奥数9----配对求和,加减巧算
加减法中的巧算综合练习及配对求和

配对求和及巧算加减法综合练习练习与思考:1、计算:1+2+3+4+5+6+7+8+9+102、计算:11+12+13+14+15+16+17+18+193、计算:101+102+103+104+105+106+107+108+109+1104、有一垛电线杆叠堆在一起,一共有20层。
第1层有12根,第2层有13根……下面每层比上层多一根(如下图)。
这一垛电线杆共有多少根?5、计算:1+2+3+4+…+18+196、计算:1+2+3+4+…+29+307、计算:2+4+6+8+…+98+1008、计算:40+41+42+…+619、计算:13+14+15+…+2710、有20个数,第1个数是9,以后每个数都比前一个数大3。
这20个数连加,和是多少?11、有一串数,第1个数是5,以后每个数比前一个数大5,最后一个数是90。
这串数连加,和是多少?12、一堆圆木共15层,第1层有8根,下面每层比上层多1根。
这堆圆共多少根?13、省工人体育馆的12区共有20排座位,呈梯形。
第1排有10个座位,第2排有11个座位,第3排有12个座位,……这个体育馆的12区共有多少个座位?14、有一个挂钟,一个点钟敲2下,三点钟敲3下……十二点敲12下,每逢分种指向6时敲1下。
问这个挂种一昼夜共敲多少下?巧算加减法巩固练习:计算下面各题:1654-(54+78) 2937-493-207657897-657323+297 995+996+997+998+9991000-91-1-92-2-93-3-94-4-95-5-96-6-97-7-98-8-99-9538-194+162 497+334-2977523+(653-1523) 9375-(2103+3375)874―(457―126) 3467―253―174―47―126657-(269+257)+169 77+79+79+80+81+83+841000―81―19―82―18―83―17―84―16―85―15―84―16―83―17―82―18―81―19 901+902+905+898-907+908-895 997+3―(997―3)。
加减法(奥数)的巧算

奥数加减法的巧算我们在进行速算时,要根据题目的具体情况灵活运用有关定律和法则,选择合理的方法。
下面介绍在整数加减法运算中常用的几种速算方法。
一、加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。
对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如:87655→12345,46802→53198,87362→12638,…下面讲利用“补数”巧算加法,通常称为“凑整法”。
2.互补数先加。
例1 巧算下面各题:36+87+64 ①②99+136+101③ 1361+972+639+28解:①式=(36+64)+87=100+87=187②式=(99+101)+136=200+136=336③式=(1361+639)+(972+28)=2000+1000=30003.拆出补数来先加。
例2 ①188+873 ②548+996 ③9898+203解:①式=(188+12)+(873-12)(熟练之后,此步可略)=200+861=1061②式=(548-4)+(996+4)=544+1000=1544③式=(9898+102)+(203-102)=10000+101=101014.竖式运算中互补数先加。
二、减法中的巧算1.把几个互为“补数”的减数先加起来,再从被减数中减去例 3① 300-73-27② 1000-90-80-20-10解:①式= 300-(73+ 27)=300-100=200②式=1000-(90+80+20+10)=1000-200=8002.先减去那些与被减数有相同尾数的减数。
加减法(奥数)的巧算

奥数加减法的巧算我们在进行速算时,要根据题目的具体情况灵活运用有关定律和法则,选择合理的方法。
下面介绍在整数加减法运算中常用的几种速算方法。
一、加法中的巧算1. 什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数” ,11也叫89的“补数” . 也就是说两个数互为“补数”。
对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如:87655 —12345, 46802 —53198, 87362—12638,… 下面讲利用“补数”巧算加法,通常称为“凑整法”。
2. 互补数先加。
例 1 巧算下面各题:36+87+64 ① ② 99+136+ 101③ 1361 +972+639+28解:①式=(36+ 64)+ 87=100+87=187②式=(99+ 101)+ 136=200+136=336③式=(1361 + 639) + ( 972+ 28)=2000+1000=30003. 拆出补数来先加。
例 2 ① 188+ 873 ②548+ 996 ③ 9898+ 203解:①式=(188+12) + (873-12)(熟练之后,此步可略) =200+861=1061②式=(548-4) + ( 996+ 4)=544+1000=1544③式=(9898+ 102) + ( 203-102)=10000+10仁101011. 把几个互为“补数”的减数先加起来,再从被减数中减去例 3 ① 300-73-27②1000-90-80-20-10解:①式=300- (73+ 27 )=300-100=200②式=1000- (90 + 80+ 20+ 10)=1000-200 = 8002. 先减去那些与被减数有相同尾数的减数。
小学奥数:加减法速算与巧算,掌握这9道题,大大提高速度准确率

⼩学奥数:加减法速算与巧算,掌握这9道题,⼤⼤提⾼速度准确率加法和减法,属于同级运算。
⼀般的加法、减法、加减混合运算的规律,是从左往右依次计算。
我们可以采⽤凑整、改变运算顺序的⽅法,来速算与巧算。
1、当加法算式中的⼀些数,⽐较接近整⼗数、整百数时,可以把算式中的其他数拆出这些数的'补数'。
就是能和这些数,凑成整⼗数、整百数的数。
把补数与这些数先加,变成整⼗数、整百数,使得计算简便。
如1+9=10、2+8=10、3+7、10、4+6=10、5+5=10;1+19=20、2+28=30、3+37=40、4+46=50、5+55=60;11+89=100、22+78=100、33+67=100、44+56=100等等。
2、当算式中没有其他数时,可以先加上或减去这些数临近的整⼗数、整百数。
如果多加了,最后再减去多加的数;如果少加了,最后再加上少加的数。
如果多减了,最后再加上多减的数;如果少减了,最后再减去少减的数。
【⼩学奥数】速算与巧算1(1)1+2+3+4+5+6+7+8+9【解析】如果从左往右依次做加法,会⽐较繁琐且容易出错。
我们可以把能凑成整⼗的数放在⼀起先加,这样计算⽐较⽅便。
1+2+3+4+5+6+7+8+9=(1+9)+(2+8)+(3+7)+(4+6)+5=10+10+10+10+5=45(2)3+5+6+8+25+32+44+77【解析】2与8、3与7、4与6、5与5,互为补数,能够凑⼗。
虽然这道题⾥只有3,没有7,但有77,3可以和77凑整⼗数。
同理,5可以与25凑,6可以与44凑,8可以与32凑。
这样,8个数连续做加法,就可以两两配对成4组,再做加法。
3+5+6+8+25+32+44+77=(3+77)+(5+25)+(6+44)+(8+32)=80+30+50+40=200【⼩学奥数】速算与巧算1【⼩学奥数】速算与巧算2(1)10-9+8-7+6-5+4-3+2-1【解析】'+'与'-'是同级运算,应该从左往右依次计算。
最新三年级奥数配对求和教学讲义PPT课件

(二)现代农业的基本特征
1)现代农业的产品是提供给非农业人口所消费的。 2)从事农业活动的人口在该国或地区总人口中所
占比例比传统农业低的多。 3)现代农业的单位面积产量大大超过传统农业。 4)现代农业的农场规模,比一家一户为农业生产
单位的规模大的多,且这种趋势仍在增加。 5)现代农业的生产往往与其他农业企业形成联合体,
共有多少根?
3+4+5+6+7+8+9+10 =(3+10)×8÷2 = 13×8÷2 = 104÷2 = 52(根) 答:这堆钢管一共有52根。
例3
计算:3+5+7+9+······+47+49 =(3+49)×24÷2 = 52×24÷2 = 1248÷2 = 624
例4
计算:2017-1-2-3-······-49-50 = 2017-(1+2+3+ ······+49+50) = 2017-(1+50)×50÷2 = 2017-1275 = 742
.
(1)自由式农业—距市场最近,生产易腐、难运的产品,集约化程度高,如花 卉、草莓、蔬菜、鲜奶等。
(2)林业区—内层生产供城市用的薪炭木材;外层生产 建筑用材。 (3)轮作式农业——六年一轮回,没有休闲地(如下图)
.
(4)谷草式农业——七年一轮回,有休闲地,生产较粗放(如下图)
三年级奥数配对求和
配对求和
例1 计算1+2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10
一一配对,可能配成5对。
1+2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10
=(1+10)×10÷211
11
= 11×10÷2
= 110÷2
11
= 55
11
四年级奥数加减乘除中的巧妙规律总结

四年级奥数加减乘除中的巧妙规律总结奥数是指奥林匹克数学竞赛,是一项旨在培养学生创新思维和解决复杂问题能力的数学竞赛活动。
其中,加减乘除是奥数竞赛的基础,也是日常生活中常见的数学运算。
在四年级奥数中,我们可以发现许多巧妙的规律。
本文将对四年级奥数中加减乘除的一些巧妙规律进行总结和分析。
一、加法中的巧妙规律加法是最基本的数学运算之一。
在四年级奥数中,有一些巧妙的规律可以帮助我们更快地计算结果。
1. 交换律:两个数相加,无论交换顺序,结果不变。
例如,5 + 3 =3 + 5。
利用交换律可以简化计算过程。
2. 结合律:三个数相加,无论加法的顺序如何,结果不变。
例如,(2 + 3) + 4 = 2 + (3 + 4)。
利用结合律可以将多个加法式简化成一起计算。
3. 零的特性:任何数加上0等于它本身。
例如,7 + 0 = 7。
在计算过程中,将一个数加上0可以保持数值不变。
二、减法中的巧妙规律减法也是四年级奥数中的重要内容。
下面是一些减法中的巧妙规律。
1. 相同数相减为零:相同的数相减结果为0。
例如,7 - 7 = 0。
在计算过程中,遇到相同的数相减时,可以直接得出结果。
2. 零减任何数等于负数:0减去一个数等于这个数的相反数。
例如,0 - 5 = -5。
在计算过程中,遇到零减数的情况时,可以将零减法转化为对应的负数。
三、乘法中的巧妙规律乘法是四年级奥数中的重点内容。
下面是一些乘法中的巧妙规律。
1. 乘法交换律:两个数相乘,无论交换顺序,结果不变。
例如,3 ×4 = 4 × 3。
利用交换律可以简化计算过程。
2. 乘法结合律:三个数相乘,无论乘法的顺序如何,结果不变。
例如,(2 × 3) × 4 = 2 × (3 × 4)。
利用结合律可以将多个乘法式简化成一起计算。
3. 乘法分配律:一个数乘以两个数相加,等于这个数分别乘以两个数再相加。
例如,2 × (6 + 3) = (2 × 6) + (2 × 3)。
小学数学五年级奥数第九讲配对求和
第9讲配对求和德国数学家卡尔·弗里得利·高斯在很小的时候,就表现出非凡的数学才能。
在他只有10岁还是一个小学生的时候,一次算数课上,老师出了一个题目:1+2+3+4+5+……+100等于多少?老师刚把题目说完,小卡尔就举起了手:这100个数的和是5050。
小卡尔这么快就得出结果,同学们都带着惊讶与怀疑的目光看着他,只有老师心中明白,这个答案是对的。
小卡尔是怎样算出来的呢?为什么算得这么快?原来他用了一种非常巧妙的方法。
这种巧妙的方法就是配对求和。
下面我例1计算:1+2+3+4+5+6+7+8+9+10解方法一:1+2+3+4+5+6+7+8+9+10=(1+10)+(2+9)+(3+8)+(4+7)+(5+6)=11×5=55方法二:1+2+3+4+5+6+7+8+9+10=(1+9)+(2+8)+(3+7)+(4+6)+(5+10)=10×4+15=55方法三:1+2+3+4+5+6+7+8+9+10=【(1+10)+(2+9)+(3+8)+(4+7)+(5+6)+(6+5)+(7+4)+(8+3)+(9+2)+(10+1)】÷2=11×10÷2=55例2计算:101+102+103+104+105+106+107+108+109+110解101+102+103+104+105+106+107+108+109+110=(100×10)+(1+2+3+4+5+6+7+8+9+10)=1000+55=1055例3计算:10-9+8-7+6-5+4-3+2-1解方法一:10-9+8-7+6-5+4-3+2-1=(10+8+6+4+2)-(9+7+5+3+1)=【10+(8+2)+(6+4)】-【(9+1)+(7+3)+5】=30-25=5方法二:10-9+8-7+6-5+4-3+2-1=(10-9)+(8-7)+(6-5)+(4-3)+(2-1)=1×5=5例4有一垛电线杆叠堆在一起,一共有20层。
三年级数学奥赛起跑线第9讲 配对求和
三年级数学奥赛起跑线
第9讲配对求和
1、计算:1+2+3+4+…+18+19
2、计算:2+4+6+8+…+98+100
3、计算:40+41+42+…+61
4、计算:100-99+98-97+…+2-1
5、有20个数,第一个数是9,以后每个数都比前一个数大3。
这20个数连加,和是多少?
6、有一串数,第一个数是5,以后每个数都比前一个数大5,最后一个数是90。
这串数连加,和是多少?
7、一堆圆木共15层,第1层有8根,下面每层多1根。
这堆圆木共有多少根?
8、胜利小学会议室有20排座位,呈梯形。
第1排有10个座位,第2排有11个座位,第3排有12个座位……这个会议室共有多少个座位?
9、时钟在每个整点时敲该钟点数,每半点时敲1下,问:一昼夜该时钟总共敲了多少下?
10、50把钥匙搞乱了,为了使每把锁都配上自己的钥匙,至少要试多少次?。
三年级下册奥数 第1讲---第4讲 修定版
第一讲配对求和【指点迷津】德国著名数学家高斯从小就聪明过人,据说高斯在读小学三年级的时候,就能迅速计算出1+2+3+…+99+100的和。
小高斯是用什么办法算得这么快的呢?原来,他了一种简便的方法:先配对再求和。
数列的第一个数叫首项,最后一个叫末项,如果一个数列从第二项起,每一项与前一项的差是一个不变的数,这样的数列叫做等差数列,这个不变的数则称为这个数列的公差。
计算等差数列的和,可以用一下公式:等差数列的和=(首项+末项)×项数÷2末项=首项+公差×(项数-1)项数=(末项-首项)÷公差+1【例题与方法】例1:计算。
22+24+26+28+30+32 115+118+121+124+127试一试1:计算76+78+80+82+84 215+225+235+245+255+265例2:有一堆钢管,一共有20层,第一层有10根,第二层有11根……下面每层比上面每层多一根。
这堆钢管共有多少根?试一试2:1、有一串数,第一个数是9,以后每个数比前一个大1,最后一个数是23。
这串数连加的和是多少?2、体育馆南区共有30排座位,呈梯形,第一排有15个座位,第二排有16个座位……体育馆南区共有多少个座位?例3:求次列数列的项数。
26+28+30+……+58+60试一试3:求下列数列的项数。
108+109+110+……+148+149 5+8+11+……+254+257例4:求下列各题的和。
1+4+7+……+85+88 60+58+56+……+6+4试一试4:计算2+5+8+……+107+110 17+21+25+……141+145 例5:计算:10000-6-8-10-……-174试一试5:计算。
1900—11—14—17—……—74 2600—25—30—35—……—95【奥数9传真】1、76+79+82+85+88 122+126+130+134+1382、有一堆木材叠堆在一起,一共是20层,第一层有18根,第二层有19根……下面每层比上一层多一根。
奥数训练快速计算技巧
奥数训练快速计算技巧奥数训练:快速计算技巧奥数(奥林匹克数学竞赛)作为一项智力竞赛活动,对参与者的计算速度和技巧要求较高。
为了在奥数竞赛中取得好成绩,快速计算技巧是必不可少的。
本文将为您介绍一些奥数训练中常用的快速计算技巧,帮助您提高计算效率和准确性。
1. 快速算术运算在奥数竞赛中,往往需要迅速完成大量的算术运算。
以下是一些快速算术运算技巧:1.1 快速加法:利用补数相加法可以在瞬间完成较大数的相加。
例如,在计算59 + 37时,可以先将59补成60,再减去1,然后与37相加,即得96。
1.2 快速减法:当需要计算一个相对较大的数减去一个相对较小的数时,可以通过补数相减法进行计算。
例如,在计算93 - 47时,可以将47补成50,再将3减去0,即可得46。
1.3 快速乘法:利用乘法的结合律和分配律,可以将一个较大的乘法运算拆解成多个简单的乘法运算。
例如,在计算68 × 25时,可以先将68 × 10得到680,再将68 × 5得到340,最后将这两个部分相加,即可得到1020。
1.4 快速除法:利用数的特性和简化步骤,可以迅速完成复杂的除法运算。
例如,在计算243 ÷ 9时,可以通过将243拆解成20 × 9 + 3的形式,得到27。
2. 快速近似计算在奥数竞赛中,有时需要估算答案而不是精确计算。
以下是一些快速近似计算技巧:2.1 快速开方:通过观察数的性质,可以快速求得数的近似平方根。
例如,要计算√225的近似值,可以发现15 × 15 = 225,因此可以近似地认为√225 = 15。
2.2 快速乘除以10的幂:将一个数乘以或除以10的幂,可以通过简单地移动数的小数点位置来实现。
例如,在将89.4乘以100时,只需将小数点向右移动两位,即得8940。
2.3 快速百分比计算:对于一些常见的百分比,可以通过简单的计算近似值来进行快速估算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卓尔教育教师教学辅导教案编号:
授课教师日期时间
学生年级科目
课题配对求和,加减巧算
教学目标掌握一些速算与巧算的方法,有助于提高我们的计算能力和思维能力。
教学重难点乘、除法的巧算方法主要是利用乘、除法的运算定律和运算性质以及积、
商的变化规律,通过对算式适当变形,将其中的数转化成整十、整百、整
千…
课前检查上次作业完成情况:优□良□中□差□
建议:___________________________________________________
教学过程
一、知识要点
被人称为“数学王子”的高斯在年仅8岁时,就以一种非常巧妙的方法又快又好地算出了1+2+3+4+……+99+100的结果。
小高斯是用什么办法算得这么快呢?原来,他用了一种简便的方法:先配对再求和。
数列的第一个数(第一项)叫首项,最后一个数(最后一项)叫末项,如果一个数列从第二项起,每一项与前一项的差是一个不变的数,这样的数列叫做等差数列,这个不变的数则称为这个数列的公差。
计算等差数列的和,可以用以下关系式:
等差数列的和=(首项+末项)×项数÷2
末项=首项+公差×(项数-1)
项数=(末项-首项)÷公差+1
二、精讲精练
【例题1】你有好办法算一算吗?
1+2+3+4+5+6+7+8+9+10=()
练习1:速算。
(1) 1+2+3+4+5+……+20 (2) 1+2+3+4+……+99+100
(3) 21+22+23+24+……+100
【例题2】计算。
(1) 21+23+25+27+29+31 (2) 312+315+318+321+324
练习2:计算。
(1) 48+50+52+54+56+58+60+62 (2) 108+128+148+168+188
【例题3】有一堆木材叠堆在一起,一共是10层,第1层有16根,第2层有17根,……下面每层比上层多一根,这堆木材共有多少根?
练习3:
(1)体育馆的东区共有30排座位,呈梯形,第1排有10个座位,第2排有11个座位,……这个体育馆东区共有多少个座位?
(2)有一串数,第1个数是10,以后每个数比前一个数大4,最后一个数是90,这串数连加的和是多少?
(3)有一个钟,一点钟敲1下,两点钟敲2下,……十二点钟敲12下,分钟指向6敲1下,这个钟一昼夜敲多少下?
【例题4】计算992+993+994+995+996+997+998+999。
练习4:计算。
(1) 95+96+97+98+99 (2) 2006+2007+2008+2009
(3) 9997+9998+9999 (4) 100-1-3-5-7-9-11-13-15-17-19 【例题5】计算1000-11-89-12-88-13-87-14-86-15-85-16-84-17-83-18-82-19-81
练习5:计算。
(1) 1000-1-9-2-8-3-7-4-6-5-5-6-4-7-3-8-2-9-1
(2) 1000-81-11-82-12-83-13-84-14-85-15-86-16-87-17-88-18-89-19
(3) 2001-1+2-3+4-5+6-7+8-9+10-11+12-13+14-15+16
加减巧算
一、知识要点
在进行加减运算时,为了又快又好,除了要熟练地掌握计算法则外,还需要掌握一些巧算的方法。
加减法的巧算主要是运用“凑整”的方法,把接近整十、整百、整千的数看做所接近的数进行简算。
进行加减巧算时,凑整之后,对于原数与整十、整百、整千……相差的数,要根据“多加要减去,少加要再加,多减要加上,少减要再减”的原则进行处理。
另外,可以结合加法交换律、结合律以及减法的性质进行凑整,从而达到简算的目的。
二、精讲精练
【例题1】你有好办法迅速算出结果吗?
(1) 502+799-298-98 (2) 9999+999+99+9
练习1:计算。
(1) 308+203-399-97 (2) 99999+9999+999+99+9
(3) 1999+199+19 (4) 375+483+525+617
【例题2】计算。
(1) 487+321+113+279 (2) 736-567+264
(3) 877+345-677 (4) 528-248-152
练习2:计算。
(1) 321+127+73+279 (2) 235-125+365
(3) 987-733-167 (4) 487+(413-89)
【例题3】计算下面各题。
(1) 962-(284+262) (2) 432-(154-168)
练习3:计算。
(1) 421+(279-125) (2) 812+(168-112)
(3) 823-(175+323) (4) 538-(283-162)
【例题4】2000-111-89-112-88-113-87-114-86-115-85-116-84
练习4:计算。
(1) 800-99-1-98-2-97-3-96-4-95-5 (2) 1000-10-20-30-40-50-60-70-80-90
【例题5】计算: 98+97-96-95+94+93-92-91+90+89-88-87……-4-3+2+1
练习5:计算。
(1) 2009+1+2-3-4+5+6-7-8+9+10-11-12+13+14……+2006
(2) 1+2-3+4+5-6+7+8-9……+97+98-99
签字教学组长:学生:。