光纤拉丝工艺资料
光纤拉丝工艺文件

青海中利光纤技术有限公司
管理体系文件
文件名称:光纤拉丝工艺文件
文件编号:
版本号:A.1
页数:2
生效日期:
编制部门:技术部
文件需发放部门
□营销部□研发部□光棒生产部
□光纤生产技术部□设备部□工程部
□物控部□质保部□人力资源行政部□IT部□财务部
光纤拉丝工艺文件修改履历表
记录编号:
1 范围
本工艺适用于进口神户制钢光纤拉丝机。
2工艺参数
表1 拉丝工艺
3 技术要求
3.1 涂料必须在规定的涂料加热箱中恒温12hour(如果中途停电超过3 hour需要重新计时,如果停电在3 hour以内需要再加热6 hour)以上方可用于拉丝。
3.2 涂料罐水浴箱停止加热3hour以上,必需保温3 hour后才可以拉丝。
3.3 从涂料罐中压出的涂料必须返回烘箱中保温36 hour方可使用。
3.4 预制棒搬运过程中避免擦刮碰撞预制棒,在运送预制棒时,禁止碰撞,裸手触摸或用任何物体沾污预制棒。
3.5 光纤穿模具时要特别小心,以免刮伤光纤。
如果出现两次以上穿纤不成功,必须将拉
丝模具进行重新清洗。
3.6 拉丝生产速度为:
亨通棒:1450-2100m/min;
特殊情况下,如高速换盘失败、部分UV固化炉无法工作、涂覆压力高、技术部实验等,可由工艺工程师决定是否降速生产,并由工艺工程师在工艺点检表上签字确认。
4 发放范围
光纤生产技术部、生产区每个拉丝机、文档室。
学习情境三石英光纤拉丝PPT课件

光纤光缆制备
4〕光纤的直径控制及废品光纤的拉丝阶段 ①调整预制棒的进棒速度〔下降或上升〕、拉丝 速度、高温炉的功率以及涂覆的压力,对光纤的 直径进展调理。
②将裸光纤的直径稳定在125±0.5μm范围内, 一次和二次涂覆光纤的直径分别稳定在190±5μm 和250±5μm范围内〔在此之前的光纤为废品〕。
收丝系统的目的:主要是搜集光纤,即将废品光纤收 集到光纤收丝筒上,以备后续对光纤进展张力挑选、 复绕、测试等操作工艺 。
光电子技术专业-国家重点建立示范性专业
光纤光缆制备
§3.4 石英光纤拉丝工艺
石英光纤拉丝目的:就是将经过光纤拉丝塔石英光纤 预制棒的直径减少〔从大约100mm减小到125μm〕, 且坚持光纤的芯/包比和折射率分布不变。
1〕石英光纤拉丝原理 原理:是将制备好的光纤预制棒放置在拉丝塔的进 棒系统上,并放入高温炉中,利用高温炉加热熔融
〔约1900℃~2200℃〕后拉制成直径符合要求的光纤 纤维,并保证光纤的芯/包直径比和折射率分布方式 不变的工艺操作过程。
石英光纤拉丝过程动画及讲解
光电子技术专业-国家重点建立示范性专业
②熔融及构成玻珠:高温炉温度升高导致预制棒的尖 部粘度下降,在粘度降低到一定值时,尖端的石英玻 璃由于本身重力作用而逐渐下垂,并使得熔融部分的 石英玻璃变细构成一个玻珠〔First drop〕从炉口下 落〔如图3-20和图3-21所示〕。
光电子技术专业-国家重点建立示范性专业
光纤光缆制备
图3-20 预制棒加热熔融 图3-21 预制棒构成玻珠
光纤光缆制备
固化系统的组成部件: 有灯模块、安装支架、冷却风机、空气冷却软管、氮气 供应系统、排烟系统和供电单元以及内联电缆等。 根据光纤拉丝速度不同,可以选用不同数量的固化炉 以满足光纤固化的要求。在目前的高速拉丝消费中, 第一次涂覆普通采用两节固化炉,第二次涂覆普通采 用4~6节固化炉,这样才干在高速拉丝过程中为涂覆 光纤的固化提供足够能量。
第四节光纤拉丝技术及涂覆工艺

3、涂覆装置:1)无外部加压开口杯式
2)压力涂覆器
第四章 光纤制造技术
采用简单的无外部加压开口杯式涂覆器,移动中的光纤会粘 附一些液体涂料,并穿过一个使涂料在光纤上自对中可调模 具口,涂层厚度由模具口大小和光纤直径决定。但这种结构 涂覆器,在高速拉丝时(V>1000m/s)得不到均匀涂敷层。 因此,现在实际应用更普遍的是压力涂敷器。这种结构涂覆 器最适合用于高速拉丝,而且不会在涂料中搅起气泡。
第四章 光纤制造技术
第四章 光纤制造技术
第四节 光纤拉丝技术及涂覆工艺
第四章 光纤制造技术
第四节 光纤拉丝技术及涂覆工艺
光纤拉丝:将制备好的光纤预制棒,利用某种加热设备加热熔 融后拉制成直径符合要求的细小光纤纤维,并保证光纤的芯/包 直径比和折射率分布形式不变的工艺操作过程。
在拉丝操作过程中,最重要的技术:如何保证不使光纤表面受 到损伤并正确控制芯/包层外径尺寸及折射率分布形式。 如果光纤表面受到损伤,将会影响光纤机械强度与使用寿命, 而外径发生波动,由于结构不完善不仅会引起光纤波导散射损 耗,而且在光纤接续时,连接损耗也会增大,因此在控制光纤 拉丝工艺流程时,必须使各种工艺参数与条件保持稳定。
第四章 光纤制造技术
③氧化锆(ZrO2)感应加热炉:利用氧化锆材料在常温下为绝缘 体,接近1500º C时,就会变成导体的特点而设计制造。其本身 既可作炉管又是加热体,在高频感应场中加热。因为氧化锆的 氧化温度在2500º C。因此氧化锆感应炉一般不需要气氛保护, 但在制造光纤时,为隔离空气降低制造过程中产生的衰减,必 须充Ar气进行气氛保护。 ④高功率激光器:用激光拉制光纤的清净度是各种方法无法比
第四章 光纤制造技术
1、涂覆层的作用(双层):
光纤拉丝工艺

光纤拉丝工艺ppt xx年xx月xx日CATALOGUE目录•引言•光纤拉丝工艺发展历程•光纤拉丝工艺的生产流程•光纤拉丝工艺的技术特点•光纤拉丝工艺的应用领域•光纤拉丝工艺的前景展望01引言光纤拉丝工艺是指利用高温高压技术将高纯度玻璃或塑料光纤预制件拉制成细直径的工艺方法。
光纤拉丝工艺是光通信领域中的关键技术之一,被广泛应用于光缆、光器件和光通讯网络等领域。
光纤拉丝工艺简介光纤拉丝工艺流程选取高纯度玻璃或塑料作为预制件材料,经过高温高压处理制作成预制件。
光纤预制件制作拉丝机安装与调试拉丝过程涂覆与测试安装拉丝机并对其进行精确调试,确保拉丝过程中各项参数的稳定。
将预制件送入拉丝机的高温炉中加热至软化点,通过牵引轮和收线轮相互配合将光纤拉制成细直径。
对拉制好的光纤进行涂覆保护,并进行性能测试以确保符合要求。
1光纤拉丝工艺的重要性23光纤拉丝工艺制成的光纤具有低损耗、高带宽等特点,能够实现长距离、高速率的光通信。
实现长距离光通信光纤拉丝工艺作为光通信产业的基础技术,对光通信产业的发展起着至关重要的作用。
促进光通信产业发展光纤拉丝工艺的广泛应用有助于提升国家信息基础设施的水平,促进信息技术的快速发展。
提升国家信息基础设施水平02光纤拉丝工艺发展历程03初步应用虽然技术尚未成熟,但在一些特定领域,如航空航天、军事等领域开始尝试应用。
第一阶段:起步期01技术引入光纤拉丝工艺起源于20世纪70年代,最初由美国Corning公司引入。
02初步研究在起步期,研究人员开始探索光纤拉丝的基本原理和控制方法。
进入21世纪初,随着技术不断发展,光纤拉丝工艺逐渐转型。
技术突破光纤拉丝工艺逐渐实现规模化生产,生产效率和技术水平显著提高。
生产规模化光纤拉丝工艺逐渐应用于通信、医疗、工业控制等领域。
应用扩展近年来,随着科技的不断进步,光纤拉丝工艺不断创新。
技术创新新型光纤材料不断涌现,如玻璃纤维、碳纤维等,具有更高的强度和更轻的重量。
拉丝工艺-光纤的制造综述

退火管
纤径测量仪
冷却管
辅助牵引轮 一次涂覆 UV固化灯 纤径测量仪 冷却管 二次涂覆 同心度监控仪 UV固化灯 纤径测量仪
导向轮 张力 测量轮 牵引轮 收线轮
卡盘 预制棒 加热炉 退火管 纤径测量仪
拉丝操作步骤三(穿丝)
2.穿丝
9. 二次穿丝 10. (在穿丝时光纤断过三次,应清理模具后才 可重新穿丝) 11. 光纤穿过二次固化UV固化灯时,半关闭UV 固化灯门,注意:光纤不要摩擦灯门 12.光纤穿过二次UV固化灯底门后,卸下牵坠用 手牵引使光纤经过导向轮、张力轮,然后到达 牵引轮。打开牵引轮保护盘,并将光纤导入牵 引轮和传送带之间后,打开辅助牵引轮,再按 下吸引器〔开〕,使吸尘器吸入光纤 13.设定预制棒〔推进速度〕为3mm/min。 14.按下电控柜上〔牵引盘〕中的〔加速〕,提高 牵引速度,同时升高炉温并保持光纤直径为 135±5µm。
⑧
⑨ ⑩
拉丝工序的主要辅料及工具
原料:光纤预制棒(带把棒) 内涂UV固化涂料 外涂UV固化涂料。 辅料:收线盘 氩气 氮气 二氧化碳 氦气 乙醇 洁净纸 一次性手套 粘胶带等。 工具:光纤坠 力矩扳手 斜口钳 清洁刷 乙 醇瓶 手电筒 铁桶 吸尘器 镊子 螺 丝刀 卷尺 直尺 喉箍等。
拉丝操作步骤一(动力供给)
锁扣
模具
导向器
涂覆材料:环氧丙烯酸酯或聚丙烯酸酯
CO2:消除涂覆过程中出现的气泡
拉丝塔各部件介绍(光固装置)
紧固开关
• UV石英灯管:避免通过的光纤受空气的污 染和振动
排风
N2
C型夹 连接件
• N2气:惰性气体氮气来避氧以加速固化。 洁净干燥的氮气从石英管底部被引入,并 以层流的方式向上到炉子顶端,这将起着 排除氧气的作用,同时还可带出涂料中的 挥发组分,使光纤免受污染,还可避免光 纤因受灯源的红外辐射所致的过热问题 • 抽风装置:确保紫外固化炉在正常工作时 不至于因温度过高而烧坏炉子。
学习情境三石英光纤拉丝

应用于学习情境三的石英光纤 拉丝实例
学习情境三中,石英光纤的拉丝工艺被应用于制备高性能、低损耗的光纤通 信产品。
总结与展望
拉丝工艺是制备石英光纤的关键步骤,未来还有更多的研究和创新将推动石英光纤的发展。
学习情境三石英光纤拉丝
本演示文稿将介绍学习情境三石英光纤拉丝的工艺、制备过程、设备和工艺 参数、常见问题及解决方法、优化工艺、拉丝实例以及总结与展望。
拉丝工艺介绍
石英光纤的拉丝工艺是将石英玻璃预制棒通过加热软化、拉伸和冷却等工序, 制成细长的光纤。
石英光纤的制备过程
制备石英光纤的过程包括原准备、预制棒制备、拉丝成形、镀膜和测试等 步骤。
拉丝设备和工艺参数
拉丝设备包括拉丝机、石英玻璃加热炉、拉丝嘴等,工艺参数如温度、拉伸速度、拉伸比例等对光纤质量有重 要影响。
拉丝过程中的常见问题和解决 方法
在石英光纤拉丝过程中,常见问题如气泡、结晶、断裂等,需要采取相应的 解决方法来保证拉丝效果。
优化石英光纤的拉丝工艺
通过优化工艺参数、改进设备以及控制原材料的质量等方法,可以提高石英 光纤的拉丝质量和产量。
抛光拉丝工艺流程

抛光拉丝工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!Download tips: This document is carefully compiled by theeditor. l hope that after you downloadthem,they can help yousolve practical problems. The document can be customized andmodified afterdownloading,please adjust and use it according toactual needs, thank you!抛光拉丝工艺流程:抛光拉丝是提升材料表面质感和美观度的重要工艺,尤其在金属加工和光纤制造中应用广泛。
以ADSS光缆用光纤的抛光拉丝为例,简要流程如下:抛光流程:①预处理:将光纤预制棒与尾管准备就绪,确保两者端面清洁且尽量对齐。
②焊接准备:将预制棒与尾管固定于专用机器上,准备进行高温加热。
③高温焊接:对准的两端通过机器持续加热1小时,直至材料融化并焊接在一起。
④磨平处理:焊接口冷却前进行磨平,确保表面光滑。
⑤冷却固化:让焊接部位自然冷却超过2小时,确保结构稳定。
⑥检查测试:冷却后检查抛光质量,进行必要的测试以确保光纤性能。
拉丝流程:①裸光纤制备:从预制棒通过精密拉丝塔逐步拉出裸光纤,控制直径和均匀性。
②涂覆层添加:在裸光纤外层涂覆保护材料,如树脂,以增强机械强度和保护光纤。
③冷却定型:涂覆后通过冷却系统让涂层固化,稳定尺寸。
④质量检验:对成品光纤进行光学性能和机械强度的全面检测。
⑤卷绕包装:合格光纤被卷绕成缆,准备用于ADSS光缆的进一步组装。
整个流程要求高度的精度控制和环境管理,以保证最终产品的质量和可靠性。
拉丝工艺对光纤性能的影响

拉丝工艺对光纤性能的影响光纤是一种新型的通信线路,具有稳定性好、容量大、传输距离远等优点。
光纤主要由光纤芯和包层两部分组成。
光纤芯是光纤传递光信号的关键部分,与其他材料不同之处在于它不会发生光电转换,抗电磁干扰能力强。
因此,光纤的性能主要取决于光纤芯的质量以及光纤的制造工艺。
光纤的拉丝工艺是光纤制造的重要环节之一,对光纤的性能有着直接的影响。
本文将详细阐述拉丝工艺对光纤性能的影响。
光纤的拉丝工艺是将光纤芯预制棒通过一组或多组的钢丝拉丝机构的拉丝加工过程,将其一步步拉成光纤。
其中,光纤的预制棒是指光纤芯和包层材料按照一定比例混合后制成的条状材料。
拉丝的过程主要分为三个阶段:初拉丝、中拉丝和终拉丝。
拉丝前,需要对预制棒进行一些准备工作,如清洗、热处理等。
在制造光纤时,光纤芯的尺寸是非常关键的参数,它决定了光纤的传输性能。
在拉丝过程中,对于不同材料的预制棒,需要通过钢丝的拉伸和挤压使其变形,从而达到光纤芯的设定尺寸。
拉丝时所用的钢丝数量、直径及角度等参数不同,会对光纤芯的尺寸产生影响。
光纤的损伤程度也是光纤性能的重要参数之一。
在拉丝过程中,光纤预制棒受到极高的拉伸和挤压力,会产生高温、高压等因素,这些因素会对光纤的物理性质产生损伤。
如预制棒中的气泡、夹杂物等在拉伸过程中会被拉长成缺陷,若脱落或留下,则会成为光纤的隐患点。
因此,在拉丝加工过程中需要合理控制钢丝的张力,使其满足安全要求,同时通过降温或压扁等方法,减小预制棒受到的损伤程度。
4. 拉丝工艺对光纤的抗拉强度和断裂伸长率的影响拉丝过程中,光纤预制棒经过拉伸变形,其结构和应力分布发生变化,直接影响光纤的机械性能,如抗拉强度和断裂伸长率。
在拉丝过程中,需要合理控制预制棒拉伸速度、张力大小,以及控制预制棒与钢丝的接触磨损等影响因素,从而保证光纤的机械强度和稳定性。
5. 拉丝工艺对光纤的质量控制拉丝工艺是光纤生产过程中的关键环节,严格控制拉丝过程中的各项工艺参数,减少质量变差因素的影响,保证光纤产品的质量稳定性和一致性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、操作工艺 将已制备好的预制棒安放在拉丝塔(机)上部的预制棒馈送机 构的卡盘上。馈送机构缓慢地将预制棒送入高温加热炉内。在 Ar气氛保护下,高温加热炉将预制棒尖端加热至2000º C,在此 温度下,足以使玻璃预制棒软化,软化的熔融态玻璃从高温加 热炉底部的喷嘴处滴落出来并凝聚形成一带小球细丝,靠自身 重量下垂变细而成纤维,即我们所说的裸光纤。将有小球段纤 维称为“滴流头”,操作者应及时将滴流头去除,并预先采用 手工方式将已涂覆一次涂层的光纤头端绕过拉丝塔上的张力轮、 导轮、牵引轮后,最后绕在收线盘上。然后再启动自动收线装 置收线。
第四章 光纤制造技术
①气体喷灯:历史上应用火焰燃烧器把高温玻璃拉制成纤维 的例子甚多,一般都采用氢氧或氧-煤气喷灯,这种加热设备 本身存在火焰骚动问题,因而拉制的光纤外径尺寸控制精度 一直不高。目前,这种方法极少应用。
②石墨加热炉(石墨电阻炉):采用直流或工频交流电源为石墨
炉加热,在加热中为防止石墨材料在高温下发生氧化,进而产 生粉尘污染,一般需采用惰性气体如Ar气或氮气进行气氛保护。 由于加热炉中充入Ar保持,而炉内Ar的紊乱流动将导致炉内温 度的变化。因此必须对保护气体Ar的流量进行控制,以保持炉 温的稳定。在拉制光纤时,需安装光纤外径测量仪反馈测量光 纤外径的变化情况,因此可通过这一反馈测量值的变化来控制 保护气体Ar的流量,使光纤外径的变化量控制在允许(1um) 范围内。
第四章 光纤制造技术
3、关键技术:
(1)馈送速度 预制棒送入高温加热炉内的馈送速度主要取决于高温炉的结构、 预制棒的直径、光纤的外径尺寸和拉丝机的拉丝速度,一般约 为0.002~ 0.003cm/s。
(2)外径控制 在拉丝工艺中不需要模具控制光纤的外径,因为模具会在光纤
表面留下损伤的痕迹,降低光纤的强度。绝大多数光纤制造者 是将高温加热炉温度和送棒速度保持不变,通过改变光纤拉丝 速度的方法来达到控制光纤外径尺寸的目的。
拟的,因为在拉丝过程中,激光器自身不会带来任何污染;而 在光纤直径的控制上,在不需控制环的帮助下,大长度光纤直 径的偏差小于标准值的1%,且加热温度稳定不变。常用的激 光器为CO2激光器。
第四章 光纤制造技术
二、涂覆
通过测径仪后光纤要经过足够的冷却时间才可进行涂覆。 光纤一次涂覆工艺之所以称为“一次涂覆”是相对二次涂 覆而言。一次涂覆是对光纤最直接的保护,所以显得尤为 重要。 SiO2玻璃是一种脆性易断裂材料,在不加涂覆材料时,由于 光纤在空气中裸露,致使表面缺陷扩大,局部应力集中,易 造成光纤强度极低,为保护光纤表面,提高抗拉强度和抗弯 曲强度,实现实用化,需要给裸光纤涂覆一层或多层高分子 材料,
第四章 光纤制造技术
第四章 光纤制造技术
第四节 光纤拉丝技术及涂覆工艺
第四章 光纤制造技术
第四节 光纤拉丝技术及涂覆工艺
光纤拉丝:将制备好的光纤预制棒,利用某种加热设备加热熔 融后拉制成直径符合要求的细小光纤纤维,并保证光纤的芯/包 直径比和折射率分布形式不变的工艺操作过程。
在拉丝操作过程中,最重要的技术:如何保证不使光纤表面受 到损伤并正确控制芯/包层外径尺寸及折射率分布形式。 如果光纤表面受到损伤,将会影响光纤机械强度与使用寿命, 而外径发生波动,由于结构不完善不仅会引起光纤波导散射损 耗,而且在光纤接续时,连接损耗也会增大,因此在控制光纤 拉丝工艺流程时,必须使各种工艺参数与条件保持稳定。
热源不仅要提供足以熔融石英玻璃的2000º C以上高温,还必 须在拉制区域能够非常精确的控制温度,因为在软化范围内, 玻璃光纤的精度随温度而变化,在此区域内,任何温度梯度 的波动都可能引起不稳定性而影响光纤直径的控制。同时, 由于2000º C的高温已超过一般材料的熔点,因而加热炉的设 计是拉丝技术的又一关键技术。常用的拉丝热源有:(1)气体 喷灯;(2)各种电阻及感应加热炉;(3)大功率CO2激光器。
第四章 光纤制造技术
在正常状态,若预制棒的馈送速度为V,光纤的拉丝速度为
Vf,预制棒的外径为D,裸光纤的外径为d。根据熔化前的棒体 容积等于熔化拉丝后光纤的容积的特点,可知,前三者与光纤 的外径有如下关系: VD2=Vfd2
因此,光纤的外径可由上式给出:d2=VD2/Vf
第四章 光纤制造技术
(3)加热装置
第四章 光纤制造技术
1、涂覆层的作用(双层):
①内层:选择折射率比石英玻璃偏大且弹性模量较低的 聚合物涂层→吸收透过包层得多余光和保护光 纤表面损伤、使用中缓冲外界应力; ②外层:硬、弹性模量高→防止磨损和提供强度
第四章 光纤制造技术
③氧化锆(ZrO2)感应加热炉:利用氧化锆材料在常温下为绝缘 体,接近1500º C时,就会变成导体的特点而设计制造。其本身 既可作炉管又是加热体,在高频感应场中加热。因为氧化锆的 氧化温度在2500º C。因此氧化锆感应炉一般不需要气氛保护, 但在制造光纤时,为隔离空气降低制造过程中产生的衰减,必 须充Ar气进行气氛保护。 ④高功率激光器:用激光拉制光纤的清净度是各种方法无法比
1、拉丝装置组成 光纤预制棒的拉丝机由五个基本部分构成:(1)光纤预制棒馈 送系统;(2)加热系统;(3)拉丝机构;(4)各参数控制系统;(5) 水冷却和气氛保护及控制系统。五者之间精确的配合构成完整 拉丝工艺。 具体的机械和电气设备系统包括:机械系统拉丝塔架、送棒及 调心系统、加热炉、激光测径仪、牵引装置、水气管路系统, 电气部分送棒控制及调心控制系统、加热炉控制系统、外径测 控系统、牵引控制系统、冷却水及保护气氛控制系统、人机界 面、PLC信号处理系统等。
第四章 光纤制造技术
一次涂覆工艺:将拉制成的裸光纤表面涂覆上一层弹性模量比 较高的涂覆材料。 作用:保护拉制出的光纤表面不受损伤,并提高其机械强度, 降低衰减。 在工艺上,一次涂覆与拉丝是相互独立的两个工艺步骤,而在 实际生产中,一次涂覆与拉丝是在一条生产线上一次完成的。
第四章 光纤制造技术
一、拉丝工艺