光纤拉丝技术

合集下载

光纤拉丝机的操作方法

光纤拉丝机的操作方法

光纤拉丝机的操作方法光纤拉丝机是一种用于制造光纤的设备,它的使用方法对于生产高品质、高效率的光纤至关重要。

下面是光纤拉丝机的操作方法,详细解释了光纤拉丝机的工作原理、操作步骤、维护、安全等问题。

一、工作原理光纤拉丝机主要包括融化炉、拉丝塔、加热炉、冷却池、张力控制系统、纤芯对准系统、端面加工系统等部件。

整个过程可以分为两个阶段:熔制成型和拉丝成型。

1.熔制成型将光纤前体置于融化炉内进行加热,使其熔化成液态状态,然后顺着拉丝塔向下拉动,形成光纤的环状。

在熔制成型的过程中,需要设定适当的温度和拉速等参数,以保证光纤的质量。

2.拉丝成型在拉丝成型的过程中,需要控制拉丝速度、张力、温度等参数,以保证光纤拉丝过程的稳定性。

拉丝过程中需要注意保持充分的张力,防止光纤断裂,同时还需控制光纤的直径、圆度等参数,以满足生产需求。

二、操作步骤1.准备工作首先需要对设备进行检查和维护,确保各部件工作正常。

然后根据生产需求,设定好拉丝机的相关参数,包括拉丝速度、张力、温度等。

此外还需要准备好光纤前体材料、冷却液、油脂等。

2.熔制成型将光纤前体放入融化炉内进行加热,等待其熔化成液态,然后轻轻拽动并顺着拉丝塔向下拉动,形成光纤的环状。

在过程中需要控制好温度和拉速等参数,以确保光纤的质量。

3.拉丝成型在光纤成型后,需要将其送入加热炉进行热处理,使其进一步稳定。

然后将其送入冷却池中进行冷却,使其迅速冷却并凝固。

在拉丝成型的过程中还需控制光纤的直径、圆度等参数,以保证其光学性能。

4.端面加工和包装将制作好的光纤进行端面加工和包装,然后进行质量检测,确保其质量达到生产标准。

三、维护保养为确保光纤拉丝机的正常运行,需要进行定期的维护保养。

具体方法如下:1.定期检查设备的各部件是否正常,如融化炉、拉丝塔、加热炉、冷却池、张力控制系统、纤芯对准系统、端面加工系统等。

2.保持设备清洁,并对设备进行润滑和保养。

3.定期对设备的各部件进行调整和维护,如张力控制系统、纤芯对准系统等。

学习情境三石英光纤拉丝PPT课件

学习情境三石英光纤拉丝PPT课件
光电子技术专业-国家重点建立示范性专业
光纤光缆制备
4〕光纤的直径控制及废品光纤的拉丝阶段 ①调整预制棒的进棒速度〔下降或上升〕、拉丝 速度、高温炉的功率以及涂覆的压力,对光纤的 直径进展调理。
②将裸光纤的直径稳定在125±0.5μm范围内, 一次和二次涂覆光纤的直径分别稳定在190±5μm 和250±5μm范围内〔在此之前的光纤为废品〕。
收丝系统的目的:主要是搜集光纤,即将废品光纤收 集到光纤收丝筒上,以备后续对光纤进展张力挑选、 复绕、测试等操作工艺 。
光电子技术专业-国家重点建立示范性专业
光纤光缆制备
§3.4 石英光纤拉丝工艺
石英光纤拉丝目的:就是将经过光纤拉丝塔石英光纤 预制棒的直径减少〔从大约100mm减小到125μm〕, 且坚持光纤的芯/包比和折射率分布不变。
1〕石英光纤拉丝原理 原理:是将制备好的光纤预制棒放置在拉丝塔的进 棒系统上,并放入高温炉中,利用高温炉加热熔融
〔约1900℃~2200℃〕后拉制成直径符合要求的光纤 纤维,并保证光纤的芯/包直径比和折射率分布方式 不变的工艺操作过程。
石英光纤拉丝过程动画及讲解
光电子技术专业-国家重点建立示范性专业
②熔融及构成玻珠:高温炉温度升高导致预制棒的尖 部粘度下降,在粘度降低到一定值时,尖端的石英玻 璃由于本身重力作用而逐渐下垂,并使得熔融部分的 石英玻璃变细构成一个玻珠〔First drop〕从炉口下 落〔如图3-20和图3-21所示〕。
光电子技术专业-国家重点建立示范性专业
光纤光缆制备
图3-20 预制棒加热熔融 图3-21 预制棒构成玻珠
光纤光缆制备
固化系统的组成部件: 有灯模块、安装支架、冷却风机、空气冷却软管、氮气 供应系统、排烟系统和供电单元以及内联电缆等。 根据光纤拉丝速度不同,可以选用不同数量的固化炉 以满足光纤固化的要求。在目前的高速拉丝消费中, 第一次涂覆普通采用两节固化炉,第二次涂覆普通采 用4~6节固化炉,这样才干在高速拉丝过程中为涂覆 光纤的固化提供足够能量。

第四节光纤拉丝技术及涂覆工艺

第四节光纤拉丝技术及涂覆工艺

3、涂覆装置:1)无外部加压开口杯式
2)压力涂覆器
第四章 光纤制造技术
采用简单的无外部加压开口杯式涂覆器,移动中的光纤会粘 附一些液体涂料,并穿过一个使涂料在光纤上自对中可调模 具口,涂层厚度由模具口大小和光纤直径决定。但这种结构 涂覆器,在高速拉丝时(V>1000m/s)得不到均匀涂敷层。 因此,现在实际应用更普遍的是压力涂敷器。这种结构涂覆 器最适合用于高速拉丝,而且不会在涂料中搅起气泡。
第四章 光纤制造技术
第四章 光纤制造技术
第四节 光纤拉丝技术及涂覆工艺
第四章 光纤制造技术
第四节 光纤拉丝技术及涂覆工艺
光纤拉丝:将制备好的光纤预制棒,利用某种加热设备加热熔 融后拉制成直径符合要求的细小光纤纤维,并保证光纤的芯/包 直径比和折射率分布形式不变的工艺操作过程。
在拉丝操作过程中,最重要的技术:如何保证不使光纤表面受 到损伤并正确控制芯/包层外径尺寸及折射率分布形式。 如果光纤表面受到损伤,将会影响光纤机械强度与使用寿命, 而外径发生波动,由于结构不完善不仅会引起光纤波导散射损 耗,而且在光纤接续时,连接损耗也会增大,因此在控制光纤 拉丝工艺流程时,必须使各种工艺参数与条件保持稳定。
第四章 光纤制造技术
③氧化锆(ZrO2)感应加热炉:利用氧化锆材料在常温下为绝缘 体,接近1500º C时,就会变成导体的特点而设计制造。其本身 既可作炉管又是加热体,在高频感应场中加热。因为氧化锆的 氧化温度在2500º C。因此氧化锆感应炉一般不需要气氛保护, 但在制造光纤时,为隔离空气降低制造过程中产生的衰减,必 须充Ar气进行气氛保护。 ④高功率激光器:用激光拉制光纤的清净度是各种方法无法比
第四章 光纤制造技术
1、涂覆层的作用(双层):

光纤拉丝操作

光纤拉丝操作

光纤拉丝操作光纤拉丝1.1.拉丝炉抽真空将顶盖板和下盖板分别盖住上下炉口。

拆下虹膜,按上抽真空盖板。

将拉丝炉旁的触摸式控制屏保护气关掉,打开抽真空。

观察压力表,抽真空至-0.8bar时为止。

关闭抽真空,打开炉子保护气。

拆掉下盖板,并将延伸管的炉门虹膜关到合适的位置。

1.2.预制棒进炉对中准备如果发现所挂预制棒垂直度不够,调节平台上的水平螺栓,用水平仪查看是否水平。

取下炉子上盖,按手动进棒“↓”键将预制棒送至炉子上盖板位置,清零。

按“←、→、↑、↓”键将光棒平移对预制棒炉子进行对中。

按手动进棒“↓”,送棒进拉丝炉(确保预制棒锥体全部进入炉盖内)。

继续对中,确保预制棒棒尖在拉丝炉口上盖中心轴位置。

设定预制棒直径、预制棒长度。

预制棒调整到拉丝炉中心位置后,按手动提棒“↑”键进行提棒操作。

提起预制棒,放好玻璃马弗,按手动进棒“↓”开始进棒(典型值为365mm)。

1.3.拉丝炉升温设置好“预备、掉头、穿丝、生产”的加热温度。

在控制面板上按“掉头”键,开始对炉子进行加温。

检查并确认拉丝炉已工作在“掉头”模式。

设置加热时间步长,开始加热,等待预制棒“头子”的坠落。

1.4.掉头子打开虹膜,利用镜子观察棒尖加热情况。

如果在设置时间左右“头子”没有下来,可以进棒1-2mm后等待。

在“头子”下来时,完全打开虹膜,让“头子”掉到剪锥桶中。

1.5.穿丝一人剪头子,另一人在控制面板上,将拉丝炉功率从“掉头”切换到“穿丝”状态。

用专用工具在石英管下部剪断“头子”同时将延伸管下部虹膜关小,移开剪锥桶同时将光纤引下。

1.6.光纤辅助牵引用手慢慢的把光纤拉至辅助牵引处。

将光纤引到辅助牵引轮上。

设定好线速度(5m/min),合上辅助牵引轮。

用专用铁桶收集废光纤。

1.7.光纤穿模具通过辅牵引牵至光纤足够细(一期要求:130μm-170μm;二期要求:130um-140um)。

如光纤直径较粗可以通过加速或提升预制棒来达到合适的光纤直径,如果光纤直径较细则做相反操作。

光纤拉丝工艺

光纤拉丝工艺

光纤拉丝工艺ppt xx年xx月xx日CATALOGUE目录•引言•光纤拉丝工艺发展历程•光纤拉丝工艺的生产流程•光纤拉丝工艺的技术特点•光纤拉丝工艺的应用领域•光纤拉丝工艺的前景展望01引言光纤拉丝工艺是指利用高温高压技术将高纯度玻璃或塑料光纤预制件拉制成细直径的工艺方法。

光纤拉丝工艺是光通信领域中的关键技术之一,被广泛应用于光缆、光器件和光通讯网络等领域。

光纤拉丝工艺简介光纤拉丝工艺流程选取高纯度玻璃或塑料作为预制件材料,经过高温高压处理制作成预制件。

光纤预制件制作拉丝机安装与调试拉丝过程涂覆与测试安装拉丝机并对其进行精确调试,确保拉丝过程中各项参数的稳定。

将预制件送入拉丝机的高温炉中加热至软化点,通过牵引轮和收线轮相互配合将光纤拉制成细直径。

对拉制好的光纤进行涂覆保护,并进行性能测试以确保符合要求。

1光纤拉丝工艺的重要性23光纤拉丝工艺制成的光纤具有低损耗、高带宽等特点,能够实现长距离、高速率的光通信。

实现长距离光通信光纤拉丝工艺作为光通信产业的基础技术,对光通信产业的发展起着至关重要的作用。

促进光通信产业发展光纤拉丝工艺的广泛应用有助于提升国家信息基础设施的水平,促进信息技术的快速发展。

提升国家信息基础设施水平02光纤拉丝工艺发展历程03初步应用虽然技术尚未成熟,但在一些特定领域,如航空航天、军事等领域开始尝试应用。

第一阶段:起步期01技术引入光纤拉丝工艺起源于20世纪70年代,最初由美国Corning公司引入。

02初步研究在起步期,研究人员开始探索光纤拉丝的基本原理和控制方法。

进入21世纪初,随着技术不断发展,光纤拉丝工艺逐渐转型。

技术突破光纤拉丝工艺逐渐实现规模化生产,生产效率和技术水平显著提高。

生产规模化光纤拉丝工艺逐渐应用于通信、医疗、工业控制等领域。

应用扩展近年来,随着科技的不断进步,光纤拉丝工艺不断创新。

技术创新新型光纤材料不断涌现,如玻璃纤维、碳纤维等,具有更高的强度和更轻的重量。

第四节光纤拉丝技术及涂覆工艺

第四节光纤拉丝技术及涂覆工艺

第四章 光纤制造技术
第四章 光纤制造技术
2、操作工艺 将已制备好的预制棒安放在拉丝塔(机)上部的预制棒馈送机 构的卡盘上。馈送机构缓慢地将预制棒送入高温加热炉内。在 Ar气氛保护下,高温加热炉将预制棒尖端加热至2000º C,在此 温度下,足以使玻璃预制棒软化,软化的熔融态玻璃从高温加 热炉底部的喷嘴处滴落出来并凝聚形成一带小球细丝,靠自身 重量下垂变细而成纤维,即我们所说的裸光纤。将有小球段纤 维称为“滴流头”,操作者应及时将滴流头去除,并预先采用 手工方式将已涂覆一次涂层的光纤头端绕过拉丝塔上的张力轮、 导轮、牵引轮后,最后绕在收线盘上。然后再启动自动收线装 置收线。
第四章 光纤制造技术
排线方式有三种:矩形排线、梯形排线和倒梯形排线。
矩形排线
梯形排线 倒梯形排线 ②自动换筒:纤头的捕获
1、拉丝装置组成 光纤预制棒的拉丝机由五个基本部分构成:(1)光纤预制棒馈 送系统;(2)加热系统;(3)拉丝机构;(4)各参数控制系统;(5) 水冷却和气氛保护及控制系统。五者之间精确的配合构成完整 拉丝工艺。 具体的机械和电气设备系统包括:机械系统拉丝塔架、送棒及 调心系统、加热炉、激光测径仪、牵引装置、水气管路系统, 电气部分送棒控制及调心控制系统、加热炉控制系统、外径测 控系统、牵引控制系统、冷却水及保护气氛控制系统、人机界 面、PLC信号处理系统等。
第四章 光纤制造技术
①气体喷灯:历史上应用火焰燃烧器把高温玻璃拉制成纤维 的例子甚多,一般都采用氢氧或氧-煤气喷灯,这种加热设备 本身存在火焰骚动问题,因而拉制的光纤外径尺寸控制精度 一直不高。目前,这种方法极少应用。
②石墨加热炉(石墨电阻炉):采用直流或工频交流电源为石墨
炉加热,在加热中为防止石墨材料在高温下发生氧化,进而产 生粉尘污染,一般需采用惰性气体如Ar气或氮气进行气氛保护。 由于加热炉中充入Ar保持,而炉内Ar的紊乱流动将导致炉内温 度的变化。因此必须对保护气体Ar的流量进行控制,以保持炉 温的稳定。在拉制光纤时,需安装光纤外径测量仪反馈测量光 纤外径的变化情况,因此可通过这一反馈测量值的变化来控制 保护气体Ar的流量,使光纤外径的变化量控制在允许(1um) 范围内。

高效率光纤拉丝技术

高效率光纤拉丝技术

裸光纤在不 受任何外界 应 力的情况 下的
40
维普资讯
Байду номын сангаас
I I E O TC O M NC TO 雹国国 B R P ISC M U IA I N F
高 速 拉 丝试 验及 设 备 改造结果



() 1改善翘 曲度
为 了提 高拉 丝拉 丝效 率 , 我们 从 两
一 有 效 的 方 法 之 一 , 们 主 要 通 过 提 高 光 涂 覆模具 时 的温度 就 会增加 , 般来 说 方 面 着 手 进 行 , 方 面 把 拉 丝 速 度 从 我 一 纤拉 丝速度和减 少降温停机 时间来提 高 拉 丝效 率。 拉丝速度从某 种意义上 来说 是衡量
1 0 m/ n O 0 mi 甚至 更高 , 目前 最高 的拉
正常拉丝一个 预制棒结 束后需要给
同 丝速 度 已经达到 了1 0 m/ n 提 高拉 拉 丝 炉降温 , 时需 要对涂 料罐 中的涂 5 0 mi 。 丝速 度对工 艺带 来 的影 响是 最直 接的 , 料进行补给 , 如果想法缩短 这个环节 , 那
冷却 效率 等方 面 , 外通过改造设备减 少了停机时 间, 另 有效 的提高了拉丝效率 , 并对 改造 前后的结果进行 了比较。
Abs r t t n u e ev r way t icr a e r wig ef ii c . e ap r n r du mas e e hn s tac I cld s e al i s o n e s d a n fcen yTh p e it o ce t r t c ic
度 会对 光纤 翘 曲度有 大的影 响 , 光纤 而
个 光纤 厂家 拉丝水 平 的标 志之 一 。 随 原 因主要 是光 纤在 温场 中受 热 不均 匀 , 导致 光 纤在径 向收 缩 不同 , 造成 光纤 翘

光纤拉丝技术

光纤拉丝技术

光纤成型机理
• 光纤成型是一个物理过程。将预制棒一端加热至 熔融状态,光纤在牵引力的作用下成型。这个牵 引力用于克服玻璃的内摩擦力(粘度)、表面张 力并使光纤获得加速度。预制棒的加热和光纤的 冷却是决定光纤拉制成败的关键过程,光纤拉制 过程中伴随着极复杂的热物理现象。
/
/
/
线现象。控制好排线质量的关键是第一层光纤的排线质量, 首先,要调整好排线节距的大小,其次要控制制好光纤与收 线圆盘边缘距离(7-8μm),否则,将会出现夹线、断线等现象。
/
排线方式有三种:矩形排线、梯形排线和倒梯形排线。
矩形排线
梯形排线 倒梯形排线 ②自动换筒:纤头的捕获
/
/
拉 丝 塔
/
• 通过改变光纤拉丝速度的方法来达到控制 光纤外径的目的。通常,选用非接触法之 一的激光散射法来对刚出高温炉的光纤即 刻予以光纤外径遥控。用来自测径仪的信 号自动调整拉丝轮的速度,以获得光纤设 计要求的正确外径125或140
光纤拉丝技术
主讲人:王焫林
拔丝红薯
/
/
光纤拉丝
• 光纤拉丝是将已制得的光纤预制棒直径缩小,且保持芯包比 和折射率分布不变的操作。光纤拉制工序的过程就是将前道 工序制成的预制棒,通过高温炉将预制棒加热软化,在牵引 的作用下拉制成等直径光纤的过程。 在拉丝操作过程中,最重要的技术:如何保证不使光纤表面受 到损伤并正确控制芯/包层外径尺寸及折射率分布形式。 如果光纤表面受到损伤,将会影响光纤机械强度与使用寿命, 而外径发生波动,由于结构不完善不仅会引起光纤波导散射损 耗,而且在光纤接续时,连接损耗也会增大,因此在控制光纤 拉丝工艺流程时,必须使各种工艺参数与条件保持稳定。
光纤拉制工艺过程
一、拉丝装置组成 • 光纤预制棒的拉丝机由五个基本部分构成: (1)光纤预制棒馈送系统;(2)加热系统;(3) 拉丝机构;(4)各参数控制系统;(5)水冷却 和气氛保护及控制系统。五者之间精确的 配合构成完整拉丝工艺。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤拉丝技术
主要内容
光纤拉丝是什么 光纤拉丝工艺的发展 光纤拉丝工艺流程 超低PMD光纤拉丝技术 小结
光纤拉丝
概念:拉丝是将预制 棒拉制成符合标准的 光纤的工艺。
拉丝工艺的发展
光纤拉丝最早是Barlow在20多年前提出的。 那时的拉丝技术主要针对预制棒,这种方法 对低速光纤而言简单适用,但不适用于高速 光纤,因为发动机必须同时保持高速旋转。 技术在90年代中后期得到改善,改良方案直 接对光纤而不是预制棒进行拉丝。
总结
拉丝技术是生产低PMD光纤的有效 方法。不同拉丝技术对降低PMD和提高 拉丝光纤能方面有很大影响。目前有 更多的机构参与了拉丝光纤各方面的研 究,相信不久会出现更优越的拉丝方案。
拉 丝 塔
示意图
工艺流程: 1, 制作直径符合要求的预制棒, 装卡在滑台上; 2, 打开控制电源,预设参数; 3, 加热炉温,达到软化温度; 4, 拉丝; 5, 测量直径,将数据传输给计算 机,经分析处理后控制拉丝速度; 6, 涂敷固化; 7, 绕盘。
工艺流程
光纤拉丝的过程:在调速系统的控制下,将光纤预制棒 徐徐送入高温炉。炉内温场预先设计成纵向梯度分布, 炉温由测量仪器监视并反馈至控温设备实现恒温。预制 2000 棒的端头在2000摄氏度下软化,粘度减小,在其表面 张力作用下迅速收缩变细,并由收丝轮以合适的张力向 下拉成细丝。通过激光测径仪监视并反馈至调速系统及 时调节上面预制棒的送入速度和下面的收丝速度,以精 确控制成纤外径在125±2um的规定范围内。最后经过 涂覆与套塑工艺最后生产出我们所见的光纤成品。
知识补充
偏振模色散 指单模光纤中偏振色散,简称PMD (=Polarization Mode Dispersion),起因于实 际的单模光纤中基模含有两个相互垂直的偏振 模,沿光纤传播过程中,由于光纤难免受到外 部的作用,如温度和压力等因素变化或扰动, 使得两模式发生耦合,并且它们的传播速度也 不尽相同,从而导致光脉冲展宽,展宽量也不 确定,便相当于随机的色散。随着传输速率的 提高,该色散对通信系统的影响愈来愈明,而 且越来越不可低估!
相关文档
最新文档