脱硫超低排放技术改造及经济性研究
《2024年燃煤电厂超低排放改造效果研究》范文

《燃煤电厂超低排放改造效果研究》篇一一、引言随着环保意识的逐渐增强,燃煤电厂的排放问题已成为社会关注的焦点。
为了应对日益严峻的环境挑战,燃煤电厂超低排放改造应运而生。
本文旨在研究燃煤电厂超低排放改造的实施效果,分析改造前后的排放变化,以及改造对环境和社会经济的影响。
二、研究背景燃煤电厂作为我国主要的能源供应方式之一,其排放的污染物对环境造成了严重影响。
超低排放改造旨在通过采用先进的环保技术和设备,将燃煤电厂的排放控制在超低水平,以实现绿色、环保、低碳的能源供应。
三、研究方法本研究采用定性和定量相结合的方法,包括文献调研、现场调研和数据分析。
首先,收集国内外燃煤电厂超低排放改造的文献资料,了解改造的技术、方法和效果。
其次,对改造前后的燃煤电厂进行现场调研,收集数据,包括排放数据、运行数据等。
最后,对数据进行统计分析,评估改造效果。
四、研究结果1. 排放变化经过超低排放改造,燃煤电厂的排放物明显减少。
其中,二氧化硫、氮氧化物和颗粒物的排放量显著降低,达到了超低排放标准。
这表明改造技术和方法是有效的,能够显著降低燃煤电厂的排放。
2. 经济效益虽然超低排放改造需要一定的投资成本,但长期来看,改造带来的经济效益是显著的。
首先,降低的排放物减少了环境污染治理的成本。
其次,超低排放标准的实现有助于提高电厂的环保形象和市场竞争力。
此外,改造还可以带来节能降耗的效果,降低电厂的运行成本。
3. 社会影响超低排放改造对社会的积极影响也是显著的。
首先,减少的污染物排放有助于改善空气质量,保护人们的身体健康。
其次,改造有助于推动绿色、环保、低碳的能源供应,促进可持续发展。
此外,改造还可以带动相关产业的发展,创造就业机会。
五、讨论与建议1. 继续推广超低排放改造技术燃煤电厂超低排放改造的效果表明,该技术是可行的、有效的。
因此,应继续推广超低排放改造技术,鼓励更多的燃煤电厂进行改造。
同时,应加强技术研发和创新,进一步提高改造技术的效率和效果。
超低排放改造总结

XXX1号机组超低排放改造项目总结一、企业基本情况XXX(以下简称:XXXX热电)安装2×300MW亚临界直接空冷供热机组,该项目是在关停合作方XX电厂原在建2×135MW小机组基础上,按国家“上大压小”产业政策改建而来,其中XX国际控股80%,XX电厂参股20%,工程总投资额29.2亿元。
项目于2009年7月27日获得国家发改委正式核准,同年9月21日开工建设,#1、#2机组分别于2010年12月15日、2011年1月4日通过168小时试运转入商业运营。
燃煤采用山西XX当地洗中煤和劣质煤,用水取自XX市第二污水处理厂的回用中水,是集发电、供热、全部直接空冷、同步脱硫、脱硝,圆形全封闭煤场、输煤抑尘技术、废水回收和粉煤灰综合利用于一体的绿色环保型热电联产项目,该项目荣获“中国电力优质工程奖”。
XXXX热电主设备中,锅炉为哈尔滨锅炉厂有限责任公司生产的HG-1092/17.5-YM28型亚临界一次中间再热自然循环汽包炉;汽轮机为上海汽轮发电机有限公司生产的CZK300-16.7/0.4/537/537型两缸两排汽、亚临界一次中间再热、直接空冷供热凝汽式汽轮机;发电机为上海电机有限责任公司生产的QFSN-300-2型汽轮发电机。
环保设施同主机同步建设。
其中脱硝由XX科技工程有限公司设计,脱硝还原剂采用液氨,催化剂按2+1层配置,脱硝反应器入口的NOx排放浓度按550mg/Nm3设计,脱硝反应器出口的NOx排放浓度按≤135mg/Nm3设计,设计脱硝效率为75%。
脱硫由国电清新设计,入口SO2设计值为9994mg/Nm3,出口SO2排放值小于400mg/Nm3,脱硫效率为96%。
除尘是由福建龙净公司生产电袋复合式除尘器,出口烟尘排放值小于30mg/Nm3。
机组投产以来,环保设施一直运行良好,各项指标均能满足国家排放标准。
XXXX热电向来重视环保工作,几年来投入了大量的人力、物力和财力,在2012年进行了电袋除尘器滤袋改型更换;在2013年进行了#1、#2锅炉低氮燃烧器改造和省煤器分级燃烧改造,大幅提高了锅炉低负荷时脱硝入口烟温,实现了脱硝反应器的全负荷段运行。
燃煤烟气污染物超低排放技术综述及排放效益分析

燃煤烟气污染物超低排放技术综述及排放效益分析关键词:超低排放超低排放技术超低排放改造针对燃煤电厂烟气中烟尘、SO2和NOx的超低排放要求,对现有常用除尘、脱硫、脱硝技术的原理、改造方法,以及改造后投运实例进行了综合探讨,分析了燃煤电厂烟气污染物超低排放改造后的经济效益及环境效益,以期提供参考。
关键词:燃煤烟气;超低排放;经济效益;环境效益1引言2016年入冬以来,全国各地雾霾天气持续不断,已经严重影响人们的日常生活和身心健康。
我国的能源消费结构以煤炭为主,这是造成我国环境空气污染和各类人群呼吸系统疾病频发的重要根源,无论是能源政策还是经济社会发展要求,其共同目的都是通过控制煤炭消费强度来减少大气污染物排放,改善区域环境质量。
煤电超低排放改造是现阶段发电用煤清洁利用的根本途径,超低排放技术可以进一步减少烟气污染物的排放总量,这是当前复杂形势下解决能源、环境与经济三者需求的最佳手段,也是破解一次能源结构性矛盾的必由之路[1]。
国务院有关部门要求燃煤机组在2020年前完成超低排放改造。
实行对燃煤电厂的超低排放技术改造刻不容缓,由此对超低排放技术改造的技术路线并结合改造案例进行综合介绍。
2超低排放的概念超低排放[2]是指燃煤火力发电机组烟气污染物排放浓度应当达到或者低于规定限值,即在基准氧含量为6%时,烟(粉)尘≤5mg/m3,二氧化硫≤35mg/m3,氮氧化物≤50mg/m3。
3超低排放改造的技术路线我国目前大量工业用电、居民用电,基本都靠燃煤电厂供给,因此选择合理的改造技术显得尤其重要。
对现有净化设备利用率高,改造工程量少的技术成为电厂的首选。
以下针对燃煤电厂常用的几种除尘、脱硝、脱硫设备的改造方式进行综合介绍。
3.1除尘技术目前燃煤电厂采取的除尘超低排放技术有:电除尘、电袋复合除尘、低低温电除尘、湿式电除尘以及最新的团聚除尘技术等。
3.1.1电除尘技术电除尘器[3]的工作原理是通过高压静电场的作用,对进入电除尘器主体结构前的烟道内烟气进行电离,使两极板(阴极和阳极)间产生大量的自由电子和正负离子,致使通过电场的烟(粉)尘颗粒与电离粒子结合形成荷电粒子,随后荷电粒子在电场力的作用下分别向异极电极板移动,荷电粒子沉积于极板表面,从而使得烟气中的尘粒与气体分离,达到净化烟气的目的。
浅析伊敏电厂二期脱硫超低排放改造

浅析伊敏电厂二期脱硫超低排放改造华能伊敏电厂3号、4号机组安装两台600MW亚临界参数锅炉,分别于2007年6月和12月投入运行。
除尘系统原配套双室五电场静电除尘器,实际测试电除尘出口烟尘浓度为47.04 mg/m3,烟囱入口烟尘浓度为23.86 mg/m3;脱硫系统采用石灰石-石膏湿法脱硫工艺,原烟气SO2含量700~1000mg/m3,净烟气SO2含量35~50mg/m3。
根据国家发改委、环境保护部、国家能源局联合下发的“环发[2015]164号关于印发《全面实施燃煤电厂超低排放和节能改造工作方案》的通知”,考虑电价补贴和电量节能减排调度要求,华能伊敏电厂3号、4号机组有必要进行烟气超低排放改造。
本次改造拟按照烟尘排放浓度小于5mg/m3、SO2排放浓度小于35mg/m3开展。
标签:华能伊敏电厂;烟气超低排放华能伊敏电厂二期3、4号机组(2×600MW)分别于2007年6 月和12月投入运行。
由于二期机组建设时,污染物排放浓度满足当时国家大气污染物排放标准,因此二期工程没有同步建设脱硫、脱硝设施。
但随着国家环保标准的更新,伊敏电厂二期的污染物排放不能满足《火电厂大气污染物排放标准》(GB 13223-2011)规定要求。
为使烟气达标排放且进一步改善周边地区空气环境质量,伊敏电厂按国家环保要求于2012年7月1日起对二期机组进行烟气脱硫、脱硝环保改造,脱硫采用石灰石—石膏湿法工艺,脱硝采用SCR脱硝工艺,3、4号机组分别于于2013年和2014年投入运行,设计建设了全烟气石灰石-石膏湿法脱硫装置,采用一炉一塔系统配置。
按要求改造设计原烟气SO2为1600 mg/m3,改造烟温165℃下2500000m3/h(标态,湿基,6%O2)实际全烟气处理能力设计,脱硫效率≥93.75%,SO2排放浓度小于100mg/m3。
总体工艺方案选择目前在国内电厂有一定应用业绩的的烟气脱硫方法主要有:循环流化床烟气半干法、海水法、湿式氨法、石灰石/石灰-石膏湿法。
水泥窑超低排放改造可行技术

水泥窑超低排放改造可行技术水泥窑是水泥生产过程中重要的设备之一,然而,其排放出的废气对环境和人类健康造成了很大的影响。
为了减少水泥窑排放的污染物,超低排放改造技术被提出并得到了广泛应用。
本文将介绍水泥窑超低排放改造的可行技术。
一、超低排放改造的背景及意义水泥窑排放的废气中主要含有二氧化硫、氮氧化物、颗粒物等有害物质,对大气环境和人体健康造成了严重的威胁。
超低排放改造旨在通过技术手段降低水泥窑的排放浓度,达到环境保护的要求,保障人类健康。
二、超低排放改造技术的主要措施1. 窑尾烟气处理:通过安装脱硫、脱硝装置,减少二氧化硫和氮氧化物的排放。
脱硫装置采用石膏湿法脱硫或者选择性催化还原脱硫技术,有效去除二氧化硫。
脱硝装置采用选择性催化还原脱硝技术或者氨水喷射脱硝技术,降低氮氧化物的排放。
2. 余热回收利用:水泥窑烟气中含有大量热能,可以通过余热回收设备进行回收利用,提高能源利用效率。
常见的余热回收技术包括余热锅炉、余热发电等。
3. 颗粒物治理:采用除尘设备对水泥窑烟气中的颗粒物进行净化。
常见的除尘设备包括静电除尘器、袋式除尘器等,可以有效降低颗粒物的排放浓度。
三、超低排放改造技术的优势和挑战1. 优势:超低排放改造技术可以有效降低水泥窑的排放浓度,达到环保要求。
同时,通过余热回收利用,还可以提高能源利用效率,降低生产成本。
2. 挑战:超低排放改造技术在实施过程中面临一些技术和经济上的挑战。
首先,改造设备需要占用一定的空间,对现有生产线进行改造会带来一定的困难。
其次,改造设备的投资和运维成本较高,对企业经济造成一定的压力。
此外,改造过程中需要保证生产正常进行,对生产线的停机时间要求较高。
四、超低排放改造的应用案例超低排放改造技术已经在国内外水泥企业得到了广泛应用。
例如,某水泥企业在窑尾烟气处理方面采用了石膏湿法脱硫和选择性催化还原脱硝技术,成功降低了二氧化硫和氮氧化物的排放浓度;同时,通过余热回收利用,将烟气中的热能转化为电能,提高了能源利用效率。
烟气超低排放脱硫系统单塔脱硫、除尘协同处理技术

烟气超低排放脱硫系统单塔脱硫、除尘协同处理技术关键词:脱硫超低排放脱硫工艺本文全面介绍了一种脱硫系统单塔脱硫、除尘协同处理技术。
详细说明了技术特点和优势。
为超低排放改造提供了新思路和新选择。
根据实际应用情况,此种超低排放改造技术路线具有投资低、工期适当、无新增施工占地、技术可靠等特点。
1概述国家对主要污染物减排工作要求不断升级。
如何选择一种改造便捷、技术可行、运行稳定、投资少的脱硫、除尘协同处理装置改造方式已成为亟需解决的问题。
气液再平衡均流器、筛板式托盘相与凝并式除雾器的单塔脱硫、除尘协同处理技术在三门峡公司首次应用。
为超低排放改造提供了新思路和新选择。
2脱硫系统概况大唐三门峡发电有限责任公司建设的脱硫工程由中环(中国)工程有限公司(原江苏苏源环保工程有限公司)总承包,于2006年10月开始投运。
脱硫装置均采用石灰石-石膏湿法工艺,一炉一塔配置,脱硫效率不小于95%。
原设计燃煤含硫量为1.2%(FGD入口SO2浓度2916mg/m3),但随着煤炭市场供应的不确定性,实际燃用的煤质条件与设计煤种存在一定的偏差。
根据最新版的《GB13223-2011火电厂大气污染物排放标准》要求,及可预见的以后国家将实行更为严格的排放控制标准,2014年由福建龙净环保股份有限公司对脱硫系统进行增容改造。
改造按燃用设计脱硫煤种FGD入口5910mg/Nm3时,出口SO2浓度小于150mg/Nm3,脱硫效率≥97.5%设计。
3改造目标及方案本工程3、4号机组烟气超低排放脱硫、除尘及相关系统改造工程项目,工程采取EPC总承包模式。
原有脱硫装置采用石灰石-石膏湿法脱硫工艺,一炉一塔布置,为达到SO2每个模块由两层错列布置的管栅和固定他们的外框架组成。
保证烟气在进入吸收塔后可以均布,且浆液喷淋下来后,可以在均流装置上形成一层液膜,进而提高气液传质系数,同时增加烟气与浆液接触的时间,确保浆液中SO2和烟气中的SO2达到平衡。
SNCR-SCR联合技术锅炉烟气超低排放

SNCR-SCR联合技术锅炉烟气超低排放改造项目技术方案年月中国•西安目录一概述 (1)1工程概况 (1)二脱硫系统改造设计方案 (2)1方案概述 (2)2主要设计原则 (2)3设计规范及技术说明 (2)4脱硫工艺概述 (3)5脱硫系统改造配置清单 (5)三 SNCR-SCR联合脱硝技术 (5)1方案概述 (5)SNCR技术原理 (5)SCR技术原理 (6)SNCR-SCR联合脱硝技术 (7)2工艺流程 (8)工艺描述 (8)SNCR系统组成 (9)SCR脱硝系统组成 (10)3平面布置 (13)4控制系统 (13)5SNCR-SCR联合脱硝物料消耗 (14)6SNCR-SCR联合脱硝配置清单 (14)四电气及控制 (17)1总述 (17)2系统设计要求 (20)3电气设备总的要求 (22)4配电及控制供货清单 (22)五工期计划 (24)一概述1 工程概况1)脱硫:更换除雾器支撑钢结构,更换平板除雾器为定制式屋脊式除雾器,更换循环泵、循环管道及喷淋层,塔体部分修补,大部分重新做防腐。
2)改造锅炉,为SCR脱硝提供反应温度窗口,新建6套SNCR-SCR联合脱硝设备。
3)以上改造完成后,改造完善供配电系统及DCS系统。
二脱硫系统改造设计方案1 方案概述本次超低排放改造,6台58MW锅炉的脱硫系统采用原氧化镁法脱硫工艺。
更换除雾器支撑结构,更换现有平板式除雾器为定制屋脊式高效除雾器,截留出口烟气所携带的雾滴和尘粒,更换循环泵、循环管道及喷淋层,塔体部分修补,大部分重新做防腐。
确保塔出口颗粒物达超低排放标准。
2 主要设计原则1 我方保证提供符合本技术方案和有关现行工业标准的全新的、功能齐全的优质产品及相应服务。
2 我方提供的产品完全符合技术规范的要求。
3 在签订合同之后,到我方开始制造之日的这段时间内,需方有权提出因规范、标准和规程发生变化而产生的一些补充修改要求,我方遵守这个要求,并不产生任何费用变化。
脱硫超低排放改造方案

脱硫超低排放改造方案概述脱硫超低排放改造方案旨在解决工业生产中硫化物排放问题,以实现对大气环境的保护和改善。
本文将介绍脱硫超低排放改造方案的原理、技术应用以及相关政策和标准。
原理脱硫超低排放改造的基本原理是通过脱硫设备捕集和转化废气中的硫化物,使其达到超低排放标准。
主要包括以下几个步骤:1.硫化物的捕集:通过脱硫设备(如湿式脱硫装置、干式脱硫装置等)将废气中的硫化物捕集下来。
2.硫化物转化处理:将捕集到的硫化物进行转化处理,将其转化为无害物质或可回收利用的资源。
3.二次净化处理:对脱硫过程中产生的废水、废渣等进行二次净化处理,以达到环境排放标准。
技术应用湿式脱硫技术湿式脱硫技术是脱硫超低排放改造中常用的一种技术,其基本工作原理是通过喷淋液将废气中的硫化物吸收到溶液中。
溶液中的硫化物经化学反应转化为无害物质或可回收利用的资源。
湿式脱硫技术具有设备结构简单、脱硫效率高、适应性强等优点,广泛应用于电力、冶金、化工等行业。
干式脱硫技术干式脱硫技术是另一种常用的脱硫技术,其基本工作原理是通过干式吸附剂(如活性炭、钙基吸附剂等)吸附废气中的硫化物。
通过调控干式吸附剂的性能和使用条件,可以实现对硫化物的有效捕集和转化。
干式脱硫技术适用于废气流量较小、硫化物浓度较低的情况。
相关政策和标准为了推动脱硫超低排放改造工作的开展,相关政策和标准得到了制定和实施。
环境污染防治法环境污染防治法是我国环境保护的基本法律,其中包括了对大气污染的治理要求。
根据环境污染防治法,工业生产单位必须符合国家或地方规定的大气污染物排放标准,开展脱硫超低排放改造工作,减少硫化物的排放。
脱硫超低排放标准脱硫超低排放标准是指对工业生产中排放的硫化物浓度要求的限制。
根据不同行业和地区的特点,制定了相应的脱硫超低排放标准,对工业生产单位进行硫化物排放的限制和监管。
资金补贴政策为了鼓励企业推进脱硫超低排放改造工作,相关部门还出台了针对脱硫超低排放改造项目的资金补贴政策。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脱硫超低排放技术改造及经济性研究
发表时间:2019-07-08T16:29:59.837Z 来源:《电力设备》2019年第6期作者:刘文骏
[导读] 摘要:本文以我电厂为例,分析了脱硫超低排放技术改造的具体方案,大致介绍了改造后的效果,分析了改造的经济效益。
(大唐甘肃发电有限公司景泰发电厂甘肃景泰 730400)
摘要:本文以我电厂为例,分析了脱硫超低排放技术改造的具体方案,大致介绍了改造后的效果,分析了改造的经济效益。
关键词:脱硫超低排放技术;经济性;现状;
1 引言
受大唐景泰发电厂委托,中国大唐集团科学技术研究院有限公司西北分公司于2016年12月11日~14日对2号机组进行了超低排放改造后脱硫系统性能测试。
本次测试是为了检验大唐景泰发电厂2号机组脱硫系统性能是否满足保证值要求,为脱硫系统达标投产提供技术依据。
2 现状分析
调查统计显示,燃煤电厂投产的烟气脱硫装置占全国火电机组容量的82.8%,占全国燃煤电厂装机容量的92.8%。
新建于2015年并于当年投入运行的火电厂烟气脱硫装置产能接近5500万千瓦。
截至年底,全国投入运行的火电厂烟气脱硫装置的容量高达8.2亿千瓦。
其中,石灰石-石膏湿法所占的比例高达93%,此外,还包括烟气循环流化床法、氨法、海水法。
自"十三五"实施以来,我国二氧化硫排放量呈下降趋势,这与电力行业脱硫改造技术的提升密切相关。
我国燃煤脱硫机组容量正呈现不断增长的趋势,为达到严格的污染物排放标准。
2.1 当前脱硫技术
超低除尘技术主要是电袋复合深层除尘技术、电除尘+湿式除尘技术、管束深层除尘技术等,近年来取得了良好的性能。
静电除尘袋式除尘+湿式电除尘技术是电力系统的主要除尘设施。
袋式除尘器是近十年来开发的除尘技术,但目前仅有的两种技术都达到了超低排放标准。
大多数采用混合技术或结合湿式静电除尘技术实现烟尘的超低排放,但存在系统复杂、占地面积大、投资大、能耗高等问题。
管束深度除尘技术是近几年来发展起来的深度除尘技术,由于其效果稳定、设备结构简单、占地面积不增加、因此发展迅速。
目前,应用此案例的电力系统较多,效果良好。
此外,电力系统的主要脱硫技术还包括石灰石 - 石膏脱硫系统。
实现超低排放的主要途径是单塔旋风联结回路、单塔单回路、托盘塔技术和双塔双循环。
托盘塔技术在吸收塔中增加了一层多孔合金托盘,使烟气均匀分布在托盘的横截面上,并在烟气从托盘底部流动时有效吸收二氧化硫。
目前,Babcock-Wilcox的专利技术托盘应用是最常见的,而中国的武汉凯迪电力环保有限公司也推出了这项技术。
火电机组可在现有脱硫塔的基础上进行改造,提高SO2吸收效率,降低脱硫能耗等。
日前,该技术在长兴电厂、玉环电厂的实际应用结果显示:排放烟气中p(SO2),20 mg/Nm3,表明该项技术在超低排放方面取得了巨大的突破,实现了燃煤机组"超低排放"。
3 脱硫除尘超低排放技术改造分析
3.1 合理选择改造方案
(1)超低脱硫系统及介绍
1)单塔流程的主要优点:流程简单,由于富吸收油和脱吸气不进入气压机出口的冷凝冷却器,所以,冷凝冷却负荷较小。
但最明显的缺点是:吸收和解吸为两个相反的过程,吸收所具有的条件为低温、高压;解吸需要的条件为高温、低压。
因此在同一塔内此矛盾难以得以解决。
如果想要提高C3的吸收效率,C2的解吸率就要受到一定影响;相反,要保证C2的解吸率,就会影响C3的回收率。
操作中较难同时达到最佳的C3吸收率和C2解吸率。
2)双塔流程较复杂,但吸收和解吸条件可分别调整,解决了相互干扰问题。
因此,可以提高吸收率和解吸率。
但由于解吸气要进入气压机出口的冷凝冷却器,所以解吸塔的操作压力较吸收塔高,这对解吸塔是不利的。
但可用提高温度的办法来解决,提高压力并不影响解吸的选择性。
3)单塔旋汇耦合脱硫效率高,一般高达95-98%,塔内无偏流现象(大直径塔);能耗低,比同类脱硫装置总体降低耗电量8-10%;适应性强,旋适用于不同工况、不同的直径原料、适用于各种各样的煤种、系统稳定性强;系统设备国产化率在90%以上,设备国产化率高。
基于多相湍流混合的强传质机理,耦合器采用气体动力学原理,通过特殊的旋风耦合装置为气液旋转吨位产生空间。
气体、液体和固体完全接触,大大减少了气体和液体。
防止膜传质,提高传质速率,快速完成传质过程,从而达到提高脱硫效率的目的。
与同类脱硫技术相比,该技术具有Mitta-jet的防堵功能和维护简单的优点。
由于分裂速度的提高,还具有脱硫效率高,重量除去效率高的优点。
随着超低排放改造的逐步实施,热电厂的原始CEMS设备,特别是基于非分散红外吸收(NDIR)分析原理的多组分分析仪,难以满足超低排放监测的要求以及低排放、监督要求。
主要表现在两个方面:一是范围过大,特别是超低排放出口范围过大,其次是测量精度不足。
因此,需要修改或替换原始CEMS系统。
从CEMS分析原理来看,采用稀释提取法的CEMS分析仪可以轻松满足超低排放的要求。
(2)超低除尘系统
旋汇耦合及管束除尘一体化技术
当前我国的烟气治理的趋势为多种污染协同治理,超净脱尘。
在于已经在役的火电机组,烟气治理系统如果按传统方案经行改造,将包含静电除尘器改造、除雾器改造、脱硫塔改造,有些电厂可能还需要加装湿式电除尘器。
这种传统的改造方案存在的主要问题是不仅改造工期长,而且投资大,改造也难度大,运行费用高。
于是某公司提出并采用了脱硫除尘一体化深度净化解决方案。
该技术方案达到超净排放的同时,还具有投资省、改造工期短、改造难度小、不额外用改造用地、运行简便、维护简便等优点。
此项技术只需要利用原有吸收空间进行改造,系统只需在塔内进行改造,不改变吸收塔外部任何结构;既不增加新系统,也不改变塔外的原系统,操作简便,系统稳定可靠。
可解决电厂当前问题。
通过对单塔流程进行改造,脱硫率可高达99%,脱硫除尘二者皆达到超净排放指标,彻底消除"石膏雨"。
4 改造分析
根据实际背景工程的实际情况,单塔自旋耦合脱硫超低排放技术改造主要涉及三个方面:(1)提高脱硫高度,增加喷射层上方的管道除尘装置,实现深层粉尘清除;(2)在喷涂层下加入脱硫效果环,保持原有的4层脱硫喷淋系统不变,并根据吸收塔的入口高度增加旋流耦合装置;(3)进行其他辅助改造,如内部冲洗系统,超洁净在线监测系统等。
5 经济性分析
本研究所采用数据皆通过调研、统计等方法获取,因素定值设定如下:煤质发热量Q。
取20934kJ/kg,燃煤锅炉,根据现行市场价格调研,石灰石价格取130元/t,工艺水价格取5元/t,上网电价取0.3365元/(kW﹒h),经计算A值为0.1633。
本文选择了影响脱硫设施运行的一些关键因素,包
括单位容量,年运行时间和不同的排放限值。
国内脱硝技术首先计算脱硫超低排放技术改造成本T,然后计算转化后的年收入增长值S.通过比较,计算出最终脱硫超低排放技术改造投资的恢复期。
其中,脱硫超低排放技术改造成本T包括设备采购费和工程建设。
脱硝效率、运行成本、能耗和二次污染物排放量将通过实践测试获得。
分析研究煤中硫含量、灰分含量,并考虑各种因素对脱硫成本和效益的影响,以得到石灰石 - 石膏脱硫设施的运行状态最佳的。
结束语
综上所述,我国电厂的排放量要求的不断的提高各发电厂也相应对现有脱硫除尘、脱硫技术进行改良。
通过超低排放改造项目的测试和结果分析,单塔旋风耦合和管束除尘技术可以实现脱硫的超低排放以及粉尘的超低排放。
参考文献
[1]张东辉,庄烨,朱润儒,等。
燃煤烟气污染物超低排放技术及经济分析[J].2015.38(5):125-130.
[2]宋畅,张翼,郝剑,等。
燃煤电厂超低排放改造前后汞污染排放特征[J].2017,30(5):672-677.。