静态存储器-实验报告
存储器实验

一、实验目的[1]理解计算机存储子系统的工作原理。
[2]掌握静态随机存储器RAM的工作特性和读写方法。
二、实验内容本实验旨在通过搭建静态随机存储器电路,使用M6116芯片,并结合74LS245和74LS373等器件,实现对存储器的读写操作。
具体实验内容包括存储器的基本读写操作和扩展实验要求的IO内存统一和独立编址增加4K的IO地址。
三、实验原理芯片介绍:•74LS245:8位双向缓冲传输门,用于连接数据总线和存储器地址输入。
•74LS373:8位透明锁存器,用于存储地址信息。
•M6116:2K*8位静态随机存储器,具有片选、读使能和写使能等控制线。
操作原理:•写操作:通过设定地址和数据,控制M6116的写使能和数据输入,将数据写入指定存储单元。
•读操作:设置地址并启用读使能,从M6116读取存储单元的数据,并通过数据总线输出。
四、实验步骤及结果(附数据和图表等)1. 基本实验步骤1.电路搭建:o根据图3.4搭建实验电路,连接M6116、74LS245、74LS373等器件。
o设置好数据开关(SW7-SW0)、数码管显示和总线连接。
2.预设置:o将74LS373的OE(——)置0,保证数据锁存器处于工作状态。
o设置M6116的CE(——)=0,使其处于选中状态。
o关闭74LS245(U1),确保数据总线不受影响。
3.电源开启:o打开实验电源,确保电路供电正常。
4.存储器写操作:o依次向01H、02H、03H、04H、05H存储单元写入数据。
o以01H为例:▪设置SW7~SW0为00000001,打开74LS245(U1),将地址送入总线。
▪将74LS373的LE置1,将地址存入AR,并观察地址数码管。
▪将LE置0,锁存地址到M6116的地址输入端。
▪设置数据开关为要写入的数据,打开74LS245(U4),将数据送入总线。
▪将M6116的WE(——)由1转为0,完成数据写入操作。
▪关闭74LS245(U4)。
存储部件连接实验报告

一、实验目的1. 理解存储器的基本组成和工作原理。
2. 掌握静态随机存储器(RAM)的连接方法。
3. 熟悉存储器与CPU之间的数据传输过程。
4. 验证存储器在计算机系统中的作用。
二、实验原理存储器是计算机系统中的核心部件之一,用于存放程序和数据。
在计算机系统中,存储器分为内存和外存。
内存直接与CPU相连,用于存放正在运行的程序和数据;外存则用于存放长期保存的程序和数据。
本实验主要研究静态随机存储器(RAM)的连接方法。
RAM是一种随机存取存储器,具有读写速度快、功耗低等优点。
本实验使用2K×8位的静态随机存储器芯片(如6264)进行连接。
三、实验设备1. 计算机组成原理实验箱2. 2K×8位静态随机存储器芯片(如6264)2片3. 译码器芯片(如74LS138)1片4. 地址锁存器芯片(如74LS373)1片5. 三态门芯片(如74LS244)1片6. 连接线若干四、实验步骤1. 搭建存储器电路(1)将2片6264芯片的地址线A0-A7分别连接到译码器芯片74LS138的输出端Y0-Y7。
(2)将译码器芯片74LS138的输出端Y0-Y7分别连接到地址锁存器芯片74LS373的输入端D0-D7。
(3)将地址锁存器芯片74LS373的输出端Q0-Q7分别连接到6264芯片的地址线A0-A7。
(4)将6264芯片的数据线I/O分别连接到三态门芯片74LS244的数据输入端D0-D7。
(5)将三态门芯片74LS244的输出端分别连接到数据总线上。
2. 连接控制信号(1)将6264芯片的读写控制线R/W连接到CPU的读写控制线上。
(2)将6264芯片的片选控制线CE连接到译码器芯片74LS138的输入端S0-S2。
(3)将6264芯片的忙状态线BUSY连接到CPU的忙状态线上。
3. 连接电源和地(1)将6264芯片的电源Vcc连接到实验箱的电源线上。
(2)将6264芯片的地GND连接到实验箱的地线上。
存储器实验实验报告

存储器实验实验报告一、实验目的练习使用STEP开关了解地址寄存器(AR)中地址的读入了解STOP和STEP开关的状态设置了解向存储器RAM中存入数据的方法了解从存储器RAM中读出数据的二、实验设备1、TDM。
叫组成原理实验仪一台2、导线若十3、静态存储器:一片6116 (2K*8)芯片地址锁存器(74LS273)地址灯AD0 — AD7三态门(74LS245)三、实验原理实验所用的半导体静态存储器电路原理如图所示,实验中的静态存储器由一片6116 (2K*8)芯片构成,其数据线接至数据总线,地址线由地址锁存器(74LS273)给出。
地址灯AD(P AD7与地址线相连,显示地址线状况。
数据开关经一个三态门(74LS245)连至数据总线,分时给出地址和数据。
实验时将T3脉冲接至实验板上时序电路模块的TS3相应插孔中,在时序电路模块中有两个二进制开关“ STOP和“STEP ,将“STOP开关置为“ RUN状态、“ STEP开关置为“ EXEC状态时,按动微动开关START则TS3端输出连续的方波信号当“ STOP开关置为RUN 犬态,“STEP开关置为“ STEP状态时,每按动一次微动开关“ start ”,则TS3输出一个单脉冲,脉冲宽度与连续方式相同。
四、实验内容如下图存储器实验接线图练习使用STEP开关往地址寄存器(AR)中存入地址设置STOP和STEP开关的状态:从数据开关送地址给总线:SW-B=打开AR,关闭存储器:LDAR=—、CE=按下Start产生T3脉冲关闭AR,关闭数据开关:LDAR=_、SW-B=(二)往存储器RAM中存入数据1. 设定好要访问的存储器单元地址2. 从数据开关送数给总线:SW-B=3. 选择存储器片选信号:CE=—4. 选择读或写:WE=5. 按下Start产生T3脉冲6. 关闭存储器片选信号:CE=—7. 关闭数据开关:SW-B=—(三)从存储器RAM中读出数据1. 设定好要访问的存储器单元地址2. 选择存储器片选信号:CE=—3. 选择读或写:WE=4. 按下Start产生T3脉冲5. 关闭存储器片选信号:CE=五、实验结果总结六、思考题在进行存储器操作(写/读)是不是必须先往地址寄存器(AR)存入所访问的存储器单元地址?T3在本实验中起了哪些作用,如何区分它们?在进行存储器读写操作时,CE和WE信号有没有先后顺序?为什么?。
北科大计组原理实验报告_静态随机存储器

北京科技大学计算机与通信工程学院实验报告实验名称:静态随机存储器学生姓名:专业:计算机科学与技术班级:学号:指导教师:实验成绩:实验地点:机电楼301实验时间:2015 年 6 月 1 日一、实验目的与实验要求1、实验目的(1)掌握微程序控制器的组成原理;(2)掌握微程序的编制、写入方法;(3)观察并掌握微程序的运行过程;(4)掌握静态随机存储器的基本结构;(5)掌握静态随机存储器RAM工作特性及数据的读写方法。
2、实验要求(1)验证性实验:微程序控制器实验(2)用QuartusⅡ软件编写一个静态随机存储器二、实验设备(环境)及要求实验箱,Window 8,QuartusⅡ软件三、实验内容与步骤1、实验1(1)实验原理微程序控制器的基本任务是完成当前指令的翻译和执行,即将当前指令的功能转换成可以控制的硬件逻辑部件工作的微命令序列,完成数据传送和各种处理操作。
它的执行方法就是将控制各部件动作的微命令的集合进行编码,即将微命令的集合仿照机器指令一样,用数字代码的形式表示,这种表示成为微命令。
这样就可以用一个由多条微指令组成的序列表示一条机器指令,这种微指令序列称为微程序。
微程序存储在一种专用的存储器中,成为控制存储器,微程序控制器原理框图如图3.25所示。
本实验所用的微程序控制器单元主要有编程部分和核心微控器组成,如图3.26所示。
本实验中的微指令字长共24位,控制位顺序如表3.8所示。
本实验安排了四条机器指令,分别为ADD(0000 0000)、IN(0010 0000)、OUT(0011 0000)和HLT(0101 0000),括号中为各指令的二进制代码,指令格式如表3.9所示,其中高4位为操作码。
实验中的4条机器指令由CON单元的二进制开关手动给出,其余单元的控制信号均由微程序控制器自动产生,为此可以设计出相应的数据通路图,见图3.27所示。
将全部微程序按微指令格式变成二进制微代码,可得到表3.10的二进制代码表。
静态随机存取存贮器实验

计算机组成原理实验报告
写数据:
1、传入数据的存储地址:
照连线图连接实验仪
使nWR = 1,nRD = 1,IN单元的nCS=0、nRD=0(即为禁止对存贮器读写),将IN单元中的地址数据输出
MAR单元的nMAROE = 0,允许MAR中锁存的地址数据输出到地址总线上;wMAR = 0,允许写MAR,按CON单元的STEP键一次,依次发出T1、T2、T3信号,在T3的下降沿,IN单元给出的地址数据锁存到MAR中。
2、写数据在存储地址上
禁止对存储器6116的读写(nWR = 1,nRD = 1)、MAR的写(wMAR = 1);
IN单元的拨动开关给出8位数据,IN单元的nCS=0、nRD=0,允许IN单元
输出;
允许对6116写(M_nIO = 1,nRD = 1, nWR = 0),按uSTEP键三次,在T2
的下降沿,数据写入存储器6116中。
3读取数据
通过in单元给出地址,并紧张in单元输出数据
使 M_nIO = 1,nRD = 0, nWR = 1
在T2、T3信号有效时,6116向数据总线输出数据
实验结果
分析。
(整理)实验二静态随机存储器实验(1).

南京理工大学计算机科学与工程学院实验报告
图 2-1 SRAM6116引脚图
最终是挂接到CPU 上,所以其还需要一个读写控制逻辑,
图 2-2 读写控制逻辑
图 2-4 实验接线图
将时序与操作台单元的开关KK1、KK3 置为运行档、开关KK2 置为‘单步’档
开关置为 1,打开电源开关,如果听到有‘嘀’ 报警声,说明有总线竞争现象,立即关闭电源,重新检查接线,直到错误排除。
、02H、03H、04H 地址单元中分别写入数据11H、12H、
2-3可以看出,由于数据和地址由同一个数据开关给出,因此数据和地址
2-5 写存储器流程图
读存储器流程图。
静态存储器扩展实验报告记录

静态存储器扩展实验报告记录————————————————————————————————作者:————————————————————————————————日期:深圳大学实验报告课程名称:微机原理与接口技术实验项目名称:静态存储器扩展实验学院:信息工程学院专业:电子信息工程指导教师:周建华报告人:洪燕学号:2012130334 班级:电子3班实验时间:2014/5/21实验报告提交时间:2014/5/26教务部制一.实验目的与要求:1. 了解存储器扩展的方法和存储器的读/写。
2. 掌握CPU 对16位存储器的访问方法。
二.实验设备PC 机一台,TD-PITE 实验装置或TD-PITC 实验装置一套,示波器一台。
三.实验原理存储器是用来存储信息的部件,是计算机的重要组成部分,静态RAM 是由MOS 管组成的触发器电路,每个触发器可以存放1位信息。
只要不掉电,所储存的信息就不会丢失。
因此,静态RAM 工作稳定,不要外加刷新电路,使用方便。
但一般SRAM 的每一个触发器是由6个晶体管组成,SRAM 芯片的集成度不会太高,目前较常用的有6116(2K ×8位), 图4.1 62256引脚图 6264(8K ×8位)和62256(32K ×8位)。
本实验平台上选 用的是62256,两片组成32K ×16位的形式,共64K 字节。
62256的外部引脚图如图4.1所示。
本系统采用准32位CPU ,具有16位外部数据总线,即D0、D1、…、D15,地址总线为BHE #(#表示该信号低电平有效)、BLE #、A1、A2、…、A20。
存储器分为奇体和偶体,分别由字节允许线BHE #和BLE #选通。
存储器中,从偶地址开始存放的字称为规则字,从奇地址开始存放的字称为非规则字。
处理器访问规则字只需要一个时钟周期,BHE #和BLE #同时有效,从而同时选通存储器奇体和偶体。
基本运算器静态随机存储器实验报告

(4)用输入开关向暂存器A置数。
①拨动CON单元的SD27…SD20数据开关,形成二进制数01100101(或其它数值),数据显示亮为‘1’,灭为‘0’。
表1-2-1 SRAM 6116功能表
功能
1
0
0
0
X
1
0
0
X
0
1
0
不选择
读
写
写
存储器数据线接至数据总线,数据总线上接有8个LED灯显示D7…D0的内容。地址线接至地址总线,地址总线上接有8个LED灯显示A7…A0的内容,
地址由地址锁存器(74LS273,位于PC&AR单元)给出。数据开关(位于IN单元)经一个三
(6)改变运算器的功能设置,观察运算器的输出。置ALU_B=0、LDA=0、LDB=0,然后按表1-1-1置S3、S2、S1、S0和Cn的数值,并观察数据总线LED显示灯显示的结果。如置S3、S2、S1、S0为0010,运算器作逻辑与运算,置S3、S2、S1、S0为1001,运算器作加法运算。如果实验箱和PC联机操作,则可通过软件中的数据通路图来观测实验结果(软件使用说明请看附录一),方法是:打开软件,选择联机软件的“【实验】—【运算器实验】”,打开运算器实验的数据通路图,如图1-1-6所示。进行上面的手动操作,每按动一次TS按钮,数据通路图会有数据的流动,反映当前运算器所做的操作,或在软件中选择“【调试】—【单周期】”,其作用相当于将时序单元的状态开关置为‘单步’档后按动了一次TS按钮,数据通路图也会反映当前运算器所做的操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静态存储器-实验报告
引言
静态存储器是计算机中的一种存储器件,广泛应用于微型计算机、工控系统、控制器等领域中。
与动态存储器不同,静态存储器是由一系列逻辑门电路组成的,不需要周期性地进行刷新操作。
本实验主要介绍静态存储器的基本原理以及应用,并通过实验验证静态存储器的功能。
一、实验目的
1. 掌握静态存储器的组成原理和基本功能。
2. 熟悉静态存储器的应用场景和使用方法。
3. 通过实验验证静态存储器的功能和性能。
二、实验原理
静态存储器是由许多逻辑门组成的,逻辑门分为三种类型:与门、或门、反相器。
其中与门和或门分别用于输入/输出数据的选择和判断,反相器用于数据存储和输出。
将这些逻辑门组合在一起,形成了静态存储器的核心电路结构,如图1所示。
图1 静态存储器电路结构图
静态存储器的基本功能是将输入的二进制数据通过逻辑电路存储,以便随时读取。
当CPU需要访问某个存储单元中的数据时,静态存储器将该单元中的数据输出给CPU,完成读取操作。
另外,通过特定的电路设计,静态存储器还可以实现数据的随机访问和写入操作等功能。
三、实验设备
2. 电路板
3. 电源
4. 信号源
5. 示波器
四、实验步骤
1. 将静态存储器模块插入电路板中。
2. 将电路板与电源和信号源连接。
3. 将信号源输出线连接到静态存储器的输入端,将示波器接到静态存储器的输出端。
4. 设置信号源的输出并观察静态存储器的输出波形。
6. 将示波器的观察时间延长,并调整信号源的输出幅度和频率,观察静态存储器在不同输入信号下的工作状态。
五、实验结果分析
通过实验可以看出,静态存储器能够很好地记录输入信号的历史,并在需要时将数据输出。
同时,静态存储器对于不同频率和幅度的输入信号均有良好的适应性。
这说明静态存储器具有很好的稳定性和可靠性,并且适用于多种实际应用场景。
六、实验结论
通过本次实验,我们成功掌握了静态存储器的组成原理及基本功能,并通过实验验证了其良好的性能和应用效果。
静态存储器作为计算机存储器中的一种重要组成部分,在现代计算机系统中得到广泛使用,在各个领域都有着广泛的应用前景。