单相弧光接地故障分析和防范
10kv系统发生单相接地及PT断线地判断与处理1310

10kv 系统发生单相接地及PT 断线的判断与处理第一节10kv 系统发生单相接地的判断与处理一、发生单相接地故障的特点中性点不接地或经过消弧线圈和高阻抗接地的三相系统,当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,这种系统被称为小电流接地系统。
在小电流接地系统中,单相接地是一种常见的临时故障,多发生在潮湿、多雨天气。
发生单相接地后,故障相对地电压降低,非故障两相的相电压升高,但线电压却依然对称,因而不影响对用户的连续供电,系统仍可运行1 —2h。
这也是小电流接地系统的最大的优点。
但若发生单相接地故障时电网长期运行,因非故障的两相对地电压可升高根号3 倍,可能引起绝缘薄弱环节被击穿,发展成为相间短路,使事故扩大,影响用户的正常供电;也可能使电压互感器铁芯严重饱和,导致电压互感器严重过负荷而烧毁。
同时,弧光接地还会引起全系统过电压,进而损坏设备,破坏系统安全运行。
二、发生单相接地故障现象分析与判断下面是一台三相五芯柱电压互感器接图。
如图所示接成Y0/Y0/ △。
接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。
辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。
当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。
当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号IfBn⑴ 完全接地。
如果发生A相完全接地,则故障相的电压降到0,非故障相的电压升高到线电压。
此时,电压互感器开口处出现110V电压,电压继电器动作,发出接地信号。
⑵ 不完全接地。
当发生一相(如A相)不完全接地,即通过高电阻或电弧接地时,中性点位移。
这时,故障相的电压降低,但不为0;非故障相的电压升高,且大于相电压,但不大于线电压。
电压互感器开口三角处的电压达到整定值,电压继电器动作,发出接地信号。
⑶ 电弧接地。
如果发生A相完全接地,则故障相的电压降低,但不为0,非故障相的电压升高到线电压。
浅谈35kV变电站系统单相接地故障的分析及应急处理

浅谈35kV变电站系统单相接地故障的分析及应急处理摘要:针对电力系统接地的特点并结合晋煤集团所辖35kV变电站实际运行中出现过的系统单相接地故障现象进行分析、判断,最终得出处理、解决办法。
关键词:系统接地特点接地时的故障现象接地故障处理1、电力系统接地的特点电力系统按接地处理方式可分为大电流接地系统(包括直接接地,电抗接地和低阻接地)、小电流接地系统(包括高阻接地,消弧线圈接地和不接地)。
晋煤集团所辖35kV变电站采用的都是中性点不接地或经消弧线圈接地的运行方式,即为小电流接地系统。
晋煤集团电力系统在运行过p查看后台信息,电压棒图显示电压三相指示值不同,接地相电压降低或为零,其它两相电压升高倍为线电压,此时为稳定性接地。
如果电压棒图指示不停浮动,这种接地现象即为间歇性接地。
当发生弧光接地产生过电压时,非故障相电压很高,常伴有电压互感器高压一次侧熔断器熔断,甚至严重时可能会烧坏电压互感器。
完全接地。
如果发生A相完全接地,则故障相的电压降到零,非故障相的电压升高倍到线电压,此时电压互感器开口三角处电压为100V,电压互感器保护测控装置采集到零序电压3U0越上上限,后台监控系统发出接地信号。
不完全接地。
当某一相(如C相)不完全接地时,此时通过高电阻或电弧接地,中性点电位偏移,这时故障相的电压值降低,但不为零。
非故障相的电压值升高,它们大于相电压,但达不到线电压。
电压互感器开口三角处的电压达到整定告警值(上限值、上上限值),后台监控系统发出接地信号。
电弧接地。
如果发生一相完全接地,则故障相的电压降低,但不为零,非故障相的电压升高到线电压。
此时电压互感器开口三角处出现100V电压,后台监控系统发出接地信号。
母线电压互感器一相二次熔断器熔断。
故障现象为电笛响,后台监控系统弹出“电压互感器断线”的告警显示对话框,一相电压为零,另外两相电压正常。
处理办法是退出低压等与该互感器有关的保护,更换二次熔断器。
电压互感器高压侧出现一相(A相)断线或一次熔断器熔断。
10kV中心点不接地系统单相接地故障分析及处理

10kV中心点不接地系统单相接地故障分析及处理文章结合宝钢冷轧薄板厂的相关经验,综述了中性点不接地系统发生单相接地短路故障的原因、影响,从管理及技术两方面总结了预防、处理小电流接地系统发生单相接地短路故障的措施、步骤和办法。
标签:不接地系统;单相接地;小电流接地宝钢冷轧薄板厂10kV系统属于中性点不接地的系统,也成为小电流接地的系统。
这种系统的最大的优点是:采用中性点不接地的,“三相三线”的供电方式,大大地提高了供电的可靠性,减少了线路损耗,降低了跳闸发生率,增强了线路的绝缘。
当电网发生单相接地故障时,暂时不会影响用户的用电,电网可以带故障运行1-2小时。
然而当发生单相接地故障后,非故障相对地电压将抬升至接近线电压,对地电容电流亦将增大。
如此极易导致电网非故障相的绝缘的薄弱处发生对地绝缘的击穿,造成两相或者三相短路,事故范围扩大。
急剧增加的电容电流极容易造成接地弧光,而且难以自动熄灭,还会产生间隙弧光性过电压,损坏设备,破坏电网的稳定性。
因此,如果系统发生单相接地故障,必须在最短的时间内查到故障点,并及时处理。
1 中性点不接地系统单相接地原理中性点不接地电网在正常运行时,三相对地电压呈对称性,中性点对地电压为零,无零序电压。
由于各相对地电容均相同,故各相电容电流相等,并超前于各相电压90度。
可得出下列结论[1]:(1)中性点不接地电网发生单相接地后,中性点电压UN上升为相压电(-EA),A、B、C三相对地电压:冷轧薄板厂发生此类故障后,读取各相相电压,故障相相电压平均在0.6kV,其余两相相电压平均在9.8kV。
各相相电压情况也是我厂单相接地故障报警是否真是的最终判断标准,即为电网线电压。
同时电网出现零序电压:(2)所有线路都出现零序电流,故障线路的接地电容电流等于所有其他线路的接地电容电流的总和。
根据历史统计,冷轧薄板厂单相接地电流一般在40至60安培之间。
(3)故障线路零序电流相位滞后零序电压90度,非故障线路的零序电流相位超前零序电压90度两者之间相差180度。
浅谈10kV配电线路单相接地故障分析及预防措施

浅谈10kV配电线路单相接地故障分析及预防措施摘要:电力系统中,10kV配电线路单相接地故障对变电设备和配电网的安全、经济运行有较大影响,应在实践中总结经验,并在配电线路设计中采取相关措施,预防单相接地故障发生,发生后尽快查找和消除故障点,提高供电可靠性,减小对人身和设备的危害,从而保证电网的安全、经济和稳定运行。
关键词:10kV配电线路;单相接地故障;预防措施1.10kV配电线路单相接地故障种类10kV配电线路单相接地故障主要分为稳定接地和间歇性接地两个种类。
(1)稳定接地。
稳定接地主要包括完全接地和不完全接地两种。
所谓完全接地,指的是金属性接地。
如果出现完全接地情况,那么出现故障的相电压为零,没有出现故障的相电压则会转变为线电压。
所谓不完全接地,指的是非金属性接地,也就是运用高电阻接地或者电弧接地的方式。
如果出现不完全接地现象,那么出现故障的相电压会降低,但是不为零;没有出现故障的电压将会升高,高于相电压,不会达到线电压。
(2)间歇性接地。
出现间歇性接地情况,那么接地点的电弧会出现间歇性的重燃、熄灭现象,给电网的运行状态带来瞬间的变化,加强电磁能的振荡。
2.10kV配电线路单相接地故障的主要原因(1)外力破坏。
此种破坏主要是有以下三种方式:首先是小动物的破坏,主要是老鼠,这类占最多;其次是比如塑料袋、风筝、气球等飘挂物与线路搭接在一起产生的故障;另外是由于鸟类对线路的造成的损坏,为了尽量避免产生此类破坏,就需要线路维护工作人员在进行线路运行维护时注意对鸟类等小动物严加防护,可以通过在线路上添加一些绝缘护套来防止此类事故的发生。
(2)导线原因。
导线周围清障不彻底或者选取的位置不够空旷,导致树木或者建筑物与导线相距较近,导线上排的横担的拉线一头在固定不紧搭落在了下层的导线上。
产生的此种现象便于发现和查找,因此,在巡查人员在日常巡视时多加注意便可发现,并采取有效解决措施。
(3)线路绝缘击穿。
潮湿天气及脏污条件下,容易造成线路上的刀闸、开关、绝缘子等被击穿。
小电流接地系统单相接地故障分析及预防措施

小电流接地系统单相接地故障分析及预防措施摘要:中压变电系统中性点普遍采用小电流接地方式来保证供电可靠性,使得线路单相接地时仍能连续运行。
在对变电系统中性点不接地及经消弧线圈接地方式下的单相接地故障进行理论分析的基础上采用此系统,但是此系统经常发生单相接地故障,且长时间运行易发展成多相短路,从而造成整个电网电路的短路,不利于系统有效的安全运行,所以应该尽快找出故障点并将其切除。
本文就小电流接地系统单相接地故障分析及预防措施进行了说明。
关键词:变电系统、小电流接地方式、单相接地故障、预防措施近年电力系统在我国经济建设中做出重大贡献,电力系统一旦出现故障将造成大范围停电,直接影响企业生产及社会生活,电力系统出现故障所占比例最大的是小电流接地故障,在我国的电力供电系统中,电力系统中的接地方式主要采用高阻抗接地方式、采用消弧线圈的接地方式、采用不接地方式等,当供电环境出现雨水、潮湿是很容易发生小电流单相接地的故障。
所以,为提高供电企业供电质量,我们应加大对小电流接地故障诊断技术的研究。
一:小电流单相接地特点1.高阻抗接地高阻抗接地优点是:防止了间歇电弧的过电压发生,而且减少了不同地域两相接地可能性的发生,当单相接地时,电容充电过电流将受到控制,变电线路故障检查可实现自动故障检查,并能够控制谐振所产生的过电压。
高阻抗接地主要以电阻方式为主,高阻接地与容性的电流相位相差90°,电阻性的电流加上容性的电流等于接地的电流,这个优点对发电机安全绝缘起到非常大的作用,另外高阻接地可在最短时间找出接地相,进行保护、报警。
但是高阻抗接地时,为了达到接地电弧在很短时间内熄灭,接地电流不能大于10A,所以应用的范围缩小,只能在供电网络小于10kV以下应用,当供电网络电容电流远大于规定值时,接地方式不适应高阻接地,因此高阻接地也有一定局限性。
2.不接地不接地的特点:简单结构,没有任何的辅助设备,设备运行简单。
如果瞬时发生故障,可以自动进行灭弧,在供电网络工作时出现相压升高但升高不大时,将不能破坏三相电压的平衡。
10kV配电线路单相接地故障分析及处理预防措施

10kV配电线路单相接地故障分析及处理预防措施发表时间:2018-06-25T14:58:25.873Z 来源:《基层建设》2018年第12期作者:谢斯静[导读] 摘要:10kV配电线路单相接地故障对整个配电网的安全和运行有较大影响,是电网的基础设施之一。
肇庆市南兴电力工程有限公司广东肇庆 526100摘要:10kV配电线路单相接地故障对整个配电网的安全和运行有较大影响,是电网的基础设施之一。
本文先对单相接地故障的原因及危害进行了分析,并对相应故障的处理方法进行了阐述,在此基础上提出故障处理整改预防措施,从而提高电网供电的可靠性。
关键词:单相接地;故障分析;处理预防措施在电力系统中,单相接地故障是一种较常的故障。
当前,我国的城市街道配电网线路网架伴随城市发展也趋于复杂,在抗风、防雷等方面的能力得到了加强,然而还是会频繁出现10kV线路单相接地故障,影响了城市生产和生活。
因此,运维人员只有掌握电力系统单相接地故障的分析与处理方法,及时发现并排除线路故障,才能确保电网正常供电,1、单相接地故障产生的主要原因一般来说,电网短路主要有4种,而单相接地短路则是其中最常见的短路故障,在电网短路故障中占70%。
导致单相短路故障的原因很多:①异物搭接,是由其他物体遇到风雨等天气时,线头搭落在导线上。
树木短接,是指树木直接穿过裸线或是树枝搭在线路上。
②外力破坏,供电所在巡线过程中,经常发现转角杆下有许多鸟的尸体,因为10kV线路转角杆都有挑线,线路较密集,使导线与导线之间、导线与横担之间安全距离很小,大型鸟类脚落在横担上,收翅膀的瞬间,触及带电导线,体型小的鸟就落在地上,体型大的鸟就横挂在电杆上,造成接地故障。
③绝缘子击穿,主要是由于绝缘子污闪和雷击造成的。
④老式开关设备,出现问题难以分辨出是瞬时故障还是真正的严重故障,就会导致电网发生更严重的事故。
所以电线周围一定范围不能有楼房、大树等物体,保证线路在最大风偏向的情况下不会对楼房、大树放电,并留有一定宽裕度。
10kV配电线路单相接地故障分析及处理措施

10kV配电线路单相接地故障分析及处理措施【摘要】文章首先介绍单相接地故障产生的原因及危害,并找出合理的应对措施,提高电网电力供应的安全性和稳定性。
【关键词】10kV;配电;单相接地;故障引言通过对10kV配电网发生的相关事故进行分析,可以发现单相接地是故障的集中发生地。
而频繁的单相接地故障不仅会对配电设备的正常运行产生一定的影响,更为严重的是可能引发人身事故,单相接地故障也是影响配电线路安全的重要因素。
但是引起10kV配电线路单相接地故障的原因有很多,故障查找的工作也是比较困难的,因而需要对单相接地故障的原因继续详细的分析,并且实施有效的措施来进行防范,同时也需要运用先进的技术和设备来提高故障查找工作的效率。
1 单相接地故障分析1.1 单相不断线接地故障该故障主要表现为:故障相电压降低(不完全接地)或为零(完全接地也即金属性接地),另两相电压升高,大于相电压(不完全接地)或等于线电压(完全接地),稳定性接地时电压表指针变化较小,若电压指示变化频繁,则为间歇性接地。
中性点经消弧线圈接地的系统,则可见消弧线圈动作,产生中性点电流。
发生弧光接地时,可能还会产生弧光过电压,非故障相电压升高较大,甚至可能烧坏电压互感器。
1.2 单相断线电源侧接地故障单相断线电源侧接地故障表现与单相不断线接地的故障表现基本一致。
对断线侧之后的配电变压器的供电有较为严重的影响,断线点后的配电变压器可能转入较长时间的两相运行。
从上式可以看出,要减少负序电流,减小电流的不对称度,就要求变压器的零序阻抗最小,零序电流在变压器两侧能够流通。
由于三相变压器一般都做成三铁芯柱式的两相运行,配电变压器的绕组接线为Y/Y0,由零序电流所引起的磁通不能抵消,只能经过空气和外壳构成闭合回路,从而在变压器外壳上造成不可容许的过热。
1.3 单相断线负荷侧接地故障由于是负荷侧接地,在系统变电站的绝缘监视指示变化很小,绝缘监视变化的原因是断线后的电容电流变化引起的。
输电线路单相接地故障的特征、危害与定位技术分析

输电线路单相接地故障的特征、危害与定位技术分析摘要:文章对输电线路单相接地故障的基本特征进行了分析,同时探讨了输电线路单相接地故障的发生所造成的危害,以及故障处理过程中所需的定位技术。
关键词:输电线路;单相接地故障;特征;危害;定位技术随着我国社会经济的快速发展,我国的电力系统建设规模也实现了快速的扩展,小电流接地系统数量也在逐渐增加。
因为小电流接地系统具有电压等级较低的基本特征,因而其单相接地故障的发生率也普遍偏高,非故障相对地电压升高,若输电线路出现间歇性弧光接地现象,会引发弧光过电压,进而威胁系统的绝缘性能,导致相间短路范围扩大,最终造成大面积的停电事故,以及严重的经济损失。
1 单相接地故障的基本特征多雨、潮湿的气候条件下,输电线路单相接地故障的发生率通常偏高,其主要诱发原因包括:小动物危害、单相断线、单相击穿配电线路上绝缘子以及树障等。
单相接地故障发生后,非故障两相的相电压会明显升高,而故障相对地的电压则会迅速降低,而线电压仍然保持对称状态,所以,不会对电力系统供电的连续性造成不良影响,电力系统能够持续运行1~2 h。
输电线路单相接地故障的基本特征主要表现为:第一,电弧接地。
若A相发生完全接地,则故障相的电压会有所下降,但不会降低到零,非故障相的电压会迅速提高到线电压。
第二,空载母线虚假接地问题。
母线空载运行过程中,潜在三相电压不平衡的发生风险,且会产生接地信号现象。
而这一接地现象会在送上一条线路后逐渐消失。
第三,串联谐振。
因为电力系统中由感性参数和容性的元件,尤其是存在带铁芯的铁磁电感元件,因而一旦参数组合出现匹配不当现象,就会导致继电器动作和铁磁谐振,并出现接地信号。
这一问题可通过网络参数的改变进行解决,主要处理措施包括减少线路、增加临时线路、合上或断开母联断路器等。
第四,高压侧发生熔断件熔断或是一相断线后,故障相电压会迅速下降,但不会降低到零,而非故障相的电压并不会明显升高,其主要原因在于,二次回路中该相电压表会与两相电压表及互感器线圈共同构成串联回路,指示电压数值也较小,而不是其真是的电压,非故障相仍为相压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单相弧光接地故障分析和防范渤海石油职业学院阎相环简介:单相弧光接地的分析和防范关键字:单相弧光接地随着10KV电力系统的逐渐增容和发展,10KV电网中的各种过电压发生机率越来越高,每一次的过电压都对电气设备的安全运行造成直接的、严重的威胁,而且每发生一次过电压就会对电气设备的绝缘造成一次破坏,并且这种过电压破坏具有明显的累积效应,当达到一定程度时,会造成电气设备损坏,甚至是造成局域电力网络发供电中断或是受损。
对于一个中性点不接地的10KV电力网络来说,其单相接地电容电流已经达到了相当的程度,处在极易产生单相间歇性弧光接地的10-30A单相接地电流区间,这对于在过电压保护比较脆弱的电网,过电压发生的机率和造成的破坏也就不言而喻。
因此对于如何正确认识电网的过电压现状,对过电压采取何种有效的防范措施,以确保电网电力系统的安全、可靠和稳定运行就显得尤为重要和急迫。
1.故障的分析热电厂是电网的骨干网络之一。
自从几个热电厂投产运行以来,电力系统的主接线就发生了极大的变化,同时在此期间各单位根据自身的生产需要,新增了相当数量的以电力电缆连接的电气设备,为此系统参数变化更大。
近几年,发生过众多的电气事故,综合统计分析,在这些电气事故中有诸多故障均是由于单相接地(主要表现为单相弧光接地)产生过电压所致。
在此笔者根据热电厂的电气事故情况,选取热电厂几起典型的事故在此分析,以引起我们高度关注和重视。
1.1 故障现象1.1.1 4月17日09:15分,热电厂发出10KV母线A相接地信号,紧接着(大约几秒种)热电厂10KV母线125#电容、避雷器(Y3W-10/31.5)柜发生爆炸,相关线路速断或过流保护跳闸。
经检查发现,125#柜避雷器三相有强烈弧光短路灼烧痕迹,避雷器瓷套内壁和ZnO阀片同侧有明显闪络痕迹。
同时与爆炸点相连接的电气部分和10KV系统其它部分未发现明显绝缘破坏,即短路后故障点的绝缘恢复良好。
1.1.2 4月24日12:06分和12:08分,热电厂接地监视装置连续两次发出瞬时接地现象(持续时间大约在2~3second),后经检查1#发电机出口避雷器动作监测装置JS-8型计数器(其他地方无避雷器动作监测装置),其动作次数为4次。
计数器表壳内发现有一定程度的残余物,既计数器有一定程度的损坏。
1.1.3 3月20日15:30分,热电厂10KV母线绝缘监测装置发出“10K V系统接地”信号,同时发电机零序电流保护发出报警信号,紧接着1#发电机差动保护跳闸,后经检查,2#发电机定子绕组A相绝缘被击穿后造成A相绕组对定子铁芯接地,定子接地点硅钢片被局部熔化。
1.1.4 4月09日16:50分,热电厂10KV母线绝缘监测装置发出“10K V系统接地”信号,同时发电机零序电流保护发出报警信号,紧接着2#发电机差动保护跳闸,后经检查,2#发电机定子绕组C相对定子铁芯接地。
1.2故障分析1.2.2 故障共性通过对上述几起事故的分析,可以发现它们都具有以下明显共性:A 都是由单相接地引起。
B 发生事故前无雷电活动,设备运行状态良好。
C 单相接地的同时有明显过电压现象,接地点有电弧持续燃烧现象,接地电流较大。
D 发电机单相接地电流较大。
由此,可以分析得出造成这几起事故的原因是单相弧光接地引起过电压,其电压幅值大大超过了绝缘材料或空气绝缘间隙所能耐受的电压幅值,并在绝缘薄弱环节击穿或使过电压保护装置(避雷器)动作。
1.2.3 单相弧光接地过电压的形成机理10KV系统相当复杂,网络接线繁多,其中大部分是由电力电缆连接的,由此构成了一个庞大而又复杂的电力网络。
对于单相弧光接地过电压形成机理的理论分析方法很多,对于电网中性点不接地系统,电力电缆在其相间和相地间都有等效电容。
经计算表明,发生单相弧光接地时过电压的最大值将达到:Umax=1.5Um+(1.5Um–0.7Um)=2.3Um对10KV系统,单相弧光接地的过电压瞬时幅值最大可以达到20.4KV。
如果弧光接地在接地点造成弧光间隙性反复燃烧,那么产生的过电压倍数将远远大于2.3倍。
根据有关资料介绍,在国外有些专家对单相弧光接地进行了实测,其结果显示,过电压幅值高达正常相电压幅值的3~3.5倍。
从几次故障(如1.1.1事故和1.1.2故障)来看,在系统发生单相接地时,都产生了较高的过电压,才会引起避雷器放电。
对于1.1.1事故来说,强烈的过电压使相间空气绝缘被击穿,形成相间弧光短路,至于避雷器的爆炸,主要是由于避雷器的选型错误(原设计型号为Y3W-10/31.5)和产品质量欠佳(受潮),再加上弧光短路产生的高能热量加剧了避雷器的爆炸。
由此可见如此高的过电压一旦产生就将会在电力网络绝缘薄弱环节形成闪络放电,严重时将破坏绝缘,造成相间短路或者损害电气设备。
从2.1.3事故来看,发电机接地电流已远远大于5A,才会造成发电机定子铁芯熔化,即与发电机有电气连接的电力网络的单相接地电流已大大超过了5 A。
2. 单相弧光接地产生的原因从上述分析可见,单相弧光接地是威胁电力系统安全、稳定和可靠运行的最主要和最直接因素。
而中性点的接地方式,直接影响到单相弧光接地的产生和限制力度。
根据我国的传统设计经验,在10KV电力系统普遍采用中性点不接地方式,这是因为在早期的10KV电力网中,电力网络简单,电力电缆采用量不大,系统的单相接地电容电流并不大。
而随着各电力系统的飞速发展和增容,原电力系统主接线发生了很大的变化,电力电缆的采用量急剧增加。
从诸多10KV 系统的运行现状和经验来看,其过电压发生的机率越来越高,由于过电压造成的事故在整个电气事故中所占的比例也越来越大。
根据《电力设备过电压保护设计技术规程》和电力部、国家的有关标准和要求,对于3~10KV电力系统,当单相接地电流小于30A时,如要求发电机能带单相接地故障运行,则当与发电机有电气连接的3~10KV电网的接地电流小于5A时,其中性点可采用不接地运行方式。
2.1 单相接地电流的估算在中性点不接地系统中,当系统发生单相接地时,单相接地电流IC等于正常时相对地电容电流ICi的3倍,即IC=3∑ICi。
而正常时的相对地电容电流主要由架空线、电力电缆和主要电气设备(如发电机)组成。
为说明问题,本文在此仅采用估算法对江南片区现阶段电力网络单相接地时的电容电流进行简要计算。
2.1.1 单相接地时架空线的电容电流IC1:IC1=(2.7-3.3)λUNL×10-3(A)式中UN—系统额定电压(KV)L—线路长度(Km)λ—设备影响修正系数。
根据片区的架空线均是无避雷线的架空线的情况,取UN=10KV、L=20Km、系数K=3.0、λ=1.16,因此:IC1=3.0λUNL×10-3=1.16×3.0×10×20×10-3=0.70(A)2.1.2 单相接地时电力电缆电容电流IC2:片区采用的电力电缆形式多样,截面面积从50~120mm2均有不同程度的采用。
在此按平均截面积为70mm2估算。
IC2=(A)式中S—电缆截面(mm2)L—电缆长度(Km)UN—系统额定电压(K V)根据片区的电力电缆使用情况取L=20Km、S=70mm2、UN=10KV,因此:IC2= 17.7(A)2.1.3 单相接地时发电机电容电流IC3:热电厂两台发电机的电容电流按下式进行估算:IC3=2.5KSωUN×10-3式中K—绝缘材料系数S—发电机视在功率(MVA)ω—角频率(rad/s)UN—发电机额定电压(KV)对于热电厂B级绝缘的两台QF-6-2型汽轮发电机,取K=0.0187、S=7.5MVA、UN =10.5KV,因此:IC3=2×2.5KSωUN×10-3=2×2.5×0.0187×7.5×2×3.14×50×10.5×10-3 =0.3(A)2.1.4单相接地的接地电流IC:由上述计算结果可知发生单相接地时的接地电容电流为:IC=IC1+IC2+IC3=0.70+17.7+0.3=18.7(A)通过上述的保守估算,单相接地电流虽然没有超过30A,但是现有18.7A的单相接地电流正好处在极其容易发生单相弧光接地电流10-30A区间。
特别对于热电厂不能带接地运行的发电机来说,现有系统的接地电流与国标规定的5A相差甚远,这正是上述2.1.3事故中造成发电机定子铁芯损坏的重要原因。
为此在发生单相接地时,在接地点极其容易形成不稳定的间隙性弧光接地,从而产生过电压,危及供电安全。
同时强烈的电弧将引起两相或三相短路,造成电气设备严重破坏,危及安全生产。
上述事故的发生已经确凿证明了上述分析的正确性和这种现象的存在性!为此如何采取防范措施就显得尤为重要。
3. 防范措施针对电力系统发生单相接地后的现状,要解决过电压以及发电机的单相接地电流的问题,应从以下几方面着手,以提高片区电力系统在出现单相接地时的稳定性和安全性。
3.1 改变10KV系统中性点的接地方式片区电力系统中性点目前采用的是不接地运行方式,这种方式对其本身来说虽然有它的诸多优越性,根据《电气事故处理规程》的规定,在出现单相金属性接地时,可以运行1~2h,在出现单相弧光接地时可以运行15min,这对于电力用户来说其可靠性相对较好。
但是实际上一旦产生弧光接地,过电压以及大的接地电流对电气设备的损坏是迅速的,根本就没有15min的时间留给值班人员进行分析、判断和处理。
实践证明片区电力系统中性点不接地的优越性与其由此造成的损失和它带来的不利因素的影响相比,这种优越性已经很难体现。
结合上述的分析,中性点是否继续维持不接地方式,值得探讨。
笔者认为要从根本上这类问题,中性点采用消弧线圈接地,应该不失为行之有效的措施之一。
消弧线圈是一个铁芯可调节的电感线圈,将它装设于热电厂发电机或即将新建的35KV变电站变压器的中性点,这样片区10KV系统一旦发生单相接地(不仅是弧光接地)时,可形成一个与接地电流大小近似相等、方向相反的电感电流与容性接地电流相补偿,从而达到限制接地电流,避免在接地点形成弧光。
同时即使是运行方式发生变化,使消弧线圈的补偿度或脱谐度发生变化(无论如何变化,只要在设计上考虑充分,均不可能由过补偿转变为全补或欠补),而产生弧光接地,燃弧后电容的充放电电流要经过消弧线圈流回,而不会在故障点形成多次弧光重燃,这样就有效地避免了接地点的间歇性燃弧,达到限制弧光过电压的目的。
同时在经过精确测试现有系统的单相接地电流的基础上,合理地设计和选择好消弧线圈,可以将接地电流限制在5A以下,以确保热电厂发电机的运行安全。
对于10KV系统中性点的接地方式有诸多方式,如高阻或低阻接地等。