 下方作CNA ,使CNA BMA ≌,连接AA .则NCA MBA ,AM A N .∴AM AN A N AN AA ,即AM AN 最小值为AA ,此时A 、N 、A 三点在同一直线上.∵50BAC ,AB AC ,∴65ACB ABC ,∵BD AC ,∴905040ABD ,∴40NCA ,∴6540105ACA ,∴18010537.52A AC A ,∴37.5BAM ,∴5037.512.5MAD BAC BAM ,故答案为:12.5 .【点睛】本题考查了最短路线问题以及等腰三角形的性质的运用,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.13.如图,点(,0),(0,)A a B b ,且a ,b 满足2(1)|22|0a b .若P 为x 轴上异于原点O 和点A 的一个动点,连接PB ,以线段PB 为边构造等腰直角BPE (P 为顶点),连接AE .(1)如图1,直接写出点A 的坐标为___________,点B 的坐标为___________;(2)如图2,当点P 在点O ,A 之间时,连接BE ,AE ,证明BA AE ;(3)如图3,点P 在x 轴上运动过程中,若AE 所在直线与y 轴交于点F ,请直接写出F 点的坐标为___________,当OE BE 的值最小时,请直接写出此时OE 与BE 之间的数量关系___________.【答案】(1)(1,0),(0,1)(2)见解析(3)(0,1) ,2 BE OE【分析】(1)根据非负数的性质得到1a ,1b ,得到1OA ,1OB ,于是得到结果;(2)过点E 作EH x 轴于H ,证明(AAS)BOP PHE △≌△,由全等三角形的性质得出1OB PH OA ,OP EH ,由等腰直角三角形的性质得出45OAB ,证出90EAB ,则可得出结论;(3)由直角三角形的性质证出1OA OF ,则可得出(0,1)F ;取点(1,1)G ,连接FG ,OG ,O 与G 关于直线AF 对称,连接BG 交AF 于E ,连接OE ,则OE EG ,根据三角形的面积关系可得出2 BE OE .【详解】(1)解:2(1)|22|0a b ∵,10a ,220b ,1a ,1b ,(1,0)A 、(0,1)B ,故答案为:(1,0),(0,1);(2)证明:过点E 作EH x 轴于H ,BPE ∵ 是等腰直角三角形,BP PE ,90BPE ,90BPO EPH ,90OBP BPO ∵,OBP EPH ,又90BOP PHE ∵,(AAS)BOP PHE △≌△,1OB PH OA ,OP EH ,OP PA PA AH ,OP AH ,EH AH ,又90AHE ∵,45HAE ,OA OB ∵,90AOB ,45OAB ,90EAB ,BA AE ;(3)BA AE ∵,90BAF ,OA OB ∵,45BAO ,45OAF \Ð=°,90AOF ∵,45OAF OFA ,1OA OF ,(0,1)F ;取点(1,1)G ,连接FG ,OG ,(0,1)F ∵,45OFA AFG ,O 与G 关于直线AF 对称,连接BG 交AF 于E ,连接OE ,则OE EG ,此时OE BE 最小,OE BE EG BE BG ,E ∵到FB ,FG 的距离相等,2BF ,1FG ,2BFE GFE S S △△,2BE EG ,2BE OE .故答案为:(0,1) ,2 BE OE .【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,坐标与图形的性质,,等腰直角三角形的判定与性质,三角形的面积等知识点,正确的作出辅助线是解题的关键.14.如图,在Rt ABC △中,90ACB ,60A ,4AC ,CD 平分ACB ,交边AB 于点D ,点E 是边AB 的中点.点P 为边CB 上的一个动点.(1)AE ______,ACD ______度;(2)当四边形ACPD 为轴对称图形时,求CP 的长;(3)若CPD △是等腰三角形,求CPD 的度数;(4)若点M 在线段CD 上,连接MP 、ME ,直接写出MP ME 的值最小时CP 的长度.【答案】(1)4;45(2)4(3)90 或45 或67.5(4)2【分析】(1)根据题意可得30B ,则28AB AC ,即可求得AE 的长,再根据CD 平分ACB ,即可求得ACD 的度数;(2)根据轴对称图形的性质可得答案;(3)根据题意可得45PCD ,分三种情况:PC PD ,DP DC ,CP CD ,再结合三角形内角和定理即可求解;(4)过点M 作MP BC ,点P 关于CD 的对称点P ,根据题意可得PCM P CM ,CM CM ,根据AAS ,可得PCM P CM ≌,则PM P M ,CP CP ,因此MP ME MP ME EP ,以此得点E ,M ,P 三点共线时,MP ME 的值最小,此时EP BC ∥,最后根据解含30度角的直角三角形即可得到结果.【详解】(1)解:∵90ACB ,60A ,18030B ACB C ,28AB AC ,∵点E 是边AB 的中点,142AE AB ∵CD 平分ACB ,1452ACD ACB ,故答案为:4;45.(2)∵四边形ACPD 为轴对称图形,CD 平分ACB ,∴对称轴为直线CD ,∴4CP CA .(3)∵CD 平分ACB ,90ACB ,∴45PCD .当PC PD 时,45PDC PCD ,∴180454590CPD ;当DP DC 时,45CPD PCD ;当CP CD 时, 18045267.5CPD CDP .综上所述,CPD 的度数为90 或45 或67.5 .(4)如图,点M 在CD 上,且MP BC ,作点P 关于CD 的对称点P ,MP BC ∵,MP AC ,∵CD 平分ACB ,PCM P CM ,在PCM △和P CM 中,MPC MP C PCM P CM CM CM, (AAS)PCM P CM ≌PM P M ,CP CPMP ME MP ME EP ∵,当点E ,M ,P 三点共线时,MP ME 的值最小,又∵根据垂线段最短,当EP AC 时,EP 有最小值, EP BC ∥,30AEP B ,90AP E ACB 4AE ∵,122AP AE ,2CP CP AC AP .【点睛】本题主要考查轴对称——最短路径问题,全等三角形的判定与性质,等腰三角形的性质,含30度角的直角三角形,角平分线的性质,本题综合性较强,作出辅助线,找到最短路径是解题关键.。
初中数学《八上》 第十三章 轴对称《课题学习》最短路径问题 考试练习题

初中数学《八上》第十三章轴对称《课题学习》最短路径问题考试练习题姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分评卷人得分1、如图,在△ABC中,AB 的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=4 ,EC=2 ,则BC的长是()A . 2B . 4C . 6D . 8知识点:课题学习最短路径问题【答案】C【分析】根据线段的垂直平分线的性质得到EB=EA=4 ,结合图形计算,得到答案.【详解】解:∵DE是AB的垂直平分线,AE=4 ,∴EB=EA=4 ,∴BC=EB+EC=4 + 2 = 6 ,故选:C.【点睛】本题考查的是线段的垂直平分线的性质,解题的关键是掌握线段的垂直平分线上的点到线段的两个端点的距离相等.2、如图,在△ABC中,按以下步骤作图:① 分别以点A和点C为圆心,以大于的长为半径作对弧,两弧相交于M、N两点;② 作直线MN交BC于点D,交AC于E,连接AD,若AD=BD,AB=8 ,则DE=___ .知识点:课题学习最短路径问题【答案】4【分析】根据作图即可得到是的垂直平分线,再根据,得到DE是△ABC的中位线,即可得到DE的长.【详解】解:根据作图即可得到是的垂直平分线∴,∴,∵∴∴为的中点∴DE是△ABC的中位线∴故答案为【点睛】本题主要考查了基本作图以及线段垂直平分线的性质,利用三角形中位线定理是解决问题的关键.3、如图,在△ABC 中, AB = AC , AB 的垂直平分线 MN 交 AC 于 D 点.若 BD 平分∠ABC, 则∠A =________________ ° .知识点:课题学习最短路径问题【答案】36 .【详解】试题分析:∵AB=AC,∴∠C=∠ABC,∵AB的垂直平分线MN交AC于D点.∴∠A=∠ABD,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠C=2∠A=∠ABC,设∠A为x,可得:x +x +x +2x=180° ,解得:x=36° ,故答案为36 .点睛:此题考查了线段垂直平分线的性质以及等腰三角形的性质.根据垂直平分线的性质和等腰三角形的性质得出角相等,然后在一个三角形中利用内角和定理列方程即可得出答案.4、在菱形ABCD中,E、F分别是BC和CD的中点,且AE ⊥BC,AF ⊥CD,那么∠EAF等于()A .45°B .55°C .60°D .75°知识点:课题学习最短路径问题【答案】C【分析】连接AC,根据题意证得是等边三角形,再由等边三角形的性质求出∠EAC的度数,同理可求得∠FAC的度数,进而得到答案.【详解】解:如图,连接AC,∵E是BC中点,且AE ⊥BC,∴AE垂直平分BC,∴AB =AC,又∵ 四边形ABCD是菱形,∴AB =BC,∴AB =BC =AC,∴是等边三角形,∴∠BAC =60° ,AE平分∠BAC,∴∠EAC =30° ,同理可得,∠FAC =30° ,∴∠EAF =∠EAC +∠FAC =60° .故选:C .【点睛】本题考查了菱形的性质,等边三角形的判定和性质,线段垂直平分线的性质,熟练掌握各性质及判定定理是解题的关键.5、如图,在△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为13cm,则△ABC的周长为_____cm .知识点:课题学习最短路径问题【答案】21 .【分析】根据线段的垂直平分线的性质得到DA=DC 和 AC=2AE=8cm ,根据三角形的周长公式计算即可求解.【详解】解:∵DE是AC的垂直平分线,∴DA=DC,AC=2AE=8cm,∵△ABD的周长=AB +BD +DA=AB +BD +DC=AB +BC=13cm,∴△ABC的周长=AB +BC +AC=21cm,故答案为21 .【点睛】本题考查线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.6、到三角形的三个顶点距离相等的点是().A .三角形三条中线的交点B .三角形三边垂直平分线的交点C .三角形三条角平分线的交点D .三角形三条高的交点知识点:课题学习最短路径问题【答案】B【分析】线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等,三角形的三边是三条线段,从而可得答案.【详解】解:线段的垂直平分线上的点到线段的两个端点的距离相等,到三角形的三个顶点距离相等的点是三角形三边的垂直平分线的交点.故选:B【点睛】本题考查的是线段的垂直平分线的性质,三角形三边的垂直平分线的交点的性质,掌握“ 线段的垂直平分线的性质” 是解题的关键 .7、已知矩形ABCD中,对角线AC的垂直平分线交直线BC于点E,交直线AB于点F,若AB=4 ,BE=3 ,则BF长为___ .知识点:课题学习最短路径问题【答案】6 或【分析】AC的垂直平分线交直线BC于点E,交直线AB于点F可知点F的位置两种情况,一是点F在AB的延长线上,二是点F在AB上,然后分类用矩形的性质,线段垂直平分线的性质,全等三角形的判定与性质,相似三角形的判定与性质和勾股定理求解BF的长.【详解】解:① 当点F在AB的延长线上时,设BF =x,l∴△AOE ≌△AOH(ASA)∴AE =AH =5 ,又∵△FBE ∽△FAH,∴∴,解得:x =6 ,∴BF =6 ;② 当点F在AB的上时,设BF =y,如图2 所示:∵∠EFB =∠AFO,∠FBE =∠FOA,∴△EFB ∽△AFO,∴∠E =∠FAO,又∵△AFO +∠FAO =90° ,∠BCA +∠FAO =90° ,∴∠EFB =∠ACB,又∵∠EBF =∠ABC =90° ,∴△EBF ∽△ABC,∴,∴又∵AB =4 ,AB =AF +BF,∴AF =4-y,∵EH是AC的垂直平分线,∴AF =FC =4-y,在Rt △BFC中,由勾股定理得:BF2 +BC2 =FC2,∴,解得:或y =-6 (l 知识点:课题学习最短路径问题【答案】21 .【分析】根据线段的垂直平分线的性质得到DA=DC 和 AC=2AE=8cm ,根据三角形的周长公式计算即可求解.【详解】解:∵DE是AC的垂直平分线,∴DA=DC,AC=2AE=8cm,∵△ABD的周长=AB +BD +DA=AB +BD +DC=AB +BC=13cm,∴△ABC的周长=AB +BC +AC=21cm,故答案为21 .【点睛】本题考查线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.9、到三角形的三个顶点距离相等的点是().A .三角形三条中线的交点B .三角形三边垂直平分线的交点C .三角形三条角平分线的交点D .三角形三条高的交点知识点:课题学习最短路径问题【答案】B【分析】线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等,三角形的三边是三条线段,从而可得答案.【详解】解:线段的垂直平分线上的点到线段的两个端点的距离相等,到三角形的三个顶点距离相等的点是三角形三边的垂直平分线的交点.故选:B【点睛】本题考查的是线段的垂直平分线的性质,三角形三边的垂直平分线的交点的性质,掌握“ 线段的垂直平分线的性质” 是解题的关键 .10、如图,在中,,,分别以点A,B为圆心,大于的长为半径作弧,两弧相交于M,N两点,作直线MN交AC于点D,连接BD,则__________.知识点:课题学习最短路径问题【答案】【分析】由等腰三角形,“ 等边对等角” 求出,再由垂直平分线的性质得到,最后由三角形外角求解即可.【详解】解:,,垂直平分.故答案为:.【点睛】本题考查了等腰三角形性质,垂直平分线性质,三角形外角概念,能正确理解题意,找到所求的角与已知条件之间的关系是解题的关键.11、如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B =60° ,∠C =25° ,则∠BAD =___________° .知识点:课题学习最短路径问题【答案】70 .【分析】根据线段垂直平分线的性质得到DA=DC ,根据等腰三角形的性质得到∠DAC=∠C ,根据三角形内角和定理求出∠BAC 的度数,计算出结果.【详解】解:∵DE 是 AC 的垂直平分线,∴DA=DC ,∴∠DAC=∠C=25° ,∵∠B=60° ,∠C=25° ,∴∠BAC=95° ,∴∠BAD=∠BAC-∠DAC=70° ,故答案为70 .【点睛】本题考查线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.12、如图,在中,,.(1 )通过观察尺规作图的痕迹,可以发现直线是线段的__________ ,射线是的__________ ;(2 )在(1 )所作的图中,求的度数.知识点:课题学习最短路径问题【答案】(1 )垂直平分线,角平分线;(2 )25°【分析】(1 )根据图形结合垂直平分线、角平分线的作法即可得到答案;(2 )根据垂直平分线的性质及等腰三角形的性质即可得到,再结合三角形的内角和便能求得,,再根据角平分线的定义即可得到答案.【详解】解:(1 )由图可知:直线是线段的垂直平分线,射线是的角平分线,故答案为:垂直平分线,角平分线;(2 )∵是线段的垂直平分线,∴,∴,∵,,∴,∴.∵ 射线是的平分线,∴.【点睛】本题考查了垂直平分线、角平分线的作法以及它们的性质,等腰三角形的性质,三角形的内角和,熟练掌握垂直平分线、角平分线的性质是解决本题的关键.13、如图,已知直线,直线分别与、交于点、.请用尺规作图法,在线段上求作点,使点到、的距离相等.(保留作图痕迹,不写作法)知识点:课题学习最短路径问题【答案】见解析【分析】作出线段AB 的垂直平分线即可.【详解】解:如图所示,点即为所求.【点睛】本题考查了线段的垂直平分线的性质,解题的关键是熟练掌握基本作图.14、如图,在中,的垂直平分线交于点D,交于点,点F是的中点,连接、,若,则的周长为_________ .知识点:课题学习最短路径问题【答案】8【分析】根据垂直平分线的性质求得∠BEA的度数,然后根据勾股定理求出EC长度,即可求出的周长.【详解】解:∵DE是AB的垂直平分线,∴,BE =AE,∴,∵∴∴又∵AC =5 ,∴ 在中,,解得:CE =3 ,又∵ 点F是的中点,∴,∴的周长=CF +CE +FE =.故答案为:8 .【点睛】此题考查了勾股定理,等腰直角三角形的性质,直角三角形斜边上的中线的性质,解题的关键是熟练掌握勾股定理,等腰直角三角形的性质,直角三角形斜边上的中线的性质.15、《淮南子・天文训》中记载了一种确定东西方向的方法,大意是:日出时,在地面上点处立一根杆,在地面上沿着杆的影子的方向取一点,使两点间的距离为10 步(步是古代的一种长度单位),在点处立一根杆;日落时,在地面上沿着点处的杆的影子的方向取一点,使两点间的距离为10 步,在点处立一根杆.取的中点,那么直线表示的方向为东西方向.(1 )上述方法中,杆在地面上的影子所在直线及点的位置如图所示.使用直尺和圆规,在图中作的中点(保留作图痕迹);(2 )在如图中,确定了直线表示的方向为东西方向.根据南北方向与东西方向互相垂直,可以判断直线表示的方向为南北方向,完成如下证明.证明:在中,______________ ,是的中点,(______________ )(填推理的依据).∵ 直线表示的方向为东西方向,∴ 直线表示的方向为南北方向.知识点:课题学习最短路径问题【答案】(1 )图见详解;(2 ),等腰三角形的三线合一【分析】(1 )分别以点A、C为圆心,大于AC长的一半为半径画弧,交于两点,然后连接这两点,与AC的交点即为所求点D;(2 )由题意及等腰三角形的性质可直接进行作答.【详解】解:(1 )如图所示:(2 )证明:在中,,是的中点,(等腰三角形的三线合一)(填推理的依据).∵ 直线表示的方向为东西方向,∴ 直线表示的方向为南北方向;故答案为,等腰三角形的三线合一.【点睛】本题主要考查垂直平分线的尺规作图及等腰三角形的性质,熟练掌握垂直平分线的尺规作图及等腰三角形的性质是解题的关键.16、如图,在中,,,的垂直平分线交与点,交于点,则的周长是__________.知识点:课题学习最短路径问题【答案】13【解析】根据线段的垂直平分线的性质和三角形的周长公式求解即可【详解】是的垂直平分线..的周长为:故答案:13.【点睛】本题考查了垂直平分线的性质和三角形的周长公式,熟练掌握垂直平分线的性质和三角形的周长公式是解题关键.17、如图,△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N作直线MN,交BC于点D,连结AD,则∠BAD的度数为()A.65° B.60°C.55° D.45°知识点:课题学习最短路径问题【答案】A【解析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【详解】由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故选A.【点睛】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.18、如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是( )A.20° B.30° C.45° D.60°知识点:课题学习最短路径问题【答案】B【解析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案.【详解】在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°-∠B-∠C=60°,由作图可知MN为AB的中垂线,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC-∠DAB=30°,故选B.【点睛】本题主要考查作图-基本作图,熟练掌握中垂线的作图和性质是解题的关键.19、如图,在△ABC中,∠A=40º,AB=AC,AB的垂直平分线DE交AC于D,则∠DBC的度数是_________.知识点:课题学习最短路径问题【答案】30°.【解析】已知∠A=40°,AB=AC可得∠ABC=∠ACB,再由线段垂直平分线的性质可求出∠ABC=∠A,易求∠DBC.解:∵∠A=40°,AB=AC,∴∠ABC=∠ACB=70°,又∵DE垂直平分AB,∴DB=AD∴∠ABD=∠A=40°,∴∠DBC=∠ABC-∠ABD=70°-40°=30°.故答案为:30°.20、如图,已知:在△ABC中,AD平分∠ BAC,AB=AD,CE⊥AD,交AD的延长线于E .求证:AB+AC=2AE .知识点:课题学习最短路径问题【答案】详见解析【分析】延长 AE到 M,使 ME=AE,连接 CM,求出 AC=CM,求出 DM=MC,即可得出答案.【详解】延长 AE到 M,使 ME=AE,连接 CM,则 AM=2AE,∵ CE ⊥ AE,∴ AC=CM,∴∠ M= ∠ CAD= ∠ DAB,∴ AB ∥ MC,∴∠ B= ∠ MCD,∵ AB=AD,∴∠ B= ∠ ADB,∵∠ ADB= ∠ MDC,∴∠ MCD= ∠ MDC,∴ MC=MD,∴ AM=2AE=AD+MD=AB+AC,即 AB+AC=2AE.【点睛】本题考查了平行线的性质和判定,线段垂直平分线性质,等腰三角形的性质和判定的应用,解此题的关键是推出 DE=EC,有一定的难度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最短路径问题专项练习
一、单选题(共15题)
1.如图所示,△ABC 中,AB=AC ,∠EBD =20°,AD=DE=EB ,则∠C 的度数为( )
A .70°
B .60°
C .80°
D .65°
2.已知点M(-4,2),若点N 是y 轴上一动点,则M ,N 两点之间的距离最小值为( ) A .-4 B .2 C .4 D .-2
3.如图,直线l 是一条河,P ,Q 两地相距8km ,P ,Q 两地到l 的距离分别为2km ,5km ,欲在l 上的某点M 处修建一个水泵站,向P ,Q 两地供水.现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是( ).
A .
B .
C .
D .
4.如图,在矩形ABCD 中,AB =8,AD =6,动点P 满足PAB S =13
S 矩形ABCD ,则点P 到A 、B 两点的距离之和PA+PB 的最小值为( )
A .10
B .
C .
D .5.在等腰ABC ∆中,AB AC =,D 、
E 分别是BC ,AC 的中点,点P 是线段AD 上的一个动点,当PCE ∆的周长最小时,P 点的位置在ABC ∆的( )
A .重心
B .内心
C .外心
D .不能确定
6.如图,长宽高分别为3,2,1的长方体木块上有一只小虫从顶点A 出发沿着长方体的外表面亮到现点B ,则它爬行的最短路程是( )
A
B .
C .
D .5
7.如图是放在地面上的一个长方体盒子,其中9,5,6AB BB B C ==''=',在线段AB 的三等分点E (A E=3)处有一只蚂蚁,''B C 中点F 处有一米粒,则蚂蚁沿长方体表面爬到米粒处的最短距离为( )
A .10
B
C .5+
D .8.如图,一个长方体盒子紧贴地面,一只蚂蚁由A 出发,在盒子表面上爬到点G ,已知AB =6,BC =5,CG =3,这只蚂蚁爬行的最短路程是( )
A .14
B .10
C
D 9.如图,在△ABC 中,AB=AC=10,BC=12,AD=8,AD 是BC 边上的高.若P ,Q 分别是AD 和AC 上的动点,则PC+PQ 的最小值是( ).
A .6
B .8
C .9.6
D .12
10.在锐角△ABC中,∠ABC=60°,BC=2cm,BD平分∠ABC交AC于点D,点M,N分别是BD和BC 边上的动点,则MN+MC的最小值是().
A B.C D.
11.如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()
A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)
12.如图,∠AOB=60°,点P是∠AOB内的定点且M、N分别是射线OA、OB上异于点O 的动点,则△PMN周长的最小值是()
A B C.6D.3
13.如图.在五边形ABCDE中,∠BAE=136°,∠B=∠E=90°,在BC、DE上分别找一点M、N,使得△AMN 的周长最小时,则∠AMN+∠ANM的度数为()
A.84°B.88°C.90°D.96°
14.如图,某公司有三个住宅区,A ,B ,C 各区分别住有职工10人,15人,45人,且这三个区在一条大道上(A ,B ,C 三点共线),已知AB =150m ,BC =90m .为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( )
A .点A
B .点B
C .点A ,B 之间
D .点C
15.某开发商的经适房的三个居民小区A 、B 、C 在同一条直线上,位置如图所示.其中小区B 到小区A 、C 的距离分别是70m 和150m ,现在想在小区A 、C 之间建立一个超市,要求各小区居民到超市总路程的和最小,那么超市的位置应建在( )
A .小区A
B .小区B
C .小区C
D .AC 的中点
16.如图,在△ABC 中,AB =3,AC =4,AB ⊥AC ,EF 垂直平分BC ,点P 为直线EF 上一动点,则△ABP 周长的最小值是( )
A .6
B .7
C .8
D .12
二、填空题(共6题) 17.如图,在等边ABC ∆中,D 是BC 的中点,E 是AB 的中点,
H 是AD 上任意一点.如果10AB AC BC ===,
AD =HE HB +的最小值是 .
18.如图,在Rt △ABC 中,∠C=90°,∠ABC=30°,点D 是BC 边上的点,CD=1,将△ACD 沿直线AD 翻折,使点C 落在AB 边上的点E 处,若点P 是直线AD 上的动点,则PB+PE 的最小值是________.
19.如图,在锐角ABC ∆中,7AC cm =,214ABC S cm ∆=,AD 平分BAC ∠,M ,N 分别是AD 和AB 上的动点,则BM MN +的最小值是_______cm .
20.如图,等腰△ABC 底边BC 的长为6cm ,面积是24cm 2,腰AB 的垂直平分线MN 交AB 于点M ,交AC 于点N ,若D 为BC 边上的中点,E 为线段MN 上一动点,则△BDE 的周长最小值为____cm .
21.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=4,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是_________.
三、解答题(共4题)
22.如图,在平面直角坐标系中,△ABC 各顶点的坐标分别为:A (﹣2,4)
,B (﹣4,2),C (﹣3,1),按下列要求作图,保留作图痕迹.
(1)画出△ABC 关于x 轴对称的图形△A 1B 1C 1(点A 、C 分布对应A 1、C 1); (2)请在y 轴上找出一点P ,满足线段AP +B 1P 的值最小.
23.如图所示,A ,B 是两个村庄,若要在河边l 上修建一个水泵站往两村输水,则水泵站应修在河边的什么位置,才能使铺设的管道最短?请说明理由.
24.如图,ABC 三个顶点的坐标分别为()1,1A ,()4,2B ,()3,4C .
(1)请画出ABC 关于y 轴对称后得到的111A B C △.
(2)请写出点1A 及点1B 点1C 的坐标:1A ( , ),1B ( , )1C ( , ). (3)若P 点在x 轴上,当AP BP +最小时,直接写出AP BP +最小值为 . 25.七年级(1)班同学做游戏,在活动区域边OP 放了一些球(如图),则小明按怎样的路线跑,去捡哪个位置的球,才能最快拿到球跑到目的地A?
参考答案
1.A2.C3.A4.C5.A6.C7.A8.B9.C10.A11.A12.D13.B14.D15.B 16.B
17
.18.3.19.4 20.11
21
.
22.略
23.作图见解析.
24.(1)画图见解析;(2)(−1,1);(−4,2);(−3,4);(3
)
25.略。