【数学】2014-2015年四川省成都七中育才学校八年级下学期数学期末试卷和答案解析PDF

合集下载

四川省成都市七中育才学校2014-2015学年八年级数学下学期第16周周练北师大版

四川省成都市七中育才学校2014-2015学年八年级数学下学期第16周周练北师大版

A B C F D E (图4) (图2) 四川省成都市七中育才学校2014-2015学年八年级数学下学期第16周周练 A 卷(100分)一、选择题(每小题3分,本题共30分)1. 在函数11-=x y 中,自变量x 的取值范围是( ) A .1<x B .1≠x C .1-≠x D .1>x2.两地实际距离是500 m ,画在图上的距离是25 cm ,若在此图上量得A 、B 两地相距 为40 cm ,则A 、B 两地的实际距离是( )A .800 m B.8000 m C .32250 cm D.3225 m3.下列各组线段中,不成比例的是( )32,15,5,2..10,5,6,4..3,6,2,1..4,2,6,3.================d c b a D d c b a C d c b a B d c b a A4.下列运算中,错误..的是( ) A.(0)a ac c b bc =≠B.1a b a b --=-+C.2(4)4-=D.x y y x x y y x --=++ 5. 一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图(1)所示,则不等式0kx b +>的解集是( )A .2x >-B .0x >C .2x <-D .0x <6. 如图(2),正五边形FGHMN 与正五边形ABCDE 相似,若AB:FG=2:3,则下列结论正确的是( )A .2DE=3MNB .3DE=2MN C.3∠A=2∠F D .2∠A=3∠F7.若分式2||323x x x ---的值为零,则x 的值是( ) A. 3 B.-3 C.±3 D. 0 8.关于x 的方程323-+=-x k x x 会产生增根,那么k 的值( )A. 3 B. -3 C. 1 D. -1 9.如图(3),每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC △相似的是( )10.如图(4),在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且14CF =CD ,下列结论:①30BAE ∠=o ,②ABE AEF △∽△,③ A . B . C . D . AB ( ) (图3)AE EF ⊥,④ADF ECF △∽△.其中正确结论的个数为( )A .1B .2C .3D .4数学答题卷A 卷(共100分)一、选择题(每小题3分,本题共30分) 1 2 3 4 5 6 7 8 9 10二、填空题(每小题3分,本题共15分)11. 已知:::2:3:4x y z =,则分式32x y z x y z+-++的值是 . 12. 若线段a =3cm ,b =12cm ,则a 、b 的比例中项c =______;a 、b 、c 的第四比例项d =______.13.如图(5),Rt ∆ABC 中,AC ⊥BC ,CD ⊥AB 于D ,AC=8,BC=6,则AD=_________.14.已知关于x 的方程322=-+x m x 的解是正数,则m 的取值范围为______ ________. 15.已知关于x 的方程0)12(22=+++k x k x 的两个实数根的平方和是7,则k=_________.三、16. 化简分式(每小题5分,共10分)(1)12112---x x (2)22221(1)121a a a a a a +-÷+---+17.解下列方程.(每小题5分,共10分)(1)2260x x +-= (2) 224124x x x -+=+-18..先化简.再求值:35(2)42233a a a a a -÷--=---+,其中(6分)(图5)19.在如下图的方格纸中,每个小方格都是边长为1•个单位的正方形,△ABC的三个顶点都在格点上.(8分)四、(本题共9分)20. 如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,BE =2DE ,延长DE 到点F ,使得EF =BE ,连接CF . (1)求证:四边形BCFE 是菱形;(4分) (2)若CE =4,∠BCF =120°,求菱形BCFE 的面积.(5分)五、(本题共12分)21. 已知,如图,在直角三角形ABC 中,090=∠BAC ,AB=AC ,D 为BC 的中点,E 为AC 上一点,点G 在BE 上,连结DG 并延长交AE 于F ,若045=∠FGE(1)求证:BE BG BC BD ⋅=⋅;(2)求证:BE AG ⊥;(3)若E 为AC 的中点,求EF :FD 的值。

2024届四川省成都市新都区数学八年级第二学期期末统考试题含解析

2024届四川省成都市新都区数学八年级第二学期期末统考试题含解析

2024届四川省成都市新都区数学八年级第二学期期末统考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.以下各组数中,能作为直角三角形的三边长的是()A.6,6,7 B.6,7,8 C.6,8,10 D.6,8,92.把一张长方形纸片ABCD按如图方式折一下,就一定可以裁出()纸片ABEF.A.平行四边形B.菱形C.矩形D.正方形3.某班五个课外小组的人数分布如图所示,若绘制成扇形统计图,则第二小组在扇形统计图中对应的圆心角度数是()A.45°B.60°C.72°D.120°4.如图,正方形ABCD的边长为32,对角线AC、BD相交于点O,将AC向两个方向延长,分别至点E和点F,且AE=CF=3,则四边形BEDF的周长为( )A.20 B.24 C.3D.5A .5B .6C .7D .86.抛物线y =x 2﹣4x +5的顶点坐标是( ) A .(2,1)B .(﹣2,1)C .(2,5)D .(﹣2,5)7.如图,E 、F 分别是平行四边形ABCD 的边AD 、BC 上的点,且//BE DF ,AC 分别交BE 、DF 于点G 、H .下列结论:①四边形BFDE 是平行四边形;②AGE CHF ∆≅∆;③BG DH =;④::AGE CDH S S GE DH ∆∆=,其中正确的个数是( )A .1个B .2个C .3个D .4个8.如图是某公司今年1~5月份的收入统计表(有污染,若2月份,3月份的增长率相同,设它们的增长率为x ,根据表中信息,可列方程为( ) 月份 1 2 3 4 5 收入/万元 1▄45▄A .(1+x )2=4﹣1B .(1+x )2=4C .(1+2x )2=7D .(1+x )(1+2x )=49.下列调查中,适合用普查的是( ) A .了解我省初中学生的家庭作业时间 B .了解“嫦娥四号”卫星零部件的质量 C .了解一批电池的使用寿命 D .了解某市居民对废电池的处理情况 10.下列说法正确的是( )A .为了解我国中学生课外阅读的情况,应采取全面调查的方式B .一组数据1、2、5、5、5、3、3的中位数和众数都是5C .投掷一枚硬币100次,一定有50次“正面朝上”D .若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定 二、填空题(每小题3分,共24分) 11.若关于x 的分式方程1322m xx x-=---有一个根是x=3,则实数m 的值是____;12.若代数式35x -有意义,则x 的取值范围是______。

【初中数学】四川省雅安市2014-2015学年下学期期末考试八年级数学试卷(解析版) 人教版

【初中数学】四川省雅安市2014-2015学年下学期期末考试八年级数学试卷(解析版) 人教版

四川省雅安市2014-2015学年下学期期末考试八年级数学试卷一、选择题(共12小题,每小题2分,满分24分)>3+x D<0不是整式,则不是一元一次不等式,选项错误.D不是字母,是常数,所以5.如果把分式中的x,y都扩大3倍,分式的值()解:把分式中的倍,得=6.已知x:y:z=3:4:6,则的值为()Dy==.,8.若不等式组无解,则m的取值范围是()无解比较,求出解:∵不等式组9.下列说法中,正确的有()个.(1)若a>b,则ac2>bc2(2)若ac2>bc2,则a>b(3)对于分式,当x=2时,分式的值为0 (4)若关于x的分式方程=有增根,则m=1.)根据方程=∵方程=12.如图,▱ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长是()BCOD=OB=BD=6CDOE==OD+OE+DE=BD+二、填空题(共5小题,每小题3分,满分15分)13.“四边形是多边形”的逆命题是多边形是四边形.14.如图,在▱ABCD中,已知AD=10cm,AB=6cm,AE平分∠BAD交BC边于E,则EC 的长为4cm.15.计算:+=3.==316.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=3,则EF的长为6.17.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,则MN的长为2cm.MN=BCBM=MN=NC=BC=2cm三、解答题(共7小题,满分61分)18.(13分)(2015春•雅安期末)(1)解不等式组,并把解集在数轴上表示出来.(2)解分式方程:+=1.,19.先化简,再求值:(x+1﹣)÷,其中x=2.=[﹣]••﹣=320.八年级学生去距学校10千米的博物馆参观,一部分同学骑自行车先走,过了20分后,其余同学乘汽车出发,结果他们同时到达,已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度..则:21.(10分)(2015春•雅安期末)如图,由边长为1个单位长度的小正方形组成的8×8网格和△ABC在平面直角坐标系中.(1)将△ABC向下平移2个单位,再向左平移2个单位,得到△A1B1C1.请在网格中画出△A1B1C1.(2)如果将△A1B1C1看成是由△ABC经过一次平移得到的,请指出这一平移的方向和距离.(3)将△A1B1C1绕着点(﹣1,﹣1)逆时针方向旋转90°得到△A2B2C2,画出△A2B2C2,并直接写出点A2、B2、C2的坐标.个单位可得到222.我们知道,多项式a2+6a+9可以写成(a+3)2的形式,这就是将多项式a2+6a+9因式分解,当一个多项式(如a2+6a+8)不能写成两数和(成差)的平方形式时,我们可以尝试用下面的办法来分解因式.a2+6a+8=a2+6a+9﹣1=(a+3)2﹣1=[(a+3)+1][(a+3)﹣1]=(a+4)(a+2)请仿照上面的做法,将下列各式分解因式:(1)x2﹣6x﹣27(2)x2﹣2xy﹣3y2.23.某工厂要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人的月工资分别为600元和1000元.(1)设招聘甲种工种工人x人,工厂付给甲、乙两种工种的工人工资共y元,写出y(元)与x(人)的函数关系式;(2)现要求招聘的乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少?24.(10分)(2014•凉山州)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD 及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.,。

四川省成都市2015-2016学年八年级下期末数学试卷含答案解析

四川省成都市2015-2016学年八年级下期末数学试卷含答案解析
1
8.如图,某中学制作了 300 名学生选择棋类、摄影、书法、短跑四门校内课程情况的扇形统计图,从图 中可以看出选择短跑的学生人数为( )
第 1 页(共 26 页)
A.33B.36C.39D.42 9.下列命题中,逆命题是假命题的是( ) A.全等三角形的对应角相等 B.直角三角形两锐角互余 C.全等三角形的对应边相等 D.两直线平行,同位角相等 10.尺规作图作∠AOB 的平分线方法如下:以 O 为圆心,任意长为半径画弧交 OA,OB 于 C,D,再分 别以点 C,D 为圆心,以大于 CD 长为半径画弧,两弧交于点 P,作射线 OP.由作法得△OCP≌△ODP 的根据是( )
A.SASB.ASAC.AASD.SSS 11.某校八年级 1 班一个学习小组的 7 名同学在半期考试中数学成绩分别是 85,93,62,99,56,93, 89,这七个数据的众数和中位数分别是( ) A.93、89B.93、93C.85、93D.89、93 12.将一张矩形纸对折再对折,然后沿着如图中的虚线剪下,打开,这个图形一都市八年级(下)期末数学试卷
一、选择题(本题共 16 小题,每小题 3 分,共 48 分.)
1.若分式
的值为 0,则 x 的值为( )
A.x=0B.x=1C.x=﹣ 2D.x=﹣ 1
2.将分式
中分子与分母的各项系数都化成整数,正确的是( )
A.
B.
C.
D.
3.某种流感病毒的直径是 0.00000008m,这个数据用科学记数法表示为( ) A.8×10﹣ 6mB.8×10﹣ 5mC.8×10﹣ 8mD.8×10﹣ 4m
4.函数 y=﹣
中的自变量 x 的取值范围是( )
A.x≥0B.x<0 且 x≠1C.x<0D.x≥0 且 x≠1 5.一次函数 y=﹣ 2x﹣ 1 的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 6.如图,AD⊥BC,D 是 BC 的中点,那么下列结论错误的是( )

期末卷J015_四川省金堂县2014-2015学年八年级下期末考试数学试题及答案

期末卷J015_四川省金堂县2014-2015学年八年级下期末考试数学试题及答案

金堂县2014-2015学年八年级下期期末测试数 学本试卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.A 卷分第I 卷和第II 卷,第I 卷为选择题,第II 卷为其他类型的题.第Ⅰ卷1至2页, 第Ⅱ卷和B 卷3至6页.考试结束时,监考人将第Ⅰ卷及第Ⅱ卷和B 卷的答题卡收回.A 卷(共100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在密封线内相应位置上.2.第Ⅰ卷各题均有四个选项,只有一项符合题目要求,每小题选出答案后,填在对应题目的答题卡上.3. A 卷的第II 卷和B 卷用蓝、黑钢笔或圆珠笔直接答在答题卡上.4.试卷中注有“▲”的地方,是需要你在答题卡上作答的内容或问题.一、选择题(每小题3分,共30分)1、若分式2有意义,则x 应满足的条件是( ▲ )( ▲ )4、如上图,将边长为2个单位的等边△ ABC 沿边BC 向右平移1个单位得到△ DEF ,则四边形ABFD 的周长为( ▲ ) 6、把不等式组: 的解集表示在数轴上,正确的是( ▲ )36042>-≥-x xBCD7、若解分式方程441+=+-x mx x 产生增根,则错误!未找到引用源。

( ▲ ) A.1 B. 0 C.4- D. 5- 8、能判定四边形ABCD 是平行四边形的是( ▲ )▲①4的平方根是2;②有两边和一角相等的两个三角形全等;③顺次连接任意四边形各边中点得到的四边形是平行四边形. A. 0个 B. 3个 C. 2个 D. 1个10、炎炎夏日,甲安装队为A 小区安装60台空调,乙安装队为B 小区安装50台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( ▲ )A. 25060-=x xB. x x 50260=-C. 25060+=x xD. xx 50260=+第Ⅱ卷(非选择题,共70分)二、填空题(每小题3分,共15分)11、分解因式:=-42x ▲ ; 12、若代数式22+-x x 的值等于零,则=x ▲ ; 13、如图,数轴所表示的不等式的解集是 ▲ ;14. 将点A (1-,2)沿x 轴向右平移3个单位长度,再沿y 轴向下平移4个长度单位后得到点A ′的坐标为 ▲ ;15、如图,在平行四边形ABCD 中,AC、BD 相交于点O ,点E 是AB 的中点.若OE=3cm ,则AD 的长是 ▲ cm .三、解答题(共55分.其中16题每小题6分共18分, 17题6分,18题9分,19题10分,20题12分。

四川省成都七中实验学校八年级(下)期中数学试卷(解析版)

四川省成都七中实验学校八年级(下)期中数学试卷(解析版)

2015-2016学年四川省成都七中实验学校八年级(下)期中数学试卷一、选择题:1.下列各式从左到右,是因式分解的是()A.(y﹣1)(y+1)=y2﹣1 B.x2y+xy2﹣1=xy(x+y)﹣1C.(x﹣2)(x﹣3)=(3﹣x)(2﹣x)D.x2﹣4x+4=(x﹣2)22.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列多项式中不能用平方差公式分解的是()A.a2﹣b2B.﹣x2﹣y2 C.49x2﹣y2z2D.16m4n2﹣25p24.函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b>0的解集为()A.x>0 B.x<0 C.x<2 D.x>25.使分式有意义的x的值为()A.x≠1 B.x≠2 C.x≠1 且x≠2 D.x≠1或x≠26.下列是最简分式的是()A.B.C.D.7.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.98.若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定9.下列式子:(1);(2);(3);(4),其中正确的有()A.1个 B.2个 C.3个 D.4个10.某煤矿原计划x天生存120t煤,由于采用新的技术,每天增加生存3t,因此提前2天完成,列出的方程为()A.==﹣3 B.﹣3C.﹣3 D.=﹣3二、填空题:11.分解因式x2(x﹣y)+(y﹣x)=.12.当x时,分式无意义.若分式的值为0,则a=.13.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为.14.若4a4﹣ka2b+25b2是一个完全平方式,则k=.15.如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为.三、解答题16.(1)因式分解:2x2y﹣4xy2+2y3;(2)解方程:=+;(3)先化简,再求值(﹣x+1)÷,其中;(4)解不等式组,把解集在数轴上表示出来,且求出其整数解.17.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;(2)画出△A1B1C1以点O为旋转中心、顺时针方向旋转90度的△A2B2C2,并求出点C1经过的路径的长度.18.小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书,科普书的价格比文学书的价格高出一半,因此他们买的文学书比科普书多一本,这种科普和文学书的价格各是多少?19.已知关于x的方程=3的解是正数,求m的取值范围.20.问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)2015-2016学年四川省成都七中实验学校八年级(下)期中数学试卷参考答案与试题解析一、选择题:1.下列各式从左到右,是因式分解的是()A.(y﹣1)(y+1)=y2﹣1 B.x2y+xy2﹣1=xy(x+y)﹣1C.(x﹣2)(x﹣3)=(3﹣x)(2﹣x)D.x2﹣4x+4=(x﹣2)2【考点】因式分解的意义.【分析】根据因式分解就是把一个多项式变形成几个整式的积的形式的定义,利用排除法求解.【解答】解:A、是多项式乘法,不是因式分解,故本选项错误;B、结果不是积的形式,故本选项错误;C、不是对多项式变形,故本选项错误;D、运用完全平方公式分解x2﹣4x+4=(x﹣2)2,正确.故选D.【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.2.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.下列多项式中不能用平方差公式分解的是()A.a2﹣b2B.﹣x2﹣y2 C.49x2﹣y2z2D.16m4n2﹣25p2【考点】因式分解﹣运用公式法.【分析】能用平方差公式分解的式子的特点是:两项都是平方项,符号相反.【解答】解:A、符合平方差公式的特点;B、两平方项的符号相同,不符和平方差公式结构特点;C、符合平方差公式的特点;D、符合平方差公式的特点.故选B.【点评】本题考查能用平方差公式分解的式子的特点,两平方项的符号相反是运用平方差公式的前提.4.函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b>0的解集为()A.x>0 B.x<0 C.x<2 D.x>2【考点】一次函数与一元一次不等式.【分析】从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b >0的解集.【解答】解:函数y=kx+b的图象经过点(2,0),并且函数值y随x的增大而减小,所以当x<2时,函数值小于0,即关于x的不等式kx+b>0的解集是x<2.故选C.【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用,注意几个关键点(交点、原点等),做到数形结合.5.使分式有意义的x的值为()A.x≠1 B.x≠2 C.x≠1 且x≠2 D.x≠1或x≠2【考点】分式有意义的条件.【分析】根据分式有意义,分母不等于0列不等式求解即可.【解答】解:由题意得,(x﹣1)(x﹣2)≠0,解得x≠1 且x≠2.故选C.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.6.下列是最简分式的是()A.B.C.D.【考点】最简分式.【分析】先将选项中能化简的式子进行化简,不能化简的即为最简分式,本题得以解决.【解答】解:,无法化简,,,故选B.【点评】本题考查最简分式,解题的关键是明确最简分式的定义.7.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.9【考点】等腰三角形的判定.【专题】分类讨论.【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【解答】解:如上图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点评】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.8.若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定【考点】解一元一次不等式组.【专题】计算题.【分析】解出不等式组的解集,与已知解集x<2比较,可以求出a的取值范围.【解答】解:由(1)得:x<2由(2)得:x<a因为不等式组的解集是x<2∴a≥2故选:C.【点评】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.9.下列式子:(1);(2);(3);(4),其中正确的有()A.1个 B.2个 C.3个 D.4个【考点】分式的基本性质.【分析】根据分式的基本性质作答.【解答】解:(1),错误;(2),正确;(3)∵b与a的大小关系不确定,∴的值不确定,错误;(4),正确.故选B.【点评】在分式中,无论进行何种运算,如果要不改变分式的值,则所做变化必须遵循分式基本性质的要求.10.某煤矿原计划x天生存120t煤,由于采用新的技术,每天增加生存3t,因此提前2天完成,列出的方程为()A.==﹣3 B.﹣3C.﹣3 D.=﹣3【考点】由实际问题抽象出分式方程.【分析】设原计划x天生存120t煤,则实际(x﹣2)天生存120t煤,等量关系为:原计划工作效率=实际工作效率﹣3,依此可列出方程.【解答】解:设原计划x天生存120t煤,则实际(x﹣2)天生存120t煤,根据题意得,=﹣3.故选D.【点评】本题考查由实际问题抽象出分式方程,关键设出天数,以工作效率作为等量关系列方程.二、填空题:11.分解因式x2(x﹣y)+(y﹣x)=(x﹣y)(x+1)(x﹣1).【考点】提公因式法与公式法的综合运用.【分析】把(x﹣y)看作一个整体并提取,然后再利用平方差公式继续分解因式即可.【解答】解:x2(x﹣y)+(y﹣x)=x2(x﹣y)﹣(x﹣y)=(x﹣y)(x2﹣1)=(x﹣y)(x+1)(x﹣1).故答案为:(x﹣y)(x+1)(x﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.当x=﹣2时,分式无意义.若分式的值为0,则a=﹣2.【考点】分式的值为零的条件;分式有意义的条件.【分析】根据分母为零,分式无意义;分母不为零,分式有意义,分子为零分母不为零分式的值为零,可得答案.【解答】解:∵分式无意义,∴x+2=0,解得x=﹣2.∵分式的值为0,∴,解得a=﹣2.故答案为:=﹣2,﹣2.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.13.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为6.【考点】线段垂直平分线的性质.【专题】计算题;压轴题.【分析】运用线段垂直平分线定理可得BE=CE,再根据已知条件“△EDC的周长为24,△ABC与四边形AEDC的周长之差为12”表示出线段之间的数量关系,联立关系式后求解.【解答】解:∵DE是BC边上的垂直平分线,∴BE=CE.∵△EDC的周长为24,∴ED+DC+EC=24,①∵△ABC与四边形AEDC的周长之差为12,∴(AB+AC+BC)﹣(AE+ED+DC+AC)=(AB+AC+BC)﹣(AE+DC+AC)﹣DE=12,∴BE+BD﹣DE=12,②∵BE=CE,BD=DC,∴①﹣②得,DE=6.故答案为:6.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.14.若4a4﹣ka2b+25b2是一个完全平方式,则k=±20.【考点】完全平方式.【分析】根据4a4﹣ka2b+25b2是一个完全平方式,利用此式首末两项是2a2和5b这两个数的平方,那么中间一项为加上或减去2a2和5b积的2倍,进而求出k的值即可.【解答】解:∵4a4﹣ka2b+25b2是一个完全平方式,∴4a4﹣ka2b+25b2=(2a2±5b)2,=4a4±20a2b+25b2.∴k=±20,故答案为:±20.【点评】此题主要考查的是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.15.如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为﹣.【考点】扇形面积的计算.【分析】连接OC,作OM⊥BC,ON⊥AC,证明△OMG≌△ONH,则S四边形OGCH =S四边形OMCN,求得扇形FOE的面积,则阴影部分的面积即可求得.【解答】解:连接OC,作OM⊥BC,ON⊥AC.∵CA=CB,∠ACB=90°,点O为AB的中点,∴OC=AB=1,四边形OMCN是正方形,OM=.则扇形FOE的面积是:=.∵OA=OB,∠AOB=90°,点D为AB的中点,∴OC平分∠BCA,又∵OM⊥BC,ON⊥AC,∴OM=ON,∵∠GOH=∠MON=90°,∴∠GOM=∠HON,则在△OMG和△ONH中,,∴△OMG≌△ONH(AAS),∴S四边形OGCH =S四边形OMCN=()2=.则阴影部分的面积是:﹣.故答案为:﹣.【点评】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△OMG≌△ONH,得到S四边形OGCH=S四边形OMCN是解题的关键.三、解答题16.(21分)(2016春•成都校级期中)(1)因式分解:2x2y﹣4xy2+2y3;(2)解方程:=+;(3)先化简,再求值(﹣x+1)÷,其中;(4)解不等式组,把解集在数轴上表示出来,且求出其整数解.【考点】分式的化简求值;提公因式法与公式法的综合运用;解分式方程;在数轴上表示不等式的解集;解一元一次不等式组;一元一次不等式组的整数解.【分析】(1)先提公因式,然后根据完全平方公式解答;(2)去分母后将原方程转化为整式方程解答.(3)将括号内统分,然后进行因式分解,化简即可;(4)分别求出不等式的解集,找到公共部分,在数轴上表示即可.【解答】解:(1)原式=2y(x2﹣2xy+y2)=2y(x﹣y)2;(2)去分母,得(x﹣2)2=(x+2)2+16去括号,得x2﹣4x+4=x2+4x+4+16移项合并同类项,得﹣8x=16系数化为1,得x=﹣2,当x=﹣2时,x+2=0,则x=﹣2是方程的增根.故方程无解;(3)原式=[﹣]•=•=•=﹣,当时,原式=﹣=﹣=﹣;(4)由①得x<2,由②得x≥﹣1,不等式组的解集为﹣1≤x<2,在数轴上表示为.【点评】本题考查的是分式的化简求值、因式分解、解一元一次不等式组、在数轴上表示不等式组的解集,考查内容较多,要细心解答.17.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;(2)画出△A1B1C1以点O为旋转中心、顺时针方向旋转90度的△A2B2C2,并求出点C1经过的路径的长度.【考点】作图﹣旋转变换;作图﹣平移变换.【分析】(1)分别作出点A、B、C沿y轴正方向平移3个单位得到对应点,顺次连接即可得;(2)分别作出点A、B、C以点O为旋转中心、顺时针方向旋转90度得到对应点,顺次连接即可得,再根据弧长公式计算即可.【解答】解:(1)如图,△A1B1C1即为所求作三角形,点B1坐标为(﹣2,﹣1);(2)如图,△A2B2C2即为所求作三角形,∵OC==,∴==π.【点评】本题考查了平移作图、旋转作图,解答本题的关键是熟练平移的性质和旋转的性质及弧长公式.18.小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书,科普书的价格比文学书的价格高出一半,因此他们买的文学书比科普书多一本,这种科普和文学书的价格各是多少?【考点】分式方程的应用.【专题】应用题.【分析】根据题意,设科普和文学书的价格分别为x和y元,则根据“科普书的价格比文学书的价格高出一半,买的文学书比科普书多一本“列方程组即可求解.【解答】解:设科普和文学书的价格分别为x和y元,则有:,解得:x=7.5,y=5,即这种科普和文学书的价格各是7.5元和5元.【点评】本题考查分式方程的应用,同时考查学生理解题意的能力,关键是根据“科普书的价格比文学书的价格高出一半,买的文学书比科普书多一本“列出方程组.19.已知关于x的方程=3的解是正数,求m的取值范围.【考点】解分式方程;解一元一次不等式.【专题】计算题.【分析】先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m 的取值范围.【解答】解:原方程整理得:2x+m=3x﹣6,解得:x=m+6.因为x>0,所以m+6>0,即m>﹣6.①又因为原式是分式方程,所以x≠2,即m+6≠2,所以m≠﹣4.②由①②可得,m的取值范围为m>﹣6且m≠﹣4.【点评】本题主要考查了分式方程的解法及其增根产生的原因.解答本题时,易漏掉m ≠4,这是因为忽略了x﹣2≠0这个隐含的条件而造成的,这应引起同学们的足够重视.20.(12分)(2016•河南模拟)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足∠BAD=2∠EAF关系时,仍有EF=BE+FD.【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)【考点】四边形综合题.【分析】【发现证明】根据旋转的性质可以得到△ADG≌△ABE,则GF=BE+DF,只要再证明△AFG≌△AFE即可.【类比引申】延长CB至M,使BM=DF,连接AM,证△ADF≌△ABM,证△FAE≌△MAE,即可得出答案;【探究应用】利用等边三角形的判定与性质得到△ABE是等边三角形,则BE=AB=80米.把△ABE绕点A逆时针旋转150°至△ADG,只要再证明∠BAD=2∠EAF即可得出EF=BE+FD.【解答】【发现证明】证明:如图(1),∵△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,∴∠GAF=∠FAE,在△GAF和△FAE中,,∴△AFG≌△AFE(SAS),∴GF=EF,又∵DG=BE,∴GF=BE+DF,∴BE+DF=EF;【类比引申】∠BAD=2∠EAF.理由如下:如图(2),延长CB至M,使BM=DF,连接AM,∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,∴∠D=∠ABM,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∵∠BAD=2∠EAF,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAM=∠EAM=∠EAF,在△FAE和△MAE中,,∴△FAE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF.故答案是:∠BAD=2∠EAF.【探究应用】如图3,把△ABE绕点A逆时针旋转150°至△ADG,连接AF,过A作AH ⊥GD,垂足为H.∵∠BAD=150°,∠DAE=90°,∴∠BAE=60°.又∵∠B=60°,∴△ABE是等边三角形,∴BE=AB=80米.根据旋转的性质得到:∠ADG=∠B=60°,又∵∠ADF=120°,∴∠GDF=180°,即点G在CD的延长线上.易得,△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵AH=80×=40,HF=HD+DF=40+40(﹣1)=40故∠HAF=45°,∴∠DAF=∠HAF﹣∠HAD=45°﹣30°=15°从而∠EAF=∠EAD﹣∠DAF=90°﹣15°=75°又∵∠BAD=150°=2×75°=2∠EAF∴根据上述推论有:EF=BE+DF=80+40(﹣1)≈109(米),即这条道路EF的长约为109米.【点评】此题主要考查了四边形综合题,关键是正确画出图形,证明∠BAD=2∠EAF.此题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫.。

【初中数学】四川省内江市2014-2015学年下学期期末考试八年级数学试卷(解析版) 人教版

四川省内江市2014-2015学年下学期期末考试八年级数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列式子是分式的是()A.B.C.D.考点:分式的定义.分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解答:解:∵,+y,的分母中均不含有字母,因此它们是整式,而不是分式.分母中含有字母,因此是分式.故选:B.点评:本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.2.已知﹣=2,则的值为()A.0.5 B.﹣0.5 C.2 D.﹣2考点:分式的化简求值.专题:计算题.分析:已知等式左边通分并利用同分母分式的减法法则计算,整理后代入原式计算即可得到结果.解答:解:∵﹣==2,∴a﹣b=﹣2ab,则原式=﹣0.5,故选B点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.3.在平面直角坐标系中,点P(﹣20,a)与点Q(b,13)关于原点对称,则a+b的值为()A.33 B.﹣33 C.﹣7 D.7考点:关于原点对称的点的坐标.分析:先根据关于原点对称的点的坐标特点:横坐标与纵坐标都互为相反数,求出a与b的值,再代入计算即可.解答:解:∵点P(﹣20,a)与点Q(b,13)关于原点对称,∴a=﹣13,b=20,∴a+b=﹣13+20=7.故选:D.点评:本题主要考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.4.若一次函数y=(m﹣3)x+5的函数值y随x的增大而增大,则()A.m>0 B.m<0 C.m>3 D.m<3考点:一次函数图象与系数的关系.分析:直接根据一次函数的性质可得m﹣3>0,解不等式即可确定答案.解答:解:∵一次函数y=(m﹣3)x+5中,y随着x的增大而增大,∴m﹣3>0,解得:m>3.故选:C.点评:本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0时,y随x 的增大而减小是解答此题的关键.5.分式的值为0,则()A.x=﹣2 B.x=±2 C.x=2 D.x=0考点:分式的值为零的条件.分析:分式的值为零:分子等于零,且分母不等于零.解答:解:由题意,得x2﹣4=0,且x+2≠0,解得x=2.故选:C.点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.6.小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A.B.C.D.考点:由实际问题抽象出分式方程.分析:首先表示出爸爸和小朱的速度,再根据题意可得等量关系:小朱走1440米的时间=爸爸走1440米的时间+10分钟,根据等量关系,表示出爸爸和小朱的时间,根据时间关系列出方程即可.解答:解:设小朱速度是x米/分,则爸爸的速度是(x+100)米/分,由题意得:=+10,即:=+10,故选:B.点评:此题主要考查了由实际问题抽象出分式方程,关键是分析题意,表示出爸爸和小朱的时间各走1440米所用时间,再由时间关系找出相等关系,列出方程.7.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD 于点F,则∠1=()A.40°B.50°C.60°D.80°考点:平行四边形的性质.分析:根据平行四边形的对边平行和角平分线的定义,以及平行线的性质求∠1的度数即可.解答:解:∵AD∥BC,∠B=80°,∴∠BAD=180°﹣∠B=100°.∵AE平分∠BAD∴∠DAE=∠BAD=50°.∴∠AEB=∠DAE=50°∵CF∥AE∴∠1=∠AEB=50°.故选B.点评:此题主要考查平行四边形的性质和角平分线的定义,属于基础题型.8.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长()A.4 B.6 C.8 D.10考点:菱形的判定与性质;矩形的性质.分析:首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD 是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.解答:解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=8.故选C.点评:此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE 是菱形是解此题的关键.9.如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°考点:正方形的性质;等腰三角形的性质;等边三角形的性质.分析:根据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC.解答:解:∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°﹣150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°.故选:C.点评:本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°.10.下列说法正确的是()A.对角线互相垂直的四边形是菱形B.两条对角线互相垂直平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形考点:多边形.分析:分别利用菱形以及平行四边形和矩形、正方形的判定方法分别分析求出即可.解答:解:A、对角线互相垂直的四边形不一定是菱形,此选项错误;B、两条对角线互相垂直平分的四边形是菱形,故此选项错误;C、对角线互相垂直的四边形无法确定其形状,故此选项错误;D、对角线相等且互相平分的四边形是矩形,正确.故选:D.点评:此题主要考查了多边形的相关定义,正确把握矩形、菱形、正方形以及平行四边形的区别是解题关键.11.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)考点:全等三角形的判定与性质;坐标与图形性质;正方形的性质.专题:几何图形问题.分析:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.解答:解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.点评:本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.12.如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(,0)B.(1,0)C.(,0)D.(,0)考点:反比例函数综合题;待定系数法求一次函数解析式;三角形三边关系.分析:求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP﹣BP|<AB,延长AB交x轴于P′,当P在P′点时,PA﹣PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.解答:解:∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,∴A(,2),B(2,),∵在△ABP中,由三角形的三边关系定理得:|AP﹣BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA﹣PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:,解得:k=﹣1,b=,∴直线AB的解析式是y=﹣x+,当y=0时,x=,即P(,0),故选:D.点评:本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.二、填空题(共4小题,每小题2分,满分8分)13.实验表明,人体内某种细胞的形状可近似看作球,它的直径约为0.00000156m,则这个数用科学记数法表示是 1.56×10﹣6m.考点:科学记数法—表示较小的数.专题:应用题.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 001 56m这个数用科学记数法表示是1.56×10﹣6m.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.有一组数据:3,a,4,6,7.它们的平均数是5,那么这组数据的方差是2.考点:方差;算术平均数.分析:先由平均数的公式计算出a的值,再根据方差的公式计算.一般地设n个数据,x1,x2,…,x n的平均数为,=(x1+x2+…+x n),则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].解答:解:a=5×5﹣3﹣4﹣6﹣7=5,s2=[(3﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(7﹣5)2]=2.故答案为:2.点评:本题考查了方差的定义:一般地设n个数据,x1,x2,…,x n的平均数为,=(x1+x2+…+x n),则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为﹣6.考点:反比例函数图象上点的坐标特征;菱形的性质.分析:先根据菱形的性质求出C点坐标,再把C点坐标代入反比例函数的解析式即可得出k 的值.解答:解:∵菱形的两条对角线的长分别是6和4,∴C(﹣3,2),∵点C在反比例函数y=的图象上,∴2=,解得k=﹣6.故答案为:﹣6.点评:本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定满足此函数的解析式.16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示的方式放置,点A1,A2,A3,…在直线y=x+1,点C1,C2,C3,…在x轴上,则B6的坐标是(63,32).考点:一次函数图象上点的坐标特征;正方形的性质.专题:规律型.分析:由直线解析式可求得A1,然后分别求得B1,B2,B3…的坐标,可以得到规律:B n(2n ﹣1,2n﹣1),据此即可求解.解答:解:∵直线解析式是:y=x+1,∴OA1=1∴A1B1=1,∴C1坐标为(1,0),∴A2坐标为(1,2),∴点B2的坐标为(3,2),∴点A3的坐标为(3,4),∴A3C2=A3B3=B3C3=4,∴点B3的坐标为(7,4),∴B1的纵坐标是:1=20,B1的横坐标是:1=21﹣1,∴B2的纵坐标是:2=21,B2的横坐标是:3=22﹣1,∴B3的纵坐标是:4=22,B3的横坐标是:7=23﹣1,∴B n的纵坐标是:2n﹣1,横坐标是:2n﹣1,则B n(2n﹣1,2n﹣1).∴B6的坐标是:(26﹣1,26﹣1),即(63,32).故答案为:(63,32).点评:此题主要考查了待定系数法求函数解析式和坐标的变化规律.此题难度较大,注意正确得到点的坐标的规律是解题的关键三、解答题(共6小题,满分56分)1)计算:()﹣1﹣(﹣1)2015﹣(π﹣3.14)0+|﹣5|(2)先化简÷(a+1)+,然后在﹣1,1,2中选一恰当值代入求值.考点:分式的化简求值;实数的运算;零指数幂;负整数指数幂.分析:(1)分别根据0指数幂及负整数指数幂的计算法则、数的乘方法则及绝对值的性质分别计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再选取合适的a的值代入进行计算即可.解答:解:(1)原式=2+1﹣1+5=7;(2)原式=•+=+=.当a=2时,原式==5点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.18.如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE.(1)求证:△BEC≌△DFA;(2)求证:四边形AECF是平行四边形.考点:矩形的性质;全等三角形的判定与性质;平行四边形的判定.专题:证明题.分析:(1)根据E、F分别是边AB、CD的中点,可得出BE=DF,继而利用SAS可判断△BEC ≌△DFA;(2)由(1)的结论,可得CE=AF,继而可判断四边形AECF是平行四边形.解答:证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,又∵E、F分别是边AB、CD的中点,∴BE=DF,∵在△BEC和△DFA中,,∴△BEC≌△DFA(SAS).(2)由(1)得,CE=AF,AD=BC,故可得四边形AECF是平行四边形.点评:本题考查了矩形的性质、全等三角形的判定与性质及平行四边形的判定,解答本题的关键是熟练掌握矩形的对边相等,四角都为90°,及平行四边形的判定定理.19.州教育局为了解我州八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据检测了两幅统计图,下面给出了两幅不完整的统计图(如图)请根据图中提供的信息,回答下列问题:(1)a=10%,并写出该扇形所对圆心角的度数为36°,请补全条形图.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该县共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?考点:条形统计图;用样本估计总体;扇形统计图;中位数;众数.专题:图表型.分析:(1)根据各部分所占的百分比的和等于1列式计算即可求出a,再用360°乘以所占的百分比求出所对圆心角的度数,然后用被抽查的学生人数乘以8天所占百分比求出8天的人数,补全条形统计图即可;(2)用众数和中位数的定义解答;(3)用总人数乘以“活动时间不少于7天”的百分比,计算即可得解.解答:解:(1)a=1﹣(40%+20%+25%+5%)=1﹣90%=10%,所对的圆心角度数=360°×10%=36°,被抽查的学生人数:240÷40%=600人,8天的人数:600×10%=60人,补全统计图如图所示:故答案为:10,36°;(2)参加社会实践活动5天的人数最多,所以,众数是5天,600人中,按照参加社会实践活动的天数从少到多排列,第300人和301人都是6天,所以,中位数是6天;(3)2000×(25%+10%+5%)=2000×40%=800人.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,本题也考查了中位数、众数的认识.20.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?考点:分式方程的应用.专题:工程问题;压轴题.分析:如果设甲工厂每天加工x件产品,那么根据乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍,可知乙工厂每天加工1.5x件产品.然后根据等量关系:甲工厂单独加工完成这批产品的天数﹣乙工厂单独加工完成这批产品的天数=10列出方程.解答:解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,依题意得﹣=10,解得:x=40.经检验:x=40是原方程的根,且符合题意.所以1.5x=60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.点评:本题考查了分式方程在实际生产生活中的应用.理解题意找出题中的等量关系,列出方程是解题的关键.注意分式方程一定要验根.21.如图,反比例函数y=的图象与一次函数y=ax+b的图象交于点A(1,4),点B(m,﹣2)(1)求这两个函数的关系式;(2)观察图象,写出不等式>ax+b的解;(3)如果有一点C与点A关于x轴对称,求△ABC的面积.考点:反比例函数与一次函数的交点问题.分析:(1)先把A点坐标代入入y=求出m得到反比例函数解析式为y=,再利用反比例函数解析式确定B点坐标,然后利用待定系数法求一次函数解析式;(2)根据图象得出取值范围即可;(3)根据点C与点A关于x轴对称得出点C的坐标,利用三角形面积公式计算即可.解答:解:(1)∵y=函数的图象过点A(1,4),∴k=4,即y=,又∵点B(m,﹣2)在y=上,∴m=﹣2,∴B(﹣2,﹣2),又∵一次函数y=ax+b过A、B两点,即,解得:,∴y=2x+2;(2)根据图象可得:不等式>ax+b的解为:0<x<1或x<﹣2;(3)∵点C与点A关于x轴对称,∴C点坐标为(1,﹣4),∴S△ABC=×(1+2)×(4+4)=12.点评:此题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求一次函数解析式.22.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC与点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P自A→F→B→A停止,点Q自C→D→E→C停止,在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.考点:四边形综合题.分析:(1)根据全等推出OE=OF,得出平行四边形AFCE,根据菱形判定推出即可,根据菱形性质得出AF=CF,根据勾股定理得出方程,求出方程的解即可;(2)分情况讨论可知,当P点在BF上、Q点在ED上时,才能构成平行四边形,根据平行四边形的性质列出方程求解即可.解答:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO,∵AC的垂直平分线EF,∴OA=OC,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF,∵OA=OC,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE是菱形.∴AF=FC,设AF=xcm,则CF=xcm,BF=(8﹣x)cm,∵四边形ABCD是矩形,∴∠B=90°,∴在Rt△ABF中,由勾股定理得:42+(8﹣x)2=x2,解得x=5,即AF=5cm;(2)显然当P点在AF上时,Q点在CD上,此时A、C、P、Q四点不可能构成平行四边形;同理P点在AB上时,Q点在DE或CE上或P在BF,Q在CD时不构成平行四边形,也不能构成平行四边形.因此只有当P点在BF上、Q点在ED上时,才能构成平行四边形,∴以A、C、P、Q四点为顶点的四边形是平行四边形时,PC=QA,∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,∴PC=5t,QA=12﹣4t,∴5t=12﹣4t,解得t=.∴以A、C、P、Q四点为顶点的四边形是平行四边形时,t=秒.点评:本题考查的是四边形综合题型,主要考查了矩形的性质,全等三角形的判定与性质,翻折变换的性质,菱形的判定与性质,平行四边形的性质.。

【解析版】2014-2015学年成都市金堂县八年级下期末数学试卷

【解析版】2014-2015学年成都市金堂县八年级下期末数学试卷一、选择题(每小题3分,共30分)1.若分式有意义,则x应满足的条件是()A.x≠0 B.x≥3 C.x≠3 D.x≤32.如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()A.30°B.40°C.50°D.60°3.下列图形中是中心对称图形的是()A.B.C.D.4.如图,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,则四边形ABFD的周长为()A. 6 B.8 C.10 D.125.若一个多边形的每个外角都等于60°,则它的内角和等于()A.180°B.720°C.1080°D.540°6.把不等式组:的解集表示在数轴上,正确的是()A.B.C.D.7.若解分式方程=产生増根.则m等于()A. 1 B.0 C.﹣4 D.﹣58.能判定四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC D.AB=AD,CB=CD9.下列命题,其中真命题有()①4的平方根是2;②有两边和一角相等的两个三角形全等;③顺次连接任意四边形各边中点得到的四边形是平行四边形.A.0个B.3个C.2个D.1个10.炎炎夏日,甲安装队为A小区安装60台空调,乙安装队为B小区安装50台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,按照题意,下面所列方程中正确的是()A.B.C.D.二、填空题(每小题3分,共15分)11.分解因式:x2﹣4=.12.若代数式的值等于零,则x=.13.如图,数轴所表示的不等式的解集是.14.将点A(﹣1,2)沿x轴向右平移3个单位长度,再沿y轴向下平移4个长度单位后得到点A′的坐标为.15.如图,在平行四边形ABCD中,AC、BD相交于点O,点E是A B的中点.若OE=3cm,则AD的长是cm.三、解答题(共55分.其中16题每小题6分共18分,17题6分,18题9分,19题10分,20题12分.)16.(1)分解因式:x2(x﹣y)+(y﹣x)(2)先化简,再求值:,其中x=2016.(3)解不等式组,并将解集在数轴上表示出来,并写出其自然数解.17.如图,在▱ABCD中,BE=DF.求证:AE=CF.18.(10分)(2013•辽宁模拟)如图,方格纸中的每个小方格差不多上边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1 C1,并写出C1的坐标;②以原点O为对称中心,画出△ABC与关于原点对称的△A2B2C2,并写出点C2的坐标;③以原点O为旋转中心,画出把△ABC顺时针旋转90°的图形△A3 B3C3,并写出C3的坐标.19.(10分)(2011•铜仁地区)为鼓舞学生参加体育锤炼,学校打算拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元.(1)篮球和排球的单价分不是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案?20.(12分)(2013•常德)已知两个共一个顶点的等腰Rt△ABC,Rt △CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.B卷.一、填空题(每小题4分,共20分)21.若a+b=3,ab=2,则a2b+ab2=.22.若关于x的方程+3=无解,则k=.23.若不等式组有解,则a的取值范畴是.24.如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是.25.若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“可连数”,例如32是“可连数”,因为32+33+34不产生进位现象;23不是“可连数”,因为23+24+25产生了进位现象,那么小于20 0的“可连数”的个数为.二、(本题共1小题,共8分)26.为了鼓舞市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨以下 a 0.80超过17吨但不超过30吨的部分 b 0.80超过30吨的部分 6.00 0.80(讲明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a、b的值;(2)随着夏天的到来,用水量将增加.为了节约开支,小王打算把6月份的水费操纵在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?三、(本题共1小题,共10分)27.(10分)(2015春•金堂县期末)咨询题背景甲、乙、丙三名同学探究课本上一道题:如图1,E是边长为a的正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形.任务要求:(1)请你在图1中画出旋转后的图形甲、乙、丙三名同学又连续探究:在正方形ABCD中,∠EAF=45°,点F为BC上一点,点E为DC上一点,∠EAF的两边AE、AF分不与直线BD交于点M、N.连接EF 甲发觉:线段BF,EF,DE之间存在着关系式EF=BF+DE;乙发觉:△CEF的周长是一个恒定不变的值;丙发觉:线段BN,MN,DM之间存在着关系式BN2+DM2=MN2(2)现请你参与三位同学的研究工作中来,你认为三名同学中哪个的发觉是正确的,并讲明你的理由.四、(本题共1小题,共12分)28.(12分)(2015春•金堂县期末)如图,直线y=x+6与x轴、y轴分不相交于点E、F,点A的坐标为(﹣6,0),P(x,y)是直线y=x+ 6上一个动点.(1)在点P运动过程中,试写出△OPA的面积s与x的函数关系式;(2)当P运动到什么位置,△OPA的面积为,求出现在点P的坐标;(3)过P作EF的垂线分不交x轴、y轴于C、D.是否存在如此的点P,使△COD≌△FOE?若存在,直截了当写出现在点P的坐标(不要求写解答过程);若不存在,请讲明理由.2014-2015学年四川省成都市金堂县八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.若分式有意义,则x应满足的条件是()A.x≠0 B.x≥3 C.x≠3 D.x≤3考点:分式有意义的条件.专题:压轴题.分析:本题要紧考查分式有意义的条件:分母≠0.解答:解:∵x﹣3≠0,∴x≠3.故选C.点评:本题考查的是分式有意义的条件.当分母不为0时,分式有意义.2.如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()A.30°B.40°C.50°D.60°考点:旋转的性质.专题:运算题;压轴题.分析:按照旋转的意义,图片按逆时针方向旋转80°,可得∠AOC= 80°,又有∠A=110°,∠D=40°,按照图形可得,∠α=∠AOC﹣∠DO C;代入数据可得答案.解答:解:按照旋转的意义,图片按逆时针方向旋转80°,即∠AOC=80°,又∵∠A=110°,∠D=40°,∴∠DOC=30°,则∠α=∠AOC﹣∠DOC=50°.故选C.点评:图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变.3.下列图形中是中心对称图形的是()A.B.C.D.考点:中心对称图形.专题:压轴题.分析:按照中心对称的定义,结合所给图形即可作出判定.解答:解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:B.点评:本题考查了中心对称图形的特点,属于基础题,判定中心对称图形的关键是旋转180°后能够重合.4.如图,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,则四边形ABFD的周长为()A. 6 B.8 C.10 D.12考点:平移的性质;等边三角形的性质.专题:压轴题.分析:按照平移的性质,通过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等运算出四边形ABFD各边的长度.解答:解:AC与DF是对应边,AC=2,则DF=2,向右平移一个单位,则AD=1,BF=3,故其周长为2+1+2+3=8.故选B.点评:按照平移的性质,找出对应边,求出四边形各边的长度,相加即可.5.若一个多边形的每个外角都等于60°,则它的内角和等于()A.180°B.720°C.1080°D.540°考点:多边形内角与外角.专题:压轴题.分析:由一个多边形的每个外角都等于60°,按照n边形的外角和为360°运算出多边形的边数n,然后按照n边形的内角和定理运算即可.解答:解:设多边形的边数为n,∵多边形的每个外角都等于60°,∴n=360°÷60°=6,∴那个多边形的内角和=(6﹣2)×180°=720°.故选B.点评:本题考查了n边形的内角和定理:n边形的内角和=(n﹣2)•1 80°;也考查了n边形的外角和为360°.6.把不等式组:的解集表示在数轴上,正确的是()A.B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:压轴题.分析:先求出两个不等式的解集,各个不等式的解集的公共部分确实是那个不等式组的解集.解答:解:解不等式组得:.再分不表示在数轴上为.在数轴上表示得:.故选A.点评:此题要紧考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段确实是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.若解分式方程=产生増根.则m等于()A. 1 B.0 C.﹣4 D.﹣5考点:分式方程的增根.专题:运算题.分析:第一去分母,进而得出x与m的关系,进而利用分式方程有增根,则x=﹣4,即可得出m的值.解答:解:=去分母得:x﹣1=m,∴x=1+m,∵解分式方程=产生増根,∴x=﹣4,∴﹣4=1+m,解得:m=﹣5.故选:D.点评:此题要紧考查了分式方程的增根,正确求出x与m的关系是解题关键.8.能判定四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC D.AB=AD,CB=CD考点:平行四边形的判定.专题:压轴题.分析:平行四边形的判定:①两组对边分不平行的四边形是平行四边形;②两组对边分不相等的四边形是平行四边形;③两组对角分不相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.解答:解:按照平行四边形的判定定理知,A、B、D均不符合是平行四边形的条件;C满足两组对边分不相等的四边形是平行四边形.故选C.点评:本题考查了平行四边形的判定,熟练把握判定定理是解题的关键.平行四边形共有五种判定方法,经历时要注意技巧;这五种方法中,一种与对角线有关,一种与对角有关,其他三种与边有关.9.下列命题,其中真命题有()①4的平方根是2;②有两边和一角相等的两个三角形全等;③顺次连接任意四边形各边中点得到的四边形是平行四边形.A.0个B.3个C.2个D.1个考点:命题与定理.分析:按照平方根的定义对①进行判定;按照全等三角形的判定方法对②进行判定;按照三角形中位线性质和平行四边形的判定方法对③进行判定.解答:解:4的平方根是±2,因此①错误;有两边和它们的夹角对应相等的两个三角形全等,因此②错误;顺次连接任意四边形各边中点得到的四边形是平行四边形,因此③正确.故选D.点评:本题考查了命题与定理:判定一件情况的语句,叫做命题.许多命题差不多上由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题能够写成“如果…那么…”形式.有些命题的正确性是用推理证实的,如此的真命题叫做定理.10.炎炎夏日,甲安装队为A小区安装60台空调,乙安装队为B小区安装50台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,按照题意,下面所列方程中正确的是()A.B.C.D.考点:由实际咨询题抽象出分式方程.专题:压轴题.分析:关键描述语为:“两队同时开工且恰好同时完工”,找出等量关系为:甲队所用时刻=乙队所用时刻,按照所用时刻相同列出分式方程即可.解答:解:设乙队每天安装x台,则甲队每天安装x+2台,由题意得,甲队用的时刻为:,乙队用的时刻为:,则方程为:=.故选D.点评:本题考查了由实际咨询题抽象出分式方程,找到相应的等量关系是解决咨询题的关键,注意工作时刻=工作总量÷工作效率.二、填空题(每小题3分,共15分)11.分解因式:x2﹣4=(x+2)(x﹣2).考点:因式分解-运用公式法.专题:因式分解.分析:直截了当利用平方差公式进行因式分解即可.解答:解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).点评:本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.12.若代数式的值等于零,则x=2.考点:分式的值为零的条件.专题:运算题.分析:分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此能够解答本题.解答:解:x﹣2=0,解得x=2.且x+2≠0,∴x=2.故答案为2.点评:分式值为0,那么需考虑分子为0,分母不为0.13.如图,数轴所表示的不等式的解集是x≤3.考点:在数轴上表示不等式的解集.分析:按照不等式的解集在数轴上表示方法即可求出不等式的解集.解答:解:如图所示,x≤3.故答案为:x≤3.点评:本题考查了不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.14.将点A(﹣1,2)沿x轴向右平移3个单位长度,再沿y轴向下平移4个长度单位后得到点A′的坐标为(2,﹣2).考点:坐标与图形变化-平移.分析:按照点的平移规律,左右移,横坐标减加,纵坐标不变;上下移,纵坐标加减,横坐标不变即可解的答案.解答:解:∵点A(﹣1,2)沿x轴向右平移3个单位长度,再沿y 轴向下平移4个长度单位后得到点A′,∴A′的坐标是(﹣1+3,2﹣4),即:(2,﹣2).故答案为:(2,﹣2).点评:此题要紧考查了点的平移规律,正确把握规律是解题的关键.15.如图,在平行四边形ABCD中,AC、BD相交于点O,点E是A B的中点.若OE=3cm,则AD的长是6cm.考点:平行四边形的性质;三角形中位线定理.分析:按照平行四边形的性质,可得出点O平分BD,则OE是三角形ABD的中位线,则AD=2OE.解答:解:∵四边形ABCD为平行四边形,∴BO=DO,∵点E是AB的中点,∴OE为△ABD的中位线,∴AD=2OE,∵OE=3cm,∴AD=6cm.故答案为6.点评:本题考查了平行四边形的性质、三角形的中位线定理,是基础知识比较简单.三、解答题(共55分.其中16题每小题6分共18分,17题6分,18题9分,19题10分,20题12分.)16.(1)分解因式:x2(x﹣y)+(y﹣x)(2)先化简,再求值:,其中x=2016.(3)解不等式组,并将解集在数轴上表示出来,并写出其自然数解.考点:分式的化简求值;提公因式法与公式法的综合运用;在数轴上表示不等式的解集;解一元一次不等式组;一元一次不等式组的整数解.分析:(1)先提取公因式,再利用平方差公式把原式进行因式分解即可;(2)先按照分式混合运算的法则把原式进行化简,再把x的值代入进行运算即可;(3)分不求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:(1)原式=x2(x﹣y)﹣(x﹣y)=(x﹣y)(x2﹣1),=(x﹣y)(x+1)(x﹣1);(2)原式=+===x﹣1;当x=2016时,原式=2016﹣1=2015;(3),由①得:2x+3≥3x≥0,由②得:x<7﹣4x<3,原不等式组解集为:0≤x<3,其中自然数解有:0,1,2,3..点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.如图,在▱ABCD中,BE=DF.求证:AE=CF.考点:平行四边形的性质;全等三角形的判定与性质.专题:证明题.分析:由平行四边形的性质得出AD∥BC,AD=BC,证出∠ADE=∠CBF,再由BE=DF,得出DE=BF,证明△ADE≌△CBF,即可得出结论.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADE=∠CBF,∵BE=DF,∴DE=BF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS),∴AE=CF.点评:本题考查了平行四边形的性质、全等三角形的判定与性质;熟练把握平行四边形的性质,证明三角形全等是解决咨询题的关键.18.(10分)(2013•辽宁模拟)如图,方格纸中的每个小方格差不多上边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1 C1,并写出C1的坐标;②以原点O为对称中心,画出△ABC与关于原点对称的△A2B2C2,并写出点C2的坐标;③以原点O为旋转中心,画出把△ABC顺时针旋转90°的图形△A3 B3C3,并写出C3的坐标.考点:作图-旋转变换;作图-平移变换.分析:(1)将A、B、C按平移条件找出它的对应点,顺次连接,即得到平移后的图形;(2)利用关于中心对称的两个图形,对称点连线都通过对称中心,同时被对称中心平分,分不找出A、B、C的对应点,顺次连接,即得到相应的图形;(3)利用对应点到旋转中心的距离相等,以及对应点与旋转中心所连线段的夹角等于旋转角,即可作出判定.解答:解:(1)如图所示:C1的坐标为:(4,4);(2)如图所示:C2的坐标为:(﹣4,1);(3)如图所示:C3的坐标为:(﹣1,﹣4).点评:本题考查的是平移变换与旋转变换作图.不管是何种变换都需先找出各关键点的对应点,然后顺次连接即可.19.(10分)(2011•铜仁地区)为鼓舞学生参加体育锤炼,学校打算拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元.(1)篮球和排球的单价分不是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案?考点:一元一次不等式组的应用;一元一次方程的应用.专题:压轴题;方案型.分析:(1)设篮球的单价为x元,则排球的单价为x元,再由单价和为160元即可列出关于x的方程,求出x的值,进而可得到篮球和排球的单价;(2)设购买的篮球数量为n,则购买的排球数量为(36﹣n)个,再按照(1)中两种球的数量可列出关于n的一元一次不等式组,求出n的取值范畴,按照n是正整数可求出n的取值,得到36﹣n的对应值,进而可得到购买方案.解答:解:(1)设篮球的单价为x元,则排球的单价为x元,据题意得x+x=160,解得x=96,故x=×96=64,因此篮球和排球的单价分不是96元、64元.(2)设购买的篮球数量为n,则购买的排球数量为(36﹣n)个.由题意得:解得25<n≤28.而n是整数,因此其取值为26,27,28,对应36﹣n的值为10,9,8,因此共有三种购买方案:①购买篮球26个,排球10个;②购买篮球27个,排球9个;③购买篮球28个,排球8个.点评:本题考查的是一元一次不等式组及一元一次方程的应用,能按照题意得出关于x的一元一次方程及关于n的一元一次不等式是解答此题的关键.20.(12分)(2013•常德)已知两个共一个顶点的等腰Rt△ABC,Rt △CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.考点:三角形中位线定理;全等三角形的判定与性质;等腰直角三角形.专题:压轴题.分析:(1)证法一:如答图1a所示,延长AB交CF于点D,证明B M为△ADF的中位线即可;证法二:如答图1b所示,延长BM交EF于D,按照在同一平面内,垂直于同一直线的两直线互相平行可得AB∥EF,再按照两直线平行,内错角相等可得∠BAM=∠DFM,按照中点定义可得AM=MF,然后利用“角边角”证明△ABM和△FDM全等,再按照全等三角形对应边相等可得AB= DF,然后求出BE=DE,从而得到△BDE是等腰直角三角形,按照等腰直角三角形的性质求出∠EBM=45°,从而得到∠EBM=∠ECF,再按照同位角相等,两直线平行证明MB∥CF即可,(2)解法一:如答图2a所示,作辅助线,推出BM、ME是两条中位线;解法二:先求出BE的长,再按照全等三角形对应边相等可得BM=D M,按照等腰三角形三线合一的性质可得EM⊥BD,求出△BEM是等腰直角三角形,按照等腰直角三角形的性质求解即可;(3)证法一:如答图3a所示,作辅助线,推出BM、ME是两条中位线:BM=DF,ME=AG;然后证明△ACG≌△DCF,得到DF=AG,从而证明BM=ME;证法二:如答图3b所示,延长BM交CF于D,连接BE、DE,利用同旁内角互补,两直线平行求出AB∥CF,再按照两直线平行,内错角相等求出∠BAM=∠DFM,按照中点定义可得AM=MF,然后利用“角边角”证明△ABM和△FDM全等,再按照全等三角形对应边相等可得AB=DF,B M=DM,再按照“边角边”证明△BCE和△DFE全等,按照全等三角形对应边相等可得BE=DE,全等三角形对应角相等可得∠BEC=∠DEF,然后求出∠BED=∠CEF=90°,再按照等腰直角三角形的性质证明即可.解答:(1)证法一:如答图1a,延长AB交CF于点D,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,∴点B为线段AD的中点,又∵点M为线段AF的中点,∴BM为△ADF的中位线,∴BM∥CF.证法二:如答图1b,延长BM交EF于D,∵∠ABC=∠CEF=90°,∴AB⊥CE,EF⊥CE,∴AB∥EF,∴∠BAM=∠DFM,∵M是AF的中点,∴AM=MF,在△ABM和△FDM中,,∴△ABM≌△FDM(ASA),∴AB=DF,∵BE=CE﹣BC,DE=EF﹣DF,∴BE=DE,∴△BDE是等腰直角三角形,∴∠EBM=45°,∵在等腰直角△CEF中,∠ECF=45°,∴∠EBM=∠ECF,∴MB∥CF;(2)解法一:如答图2a所示,延长AB交CF于点D,则易知△BCD与△ABC为等腰直角三角形,∴AB=BC=BD=a,AC=CD=a,∴点B为AD中点,又点M为AF中点,∴BM=DF.分不延长FE与CA交于点G,则易知△CEF与△CEG均为等腰直角三角形,∴CE=EF=GE=2a,CG=CF=a,∴点E为FG中点,又点M为AF中点,∴ME=AG.∵CG=CF=a,CA=CD=a,∴AG=DF=a,∴BM=ME=×a=a.解法二:如答图1b.∵CB=a,CE=2a,∴BE=CE﹣CB=2a﹣a=a,∵△ABM≌△FDM,∴BM=DM,又∵△BED是等腰直角三角形,∴△BEM是等腰直角三角形,∴BM=ME=BE=a;(3)证法一:如答图3a,延长AB交CE于点D,连接DF,则易知△ABC与△BCD 均为等腰直角三角形,∴AB=BC=BD,AC=CD,∴点B为AD中点,又点M为AF中点,∴BM=DF.延长FE与CB交于点G,连接AG,则易知△CEF与△CEG均为等腰直角三角形,∴CE=EF=EG,CF=CG,∴点E为FG中点,又点M为AF中点,∴ME=AG.在△ACG与△DCF中,,∴△ACG≌△DCF(SAS),∴DF=AG,∴BM=ME.证法二:如答图3b,延长BM交CF于D,连接BE、DE,∵∠BCE=45°,∴∠ACD=45°×2+45°=135°∴∠BAC+∠ACF=45°+135°=180°,∴AB∥CF,∴∠BAM=∠DFM,∵M是AF的中点,∴AM=FM,在△ABM和△FDM中,,∴△ABM≌△FDM(ASA),∴AB=DF,BM=DM,∴AB=BC=DF,在△BCE和△DFE中,,∴△BCE≌△DFE(SAS),∴BE=DE,∠BEC=∠DEF,∴∠BED=∠BEC+∠CED=∠DEF+∠CED=∠CEF=90°,∴△BDE是等腰直角三角形,又∵BM=DM,∴BM=ME=BD,故BM=ME.点评:本题考查了三角形中位线定理、全等三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出中位线、全等三角形和等腰直角三角形是解题的关键,也是本题的难点.B卷.一、填空题(每小题4分,共20分)21.若a+b=3,ab=2,则a2b+ab2=6.考点:因式分解的应用.专题:运算题;压轴题.分析:将所求式子提取公因式ab,再整体代入求值.解答:解:a2b+ab2=ab(a+b)=2×3=6.故答案为:6.点评:本题考查了因式分解法的运用.按照所求的式子,合理地选择因式分解的方法.22.若关于x的方程+3=无解,则k=1.考点:分式方程的解.分析:把关于x的方程+3=化为整式方程,观看可得整式方程不存在无解的情形,那么确实是分式方程产生增根了,把增根代入整式方程即可.解答:解:两边同时乘(x﹣3),得1+3(x﹣3)=﹣k(x﹣4),整理得:3x﹣8=﹣kx+4k,整式方程不存在无解的情形,∴原方程无解时,x=3,把x=3代入3x﹣8=﹣kx+4k,解得:k=1,故答案为:1.点评:本题考查了分式方程的解,分式方程无解的可能为:整式方程本身无解当未知数是系数为一定值时,整式方程不存在无解的情形;分式方程产生增根.23.若不等式组有解,则a的取值范畴是a<3.考点:解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再按照不等式组有解即可得到关于a的不等式,求出a的取值范畴即可.解答:解:,由①得,x>a﹣1;由②得,x≤2,∵此不等式组有解,∴a﹣1<2,解得a<3.故答案为a<3.点评:本题考查的是解一元一次不等式组,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解答此题的关键.24.如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是 1.5.考点:旋转的性质;等边三角形的性质.专题:压轴题.分析:取AC的中点G,连接EG,按照等边三角形的性质可得CD= CG,再求出∠DCF=∠GCE,按照旋转的性质可得CE=CF,然后利用“边角边”证明△DCF和△GCE全等,再按照全等三角形对应边相等可得DF= EG,然后按照垂线段最短可得EG⊥AD时最短,再按照∠CAD=30°求解即可.解答:解:如图,取AC的中点G,连接EG,∵旋转角为60°,∴∠ECD+∠DCF=60°,又∵∠ECD+∠GCE=∠ACB=60°,∴∠DCF=∠GCE,∵AD是等边△ABC的对称轴,∴CD=BC,∴CD=CG,又∵CE旋转到CF,∴CE=CF,在△DCF和△GCE中,,∴△DCF≌△GCE(SAS),∴DF=EG,按照垂线段最短,EG⊥AD时,EG最短,即DF最短,现在∵∠CAD=×60°=30°,AG=AC=×6=3,∴EG=AG=×3=1.5,∴DF=1.5.故答案为:1.5.点评:本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.25.若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“可连数”,例如32是“可连数”,因为32+33+34不产生进位现象;23不是“可连数”,因为23+24+25产生了进位现象,那么小于20 0的“可连数”的个数为24.考点:一元一次不等式的应用.专题:压轴题.分析:第一明白得“可连数”的概念,再分不考虑个位、十位、百位满足的数,用排列组合的思想求解.解答:解:个位需要满足:x+(x+1)+(x+2)<10,即x<,x可取0,1,2三个数.十位需要满足:y+y+y<10,即y<,y可取0,1,2,3四个数(假设0n确实是n)因为是小于200的“可连数”,故百位需要满足:小于2,则z可取1一个数.则小于200的三位“可连数”共有的个数=4×3×1=12;。

四川省成都七中育才学校 八年级数学下学期第3周周练试卷含解析新人教版含答案

2015-2016学年四川省成都七中育才学校八年级(下)第3周周练数学试卷一.选择题1.点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)2.如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为()A.2 B.3 C.5 D.73.已知一次函数y=(1﹣3m)x+1,若y随x的增大而减小,则m的取值范围是()A.m<B.m<﹣C.m>D.m>﹣4.如图,当y<0时,自变量x的范围是()A.x<﹣2 B.x>﹣2 C.x>2 D.x<25.点A(m﹣4,1﹣2m)在第三象限,则m的取值范围是()A.m>B.m<4 C.<m<4 D.m>46.如图:△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC 边于点D,交AC边与点E,连接AD,若AE=4cm,则△ABD的周长是()A.22cm B.20cm C.18cm D.15cm7.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A.110°B.80°C.40°D.30°8.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折9.如图,面积为12cm2的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的三倍,则图中的四边形ACED的面积为()A.48cm2B.60cm2C.72cm2D.无法确定10.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C 为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)二.填空题11.如图,Rt△ABC中,AB=1cm,AC=2cm,将Rt△ABC绕点A按逆时针方向旋转26°得到△ADE,则DE=______cm,BAD=______.12.等腰三角形的周长为14,其一边长为4,那么它的底边为______.13.不等式组的解集是x<m﹣2,则m的取值应为______.14.将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是______cm2.三.计算15.计算:﹣3+(2)解不等式,并将解集在数轴上表示出来:﹣>﹣2.16.一次函数y=2x﹣a与x轴的交点是点(﹣2,0)关于y轴的对称点,求一元一次不等式2x﹣a≤0的解集.(2)已知2a﹣3x+1=0,3b﹣2x﹣16=0,且a≤4<b,求x的取值范围.四.作图题17.在如图的方格纸中,每个小正方形的边长都是为1.(1)画出将△ABC向下平移3格得到的△A1B1C1;(2)画出△A1B1C1以C1为旋转中心,顺时针旋转90°后得到的△A2B2C1;(3)求△A1B1C1旋转过程中,扫过部分的面积.五.解答题18.已知:如图,在△ABC中,∠BAC=120°,以BC为边向形外作等边△BCD,把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,若AB=3,AC=2.(1)求证:点A、C、E在一条直线上;(2)求∠BAD的度数;(3)求AD的长.19.某电器经营业主计划购进一批同种型号的挂式空调和电风扇.若购进8台空调和20台电风扇,需资金17400元.若购进10台空调和30台电风扇需资金22500元.(1)求挂式空调和电风扇每台的采购价格各是多少元?(2)该经营业主计划购进这两种电器共70台.而可用于购买这两种电器的资金不超过30000元.据市场行情,销售一台这样的空调可获利200元,销售一台这样的电风扇可获利30元.试问该经营业主在保证最低利润3500元的基础上有哪几种进货方案?哪种方案获利最大?最大利润是多少?20.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.六、填空题(共4小题,每小题3分,满分20分)21.若不等式组有解,则m的取值范围是______.22.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=______度.23.如图,在正方形ABCD中,边AD绕点A顺时针旋转角度m(0°<m<360°),得到线段AP,连接PB,PC.当△BPC是等腰三角形时,m的值为______.24.如图,在△ABC中,已知AB=AC,∠BAC=90°,BC=6cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒2厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度运动,连接AD、AE,设运动时间为t秒.(1)求AB的长;(2)当t为多少时,△ABD的面积为6cm2?(3)当t为多少时,△ABD≌△ACE,并简要说明理由.(可在备用图中画出具体图形)2015-2016学年四川省成都七中育才学校八年级(下)第3周周练数学试卷参考答案与试题解析一.选择题1.点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)【考点】坐标与图形变化-平移.【分析】根据平移时,坐标的变化规律“上加下减,左减右加”进行计算.【解答】解:根据题意,得点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,所得点的横坐标是﹣2﹣1=﹣3,纵坐标是﹣3+3=0,即新点的坐标为(﹣3,0).故选A.【点评】此题考查了平移时,点的坐标变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.2.如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为()A.2 B.3 C.5 D.7【考点】平移的性质.【分析】观察图象,发现平移前后,B 、E 对应,C 、F 对应,根据平移的性质,易得平移的距离=BE=5﹣3=2,进而可得答案. 【解答】解:根据平移的性质, 易得平移的距离=BE=5﹣3=2,故选A .【点评】本题考查平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,本题关键要找到平移的对应点.3.已知一次函数y=(1﹣3m )x+1,若y 随x 的增大而减小,则m 的取值范围是( )A .m <B .m <﹣C .m >D .m >﹣ 【考点】一次函数的性质.【分析】根据y 随x 的增大而减小结合一次函数的性质即可得出关于m 的一元一次不等式,解不等式即可得出结论.【解答】解:由已知得:1﹣3m <0,解得:m >. 故选C .【点评】本题考查了一次函数的性质,解题的关键是得出关于m 的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的性质找出系数k 的取值范围是关键.4.如图,当y <0时,自变量x 的范围是( )A .x <﹣2B .x >﹣2C .x >2D .x <2 【考点】一次函数图象上点的坐标特征.【分析】通过观察函数图象,当y <0时,图象在x 轴左方,写出对应的自图象在x 轴左方变量的范围即可.【解答】解:由图象可得,一次函数的图象与x 轴的交点为(﹣2,0),当y <0时,x <﹣2. 故选:A .【点评】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.5.点A (m ﹣4,1﹣2m )在第三象限,则m 的取值范围是( )A .m >B .m <4C .<m <4D .m >4 【考点】点的坐标;解一元一次不等式组.【分析】点在第三象限的条件是:横坐标是负数,纵坐标是负数. 【解答】解:∵点A (m ﹣4,1﹣2m )在第三象限,∴,解得<m <4. 故选C .【点评】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点.该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m 的取值范围.6.如图:△ABC 的周长为30cm ,把△ABC 的边AC 对折,使顶点C 和点A 重合,折痕交BC 边于点D ,交AC 边与点E ,连接AD ,若AE=4cm ,则△ABD 的周长是( )A .22cmB .20cmC .18cmD .15cm【考点】翻折变换(折叠问题).【分析】根据翻折变换的性质可得AE=EC,AD=CD,然后求出△ABD的周长=AB+BC,代入数据计算即可得解.【解答】解:∵△ABC的边AC对折顶点C和点A重合,∴AE=EC,AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵AE=4cm,∴AC=AE+EC=4+4=8,∵△ABC的周长为30cm,∴AB+BC=30﹣8=22cm,∴△ABD的周长是22cm.故选A.【点评】本题考查了翻折变换的性质,熟记翻折前后的两个图形能够完全重合得到相等的边是解题的关键.7.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A.110°B.80°C.40°D.30°【考点】旋转的性质.【分析】首先根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,即可得到∠A′=40°,再有∠B′=110°,利用三角形内角和可得∠A′CB′的度数,进而得到∠ACB的度数,再由条件将△ABC绕着点C顺时针旋转50°后得到△A′B′C′可得∠ACA′=50°,即可得到∠BCA′的度数.【解答】解:根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,∵∠A=40°,∴∠A′=40°,∵∠B′=110°,∴∠A′CB′=180°﹣110°﹣40°=30°,∴∠ACB=30°,∵将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,∴∠ACA′=50°,∴∠BCA′=30°+50°=80°,故选:B.【点评】此题主要考查了旋转的性质,关键是熟练掌握旋转前、后的图形全等,进而可得到一些对应角相等.8.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折【考点】一元一次不等式的应用.【分析】本题可设打x折,根据保持利润率不低于5%,可列出不等式:1200×﹣800≥800×5%,解出x的值即可得出打的折数.【解答】解:设可打x折,则有1200×﹣800≥800×5%,解得x≥7.即最多打7折.故选:B.【点评】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.9.如图,面积为12cm2的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的三倍,则图中的四边形ACED的面积为()A.48cm2B.60cm2C.72cm2D.无法确定【考点】平移的性质.【分析】由于△DEF是△ABC平移得到的,根据平移的性质可得AD∥CF,AD=CF,那么四边形ACFD是平行四边形,又知S△ABC=12,CF=3BC,△ABC和▱ACFD的高相等,易求S▱ACFD=72,进而可求四边形ACED的面积.【解答】解:∵△DEF是△ABC平移得到的,∴AD∥CF,AD=CF,∴四边形ACFD是平行四边形,∵S△ABC=12,CF=3BC,△ABC和▱ACFD的高相等,∴S▱ACFD=12×3×2=72,∴S四边形ACED=S▱ACFD﹣S△DEF=S▱ACFD﹣S△ABC=72﹣12=60(cm2),故选:B.【点评】本题考查了平行四边形的判定和性质,解题的关键是先求出▱ACFD的面积,熟练掌握平移的性质.10.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C 为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)【考点】坐标与图形变化-旋转.【分析】分顺时针旋转和逆时针旋转两种情况讨论解答即可.【解答】解:∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).故选:C.【点评】本题考查了坐标与图形变化﹣旋转,正方形的性质,难点在于分情况讨论.二.填空题11.如图,Rt△ABC中,AB=1cm,AC=2cm,将Rt△ABC绕点A按逆时针方向旋转26°得到△ADE,则DE= cm,BAD= 26°.【考点】旋转的性质.【分析】利用勾股定理可得BC的值,DE的值和BC的值相等,所求的角的度数正好等于旋转角.【解答】解:BC==,由旋转可得DE=BC=,∠BAD=旋转角的度数=26°,故答案为:,26°.【点评】考查旋转性质的应用;用到的知识点为:对应点与旋转中心连线的夹角是旋转角;旋转前后,对应线段相等.12.等腰三角形的周长为14,其一边长为4,那么它的底边为4或6 .【考点】等腰三角形的性质;三角形三边关系.【分析】已知的边可能是腰,也可能是底边,应分两种情况进行讨论.【解答】解:当腰是4时,则另两边是4,6,且4+4>6,6﹣4<4,满足三边关系定理,当底边是4时,另两边长是5,5,5+4>5,5﹣4<5,满足三边关系定理,∴该等腰三角形的底边为4或6,故答案为:4或6.【点评】本题考查了等腰三角形的性质,应从边的方面考查三角形,涉及分类讨论的思想方法,难度适中.13.不等式组的解集是x<m﹣2,则m的取值应为m≥﹣3 .【考点】解一元一次不等式组.【分析】解不等式的口诀中同小取小,所以由题可知m﹣2≤2m+1,解答即可.【解答】解:因为不等式组的解集是x<m﹣2,根据“同小取小”的原则,可知m﹣2≤2m+1,解得,m≥﹣3.【点评】主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).14.将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是cm2.【考点】解直角三角形;旋转的性质.【分析】阴影部分为直角三角形,且∠C′AB=30°,AC′=5,解此三角形求出短直角边后计算面积.【解答】解:∵等腰直角△ABC绕点A逆时针旋转15°后得到△AB′C′,∵∠CAC′=15°,∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,∴阴影部分的面积=×5×tan30°×5=.【点评】本题考查旋转的性质和解直角三角形.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.三.计算15.计算:﹣3+(2)解不等式,并将解集在数轴上表示出来:﹣>﹣2.【考点】二次根式的加减法;在数轴上表示不等式的解集;解一元一次不等式.【分析】(1)根据二次根式的乘除法,可化简二次根式,根据合并同类项二次根式,可得答案;(2)根据解不等式的步骤,可得答案.【解答】解:(1)原式=4﹣+=;(2)去分母,得3(x﹣1)﹣2(x+4)>﹣12,去括号,得3x﹣3﹣2x﹣8>﹣12移项,得3x﹣2x>﹣12+3+8合并同类项,得x>﹣1.【点评】本题考查了二次根式的加减,先化简二次根式,再合并同类二次根式.16.一次函数y=2x﹣a与x轴的交点是点(﹣2,0)关于y轴的对称点,求一元一次不等式2x﹣a≤0的解集.(2)已知2a﹣3x+1=0,3b﹣2x﹣16=0,且a≤4<b,求x的取值范围.【考点】一次函数与一元一次不等式.【分析】(1)先根据点关于y轴对称的坐标特点得到一次函数y=2x﹣a与x轴的交点是(2,0),把(2,0)代入解析式可求出a得值,然后把a得值代入2x﹣a≤0,再解不等式即可;(2)根据已知等式得a=,b=,代入a≤4<b中,解不等式组即可.【解答】解:(1)∵(﹣2,0)关于y轴得对称点为(2,0),把(2,0)在y=2x﹣a得0=4﹣a,解得a=4.当a=4时,2x﹣4≤0,解得x≤2;(2)依题意,得a=,b=,代入a≤4<b中,得,解得,∴不等式组的解集为:﹣2<x≤3.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.四.作图题17.在如图的方格纸中,每个小正方形的边长都是为1.(1)画出将△ABC向下平移3格得到的△A1B1C1;(2)画出△A1B1C1以C1为旋转中心,顺时针旋转90°后得到的△A2B2C1;(3)求△A1B1C1旋转过程中,扫过部分的面积.【考点】作图-旋转变换;作图-平移变换.【分析】(1)利用网格特点和平移的性质画出点AB、C的对应点A1、B1、C1即可;(2)利用网格特点和旋转的性质画出点A1、B1的对应点A2、B2即可;(3)△A1B1C1旋转过程中,扫过部分的面积可化为一个扇形和一个三角形,然后根据扇形面积公式和三角形面积公式计算即可.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C1为所作;(3)△A1B1C1旋转过程中,扫过部分的面积=S扇形B1C1B2+S△B2C1A2=+×2×5=π+5.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.五.解答题18.已知:如图,在△ABC中,∠BAC=120°,以BC为边向形外作等边△BCD,把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,若AB=3,AC=2.(1)求证:点A、C、E在一条直线上;(2)求∠BAD的度数;(3)求AD的长.【考点】旋转的性质;等边三角形的性质.【分析】(1)根据等边三角形的性质由△BCD为等边三角形得到∠3=∠4=60°,DC=DB,再根据旋转的性质得到∠5=∠1+∠4=∠1+60°,则∠2+∠3+∠5=∠2+∠1+120°,再根据三角形内角和定理得到∠1+∠2=180°﹣∠BAC=60°,于是∠2+∠3+∠5=60°+120°=180°,即可得到点A、C、E 在一条直线上;(2)由于点A、C、E在一条直线上,△ABD绕着点D按顺时针方向旋转60°后得到△ECD,则∠ADE=60°,DA=DE,得到△ADE为等边三角形,则∠DAE=60°,然后利用∠BAD=∠BAC﹣∠DAE计算即可;(3)由于点A、C、E在一条直线上,则AE=AC+CE,根据旋转的性质得到CE=AB,则AE=AC+AB=2+3=5,而△ADE为等边三角形,则AD=AE=5.【解答】(1)证明:∵△BCD为等边三角形,∴∠3=∠4=60°,DC=DB,∵△ABD绕着点D按顺时针方向旋转60°后得到△ECD,∴∠5=∠1+∠4=∠1+60°,∴∠2+∠3+∠5=∠2+∠1+120°,∵∠BAC=120°,∴∠1+∠2=180°﹣∠BAC=60°,∴∠2+∠3+∠5=60°+120°=180°,∴点A、C、E在一条直线上;(2)解:∵点A、C、E在一条直线上,而△ABD绕着点D按顺时针方向旋转60°后得到△ECD,∴∠ADE=60°,DA=DE,∴△ADE为等边三角形,∴∠DAE=60°,∴∠BAD=∠BAC﹣∠DAE=120°﹣60°=60°,;(3)解:∵点A、C、E在一条直线上,∴AE=AC+CE,∵△ABD绕着点D按顺时针方向旋转60°后得到△ECD,∴CE=AB,∴AE=AC+AB=2+3=5,∵△ADE为等边三角形,∴AD=AE=5.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的判定与性质.19.某电器经营业主计划购进一批同种型号的挂式空调和电风扇.若购进8台空调和20台电风扇,需资金17400元.若购进10台空调和30台电风扇需资金22500元.(1)求挂式空调和电风扇每台的采购价格各是多少元?(2)该经营业主计划购进这两种电器共70台.而可用于购买这两种电器的资金不超过30000元.据市场行情,销售一台这样的空调可获利200元,销售一台这样的电风扇可获利30元.试问该经营业主在保证最低利润3500元的基础上有哪几种进货方案?哪种方案获利最大?最大利润是多少?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)挂式空调价格×台数+电风扇价格×台数=总价,列出二元一次方程组,解答;(2)挂式空调单价×台数+电风扇单价×台数≤总价,挂式空调利润×台数+电风扇利润×台数≥总利润,列出一元一次不等式组,解答;【解答】解:(1)设挂式空调每台的价格是x元,电风扇每台的价格是 y元,根据题意得:,解方程组得:;答:挂式空调每台的价格是1800元,电风扇每台的价格是 150元.(2)设购买挂式空调z台,则电风扇70﹣z台,根据题意得:①200z+30(70﹣z)≥3500,②1800z+150(70﹣z)≤30000;由①②解得:8.2≤z≤11.82,因为z为整数,所以一共有3种进货方案:①当购买挂式空调9台,电风扇61台时,利润是:200×9+30×61=3630元,②当购买挂式空调10台,电风扇60台时,利润是:200×10+30×60=3800元,③当购买挂式空调11台,电风扇59台时,利润是:200×11+30×59=3970元,所以,当购买挂式空调11台,电风扇59台时,利润最大,最大利润是3970元.【点评】本题主要考查了一元一次不等式组在实际问题中的应用.20.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.【考点】正方形的性质;全等三角形的判定与性质;勾股定理;旋转的性质.【分析】(1)由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;(2)由第一问的全等得到AE=CM=1,正方形的边长为3,用AB﹣AE求出EB的长,再由BC+CM 求出BM的长,设EF=MF=x,可得出BF=BM﹣FM=BM﹣EF=4﹣x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长.【解答】解:(1)证明:∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DC M=180°,∴F、C、M三点共线,∴DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,在△DEF和△DMF中,,∴△DEF≌△DMF(SAS),∴EF=MF;(2)设EF=MF=x,∵AE=CM=1,且BC=3,∴BM=BC+CM=3+1=4,∴BF=BM﹣MF=BM﹣EF=4﹣x,∵EB=AB﹣AE=3﹣1=2,在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4﹣x)2=x2,解得:x=,则EF=.【点评】此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理,利用了转化及方程的思想,熟练掌握性质及定理是解本题的关键.六、填空题(共4小题,每小题3分,满分20分)21.若不等式组有解,则m的取值范围是m<2 .【考点】解一元一次不等式组.【分析】把不等式组的不等式在数标轴上表示出来,看两者有无公共部分,从而解出解集.【解答】解:由不等式1<x≤2,要使x>m与1<x≤2有解,如下图只有m<2时,1<x≤2与x>m有公共部分,∴m<2.【点评】本题考查逆向思维,给出不等式来判断是否存在解得问题,是一道好题.22.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= 15 度.【考点】等边三角形的性质;三角形的外角性质;等腰三角形的性质.【分析】根据等边三角形三个角相等,可知∠ACB=60°,根据等腰三角形底角相等即可得出∠E的度数.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.【点评】本题考查了等边三角形的性质,互补两角和为180°以及等腰三角形的性质,难度适中.23.如图,在正方形ABCD中,边AD绕点A顺时针旋转角度m(0°<m<360°),得到线段AP,连接PB,PC.当△BPC是等腰三角形时,m的值为30°或60°或150°或300°.【考点】旋转的性质;等腰三角形的性质.【分析】分别画出m=30°或60°或150°或300°时的图形,根据图形即可得到答案.【解答】解:如图1,当m=30°时,BP=BC,△BPC是等腰三角形;如图2,当m=60°时,PB=PC,△BPC是等腰三角形;如图3,当m=150°时,PB=BC,△BPC是等腰三角形;如图4,当m=300°时,PB=PC,△BPC是等腰三角形;综上所述,m的值为30°或60°或150°或300°,故答案为30°或60°或150°或300°.【点评】本题主要考查了旋转的性质以及等腰三角形的性质的知识,解答本题的关键是进行分类讨论求m的值,此题很容易漏解,难度一般.24.如图,在△ABC中,已知AB=AC,∠BAC=90°,BC=6cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒2厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度运动,连接AD、AE,设运动时间为t秒.(1)求AB的长;(2)当t为多少时,△ABD的面积为6cm2?(3)当t为多少时,△ABD≌△ACE,并简要说明理由.(可在备用图中画出具体图形)【考点】全等三角形的判定;三角形的面积;等腰三角形的判定;勾股定理.【分析】(1)运用勾股定理直接求出;(2)首先求出△ABD中BD边上的高,然后根据面积公式列出方程,求出BD的值,分两种情况分别求出t的值;(3)假设△ABD≌△ACE,根据全等三角形的对应边相等得出BD=CE,分别用含t的代数式表示CE和BD,得到关于t的方程,从而求出t的值.【解答】解:(1)∵在△ABC中,AB=AC,∠BAC=90°,∴2AB2=BC2,∴AB==3cm;(2)过A作AF⊥BC交BC于点F,则AF=BC=3cm,∵S△ABD=6cm2,∴AF×BD=12,∴BD=4cm.若D在B点右侧,则CD=2cm,t=1s;若D在B点左侧,则CD=10cm,t=5s.(3)动点E从点C沿射线CM方向运动2秒或当动点E从点C沿射线CM的反向延长线方向运动6秒时,△ABD≌△ACE.理由如下:(说理过程简要说明即可)①当E在射线CM上时,D必在CB上,则需BD=CE.∵CE=t,BD=6﹣2t∴t=6﹣2t∴t=2证明:∵AB=AC,∠B=∠ACE=45°,BD=CE,∴△ABD≌△ACE.②当E在CM的反向延长线上时,D必在CB延长线上,则需BD=CE.∵CE=t,BD=2t﹣6∴t=2t﹣6∴t=6证明:∵AB=AC,∠ABD=∠ACE=135°,BD=CE∴△ABD≌△ACE.【点评】本题考查了等腰直角三角形、全等三角形的性质及面积,综合性强,题目难度适中.。

四川省成都七中育才学校八年级下期半期考试卷数学试题

成都七中育才学校八年级数学半期试卷A卷(共100分)第I卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上)1. 如图所示,其中是中心对称图形的是()A B C D2.下列各式由左边到右边的变形中,是分解因式的为()A、(a+3)(a-3)=a2-9B、x2+x-5=(x-2)(x+3)+1C、x2+1=x(x+)D、a2b+ab2=ab(a+b)3. 已知a>b, c为任意实数,则下列不等式中总是成立的是()A.a+c<b+cB. ac<bcC.ac>bcD.a-c>b-c4. 已知等腰三角形的两边长分别为8㎝、4㎝,则该等腰三角形的周长是()A.12㎝B.16㎝ C.20㎝D.16㎝或20㎝5.下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1 B.x2+2x﹣1 C.x2﹣1 D.x2﹣6x+96. 如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70° B.65°C.60° D.55°7. 如果把分式yxx23-中的 x,y都扩大7倍,那么分式的值()A、扩大7倍B、扩大14倍C、扩大21倍D、不变(6题)(8题)(10题)8.如图,函数y1=k1x和y2=k2x+4的图像相交于点)3,23(A,则不等式k1x<k2x+4的解集为()A. x< B. x<3 C. x> D. x>39. 若多项式24x mx++能用完全平方公式分解因式,则m的值可以是()A.4B. 4± C.2 D. 2±x1()⎪⎩⎪⎨⎧+<-≤+--131512153122x x x x )(10. 如图,O 是△ABC 的两边垂直平分线的交点,∠BAC=70°,则∠BOC= ( ) A 、120° B 、125° C 、130° D 、140°第II 卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11.满足6.2->x 的负整数解是 .12. 点P (-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为__________. 13、化简:11222-+-a a a = .14. 如图所示,在△ABC 中,∠B=90°,AB=3,AC=5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为 .(14题) 三、解答题(本大题共6个小题,共54分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设每周制作西服 x 件,休闲服 y 件,衬衣 z 件. (1) 请你分别从件数和工时数两个方面用含有 x, y 的代数式表示衬衣的件数 z. (2)求 y 与 x 之间的函数关系式. (3)问每周制作西服、休闲服、衬衣各多少件时,才能使总收入最高?最高总
收入是多少? 28. (12 分)如图,直线 l 的解析式为 y=﹣x+4,它与 x 轴、y 轴分别相交于 A、 B 两点,平行于直线 l 的直线 m 从原点 O 出发,沿 x 轴的正方向以每秒 1 个单位 长度的速度运动,它与 x 轴、y 轴分别相交于 M、N 两点,运动时间为 t 秒(0 <t≤4) (1)求 A、B 两点的坐标; (2)用含 t 的代数式表示△MON 的面积 S1; (3)以 MN 为对角线作矩形 OMPN,记△MPN 和△OAB 重合部分的面积为 S2; ①当 2<t≤4 时,试探究 S2 与之间的函数关系; ②在直线 m 的运动过程中,当 t 为何值时,S2 为△OAB 的面积的 ?
19. (8 分)在 2013 年春运期间,我国南方发生大范围冻雨灾害,导致某地电路 出现故障,该地供电局组织电工进行抢修.供电局距离抢修工地 15 千米,抢修 车装载着所需材料先从供电局出发,15 分钟后,电工乘吉普车从同一地点出发, 结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的 1.5 倍,求这两种 车每小时分别行驶多少千米. 20. (10 分)如图,在△ABC 中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为 D, E,F 为 BC 中点,BE 与 DF,DC 分别交于点 G,H,∠ABE=∠CBE. (1)线段 BH 与 AC 相等吗?若相等给予证明,若不相等请说明理由; (2)求证:BG2﹣GE2=EA2.
一、填空题: (每小题 4 分,共 20 分) 21. (4 分)已知关于 x 的方程 的解是正数,则 m 的取值范围是 ) (a﹣ )= . . .
22. (4 分)已知 a2﹣3a+1=0,则(a2﹣ 23. (4 分)已知 a1=x,an+1=1﹣
(n 为正整数) ,则 a2013=
24. (D∥BC,AD=6,AB=8, BC=9,点 P 是 AB 上一个动点,当 PC+PD 的和最小时,PB 的长为 .
A.x<2
B.x>2C.x<﹣1 D.x>﹣1
7. (3 分)如图,在△ABC 中,D、E 分别是 BC、AC 边的中点.若 DE=3,则 AB 的长度是( )
A.9
B.5
C.6
D.4 )
8. (3 分)下列一元二次方程中,无实根的是( A.x2﹣4x+4=0 B. (x﹣2)2=1 C.x2=﹣x 9. (3 分)解关于 x 的方程 A.﹣1 B.﹣2 C.1 D.2
的值为 0,则( D.x=0
B.x=1 C.x=﹣1
4. (3 分)要使分式
有意义,则 x 应满足的条件是(

A.x≠﹣1 B.x≠0C.x≠1 D.x>1 5. (3 分)计算: A.a B.b 的结果是( )
C.﹣b D.1
6. (3 分)如图,已知直线 y1=ax+b 与 y2=mx+n 相交于点 A(2,﹣1) ,若 y1>y2, 则 x 的取值范围是( )
25 . ( 4 分 ) 已 知 a 是 x2 ﹣ 2005x+1=0 的 一 个 不 为 0 的 根 , 则 a2 ﹣ 2004a+ = .
二、解答题: (共 30 分) 26. (8 分)如图所示,已知 E 是边长为 1 的正方形 ABCD 对角线 BD 上一动点, 点 E 从 B 点向 D 点运动(与 B、D 不重合) ,过点 E 作直线 GH 平行于 BC,交 AB 于点 G,交 CD 于点 H,EF⊥AE 于点 E,交 CD(或 CD 的延长线)于点 F. (1)如图(1) ,求证:△AGE≌△EHF; (2)点 E 在运动的过程中(图(1) 、图(2) ) ,四边形 AFHG 的面积是否发生变 化?请说明理由.
2014-2015 学年四川省成都七中育才学校八年级(下)期末数学 模拟试卷(一)
一、选择题 1. (3 分)不等式 2x+5>0 的解集是( A.x< B.x> C.x>﹣ )
D.x<﹣ )
2. (3 分)下列多项式能用完全平方公式进行分解因式的是( A.x2+1 B.x2+2x+4 C.x2﹣2x+1 3. (3 分)若分式 A.x=±1 D.x2+x+1 )
27. (10 分)某私营服装厂根据 2011 年市场分析,决定 2012 年调整服装制作方 案,准备每周(按 120 工时计算)制作西服、休闲服、衬衣共 360 件,且衬衣至 少 60 件.已知每件服装的收入和所需工时如下表: 服装名称 西 服 工时/件 收入(百元)/件 3 2 1 休闲 服 衬 衣
D.x2﹣2x+2=0 )
产生增根,则常数 m 的值等于(
10. (3 分)如图,在△ABC 中,∠CAB=75°,在同一平面内,将△ABC 绕点 A 旋 转到△AB′C′位置,且 CC′∥AB,则∠CAB′的度数是( )
A.30° B.45° C.40° D.50°
二、填空题: (每小题 4 分,共 20 分) 11. (4 分)已知关于 x 的方程 2x+a=x﹣7 的解为正数,则实数 a 的取值范围 是 . . . . .
12. (4 分)若 x﹣2y=3,则 2x﹣4y﹣7= 13. (4 分)函数
的自变量 x 的取值范围是
14. (4 分)已知 x2﹣(m﹣2)x+49 是完全平方式,则 m= 15. (4 分)关于 x 的不等式组
无解,那么 m 的取值范围是
三、解答题: 16. (20 分)计算题: (1)解不等式 3(x﹣1)<5x+2,并在数轴上表示解集; (2)解不等式组 (3)解方程: ; ,并在数轴上表示解集;
(4)解方程:3x2﹣6x﹣2=0. 17 . ( 6 分 ) 已 知 a 是 一 元 二 次 方 程 x2+3x ﹣ 2=0 的 实 数 根 , 求 代 数 式 的值. 18. (6 分)如图,在△ABC 中,∠BAC 的平分线与 BC 的垂直平分线 PQ 相交于
点 P,过点 P 分别作 PN⊥AB 于 N,PM⊥AC 于点 M,求证:BN=CM.
相关文档
最新文档