常用地震属性列表及其描述、应用

合集下载

地震的基本参数有哪些

地震的基本参数有哪些

地震的基本参数有哪些下面是为大家精心整理的“地震的基本参数有哪些”,更多实用精彩内容请锁定实用资料栏目。

地震的基本参数有哪些地震参数是根据地震资料分析对地震震源特征的定量表述。

包括地震基本参数(如震中经纬度、震源深度、发震时刻、地震震级或地震能量)、地震机制解和震源动力学参数等。

发震时刻O、震级M、震中(经度λ,纬度ψ)、震源深度H统称为“地震五个基本参数”。

地震有强有弱,用以衡量地震本身强度的“尺子”叫震级。

震级可以通过地震仪器的记录计算出来,它的单位是“级”。

震级的大小与地震释放的能量有关,地震能量越大,震级应就越大。

震级标准,最先是由美国地震学家里克特提出来的,所以又称“里氏震级”。

震级相差两级,其能量就相差1000倍。

迄今为止世界上记录到的最大地震是1960年5月22日智利的8.9级地震。

地震发生的时间称为发震时刻。

常以字母O或T o表示。

在国际上使用国际时间,中国使用北京时间。

震源正对着的地面,叫“震中”,常用经度、纬度和该地的地名表示. 将震源看成一个点,此点到地面的垂直距离,叫“震源深度”,常以H表示,以公里计算。

其中发震时刻、震中位置和震级亦为表述一次地震的三要素。

以四川汶川地震为例,地震三要素是:发震时刻为2008年5月12日14时28分04.0秒;震中位置是北纬31.0度,东经103.4度;震级是8.0级。

地震动参数表征地震引起的地面运动的物理参数,包括峰值、反应谱和持续时间等。

地震动是由震源释放出来的地震波引起的地面运动。

它是由不同频率、不同幅值(或强度)在一个有限时间范围内的集合。

所以通常以幅值、频率特性和持续时间三个参数来表达地震的特点。

地震资料

地震资料

地震按其成因可分为:火山地震.陷落地震.构造地震.诱发地震.震源:地层构造运动中,在断层形成的地方大量释放能量,产生剧烈震动。

震源上方的地面位置叫震中。

浅源地震,中源地震,深源地震。

地震波:地震引起的震动以波的形式从震源向各个方向传播并释放能量。

震级是表示地政本身大小的尺度。

学地震烈度:某一地区地面和各类建筑物遭受一次地震影响的强弱程度。

抗震设防烈度:按国家规定的权限批准作为一个地区康震设防依据的地震烈度.设计基本地震加速度:50年设计基准超越概率10%的地震加速度的设计取值。

设计特征周期:抗震设计用的地震影响系数曲线中,反映地震震级,震中距和场地类别等因素的下降起始点对应的周期值。

地震设防目标:小震不坏,中震可修,大震不倒.1)当遭受低于本地区抗震设防烈度的多遇地震影响时,2)当遭受相当于本地区抗震设防烈度的地震影响时,建筑物可能损坏,但不至危及生命和生产设备的安全,经一般修理或不需修理仍能继续使用;3)当遭受高于本地区抗震设防烈度预估的罕遇地震影响时,建筑物不致倒塌或发生危及生命的严重破坏.三个地震烈度水准:众值烈度,基本烈度和预估的罕遇烈度。

在遭遇第一水准烈度时,建筑物基本处于弹性阶段,一般不会损坏;在遭遇第二水准烈度时,建筑物将进入非弹性工作阶段,但非弹性变形或结构体系的损坏控制在可修复的范围;在遭遇第三水准烈度时,建筑物有较大的非弹性变形,但应控制在规定的范围内,以免倒塌。

建筑的设计特征周期应根据其所在地的设计分组和场地类别确定,设计地震分组共分为三组,即第一组,第二组,第三组,用以体现地震和震中距的影响。

第一阶段设计是在方案布置符合抗震原则的前提下,按与基本烈度对应的众值烈度的地震动参数,用弹性反应普法求得结构在弹性状态下的地震作用标准值和相应的地震作用效应,然后与其他荷载效应按一定的组合系数进行组合,对结构构件截面承载力验算,对较高的建筑物还要进行变形验算,以控制侧向变形不要过大。

常用地震属性的意义之欧阳引擎创编

常用地震属性的意义之欧阳引擎创编

常用地震属性的意义欧阳引擎(2021.01.01)地震反射波来自地下地层,地下地层特征的横向变化,将导致地震反射波特征的横向变化,进而影响地震属性的变化,因此,地震属性中携带有地下地层信息,这是利用地震属性预测油气储层参数的物理基础。

随着地震属性处理及提取技术的大量涌现,属性种类多达几百种,实际应用人员应用起来遇到了很大困难,迫切需要按实用的角度,总结各地震属性参数与储层特征参数间的内在联系,为进一步研究建立地震信息与储层参数之间的关系提供可靠的前提条件,做到信息提取有方向、有目标。

为了达到这一目的,首先按类别较全面总结了目前常用地震属性,从算法开始,分析了各属性所表达的在地震波波形上的意义,从正向上分析地震属性变化与油气储层特征变化的关系,进而探讨总结了它的潜在地质应用。

1、属性体、属性剖面这类属性是按剖面(或体)处理的,是一个体文件(或剖面文件),属性值对应空间位置,即(x、y、t0、属性值),可以用于常规地震剖面的方式显示与使用,常用的属性有:相干体(方差体、相似体等)、波阻抗、道积分数据体,经希尔伯特变换得到的瞬时属性体、倾角、倾向数据体等,这些属性体可以直接应用于解释,也可以用解释层位提取出来转变为属性层,下表为常用2、沿层地震属性这种属性是用解释层位在地震数据体(剖面)中提取出来的属性,它的数值对应一个层位或一套地层,每个属性值对应一个x、y坐标。

提取方式有两类:沿一个解释层开一个常数时窗,在此时窗内提取地震属性,提取方式有4种(图2-1a)。

用两个解释层提取某一段地层对应的地震属性,提取方式也有4种(图2-1b)。

常用地震属性的计算方法总结如下:(1)、均方根振幅(RMS Amplitude)均方根振幅是将振幅平方的平均值开平方。

由于振幅值在平均前平方了,因此,它对特别大的振幅非常敏感。

(2)、平均绝对值振幅(Average Absolute Amplitude)平均绝对值振幅没有均方根振幅那样,对特别大的振幅敏感。

常用地震属性的意义

常用地震属性的意义

常用地震属性得意义地震反射波来自地下地层,地下地层特征得横向变化,将导致地震反射波特征得横向变化,进而影响地震属性得变化,因此,地震属性中携带有地下地层信息,这就是利用地震属性预测油气储层参数得物理基础。

随着地震属性处理及提取技术得大量涌现,属性种类多达几百种,实际应用人员应用起来遇到了很大困难,迫切需要按实用得角度,总结各地震属性参数与储层特征参数间得内在联系,为进一步研究建立地震信息与储层参数之间得关系提供可靠得前提条件,做到信息提取有方向、有目标。

为了达到这一目得,首先按类别较全面总结了目前常用地震属性,从算法开始,分析了各属性所表达得在地震波波形上得意义,从正向上分析地震属性变化与油气储层特征变化得关系,进而探讨总结了它得潜在地质应用。

1、属性体、属性剖面这类属性就是按剖面(或体)处理得,就是一个体文件(或剖面文件),属性值对应空间位置,即(x、y、t o、属性值),可以用于常规地震剖面得方式显示与使用,常用得属性有:相干体(方差体、相似体等)、波阻抗、道积分数据体,经希尔伯特变换得到得瞬时属性体、倾角、倾向数据体等,这些属性体可以直接应用于解释,也可以用解释层位提取出来转变为属性下表为常用属性体属性意义及潜在地质应用一览表。

层相似体计算相邻地震道 得相似系数同上不但可以对三维体数据作 不连续分析,还可以对基于 层位得二维数据作相似性 预测,以及倾角、方位角,边 界检测与图象增强。

还可以 沿层解释得层位作相似性 分析波阻抗它将地震资料、测 井数据、地质解释 相结合,利用测井 资料具有较高得 垂向分辨率与地 震剖面有较好得 横向连续性得特 点,将地震剖面 “转换成”波阻抗 剖面用于储集层得研究,识别砂体得分布特征 与范围将地震资料与测井资料连 接对比,能有效地对地层物 性参数得变化进行研究,对 储层特征进行描述道积分对地震道进行积 分识别砂体、岩性尖灭点等相对对数波阻抗倾角倾向数据体计算同相轴得倾 角识别尖灭点、不整合、 了解地层产状2、沿层地震属性这种属性就是用解释层位在地震数据体 (剖面)中提取出来得属性,它得数值对 应一个层位或一套地层,每个属性值对应一个x 、y 坐标。

常用地震属性的意义之欧阳法创编

常用地震属性的意义之欧阳法创编

常用地震属性的意义地震反射波来自地下地层,地下地层特征的横向变化,将导致地震反射波特征的横向变化,进而影响地震属性的变化,因此,地震属性中携带有地下地层信息,这是利用地震属性预测油气储层参数的物理基础。

随着地震属性处理及提取技术的大量涌现,属性种类多达几百种,实际应用人员应用起来遇到了很大困难,迫切需要按实用的角度,总结各地震属性参数与储层特征参数间的内在联系,为进一步研究建立地震信息与储层参数之间的关系提供可靠的前提条件,做到信息提取有方向、有目标。

为了达到这一目的,首先按类别较全面总结了目前常用地震属性,从算法开始,分析了各属性所表达的在地震波波形上的意义,从正向上分析地震属性变化与油气储层特征变化的关系,进而探讨总结了它的潜在地质应用。

1、属性体、属性剖面这类属性是按剖面(或体)处理的,是一个体文件(或剖面文件),属性值对应空间位置,即(x、y、、属性值),可以用于常规地震剖面的方式显示与使t用,常用的属性有:相干体(方差体、相似体等)、波阻抗、道积分数据体,经希尔伯特变换得到的瞬时属性体、倾角、倾向数据体等,这些属性体可以直接应用于解释,也可以用解释层位提取出来转变为属性层,下表为常用属性体属性意义及潜在地质应用一览表。

2、沿层地震属性这种属性是用解释层位在地震数据体(剖面)中提取出来的属性,它的数值对应一个层位或一套地层,每个属性值对应一个x、y坐标。

提取方式有两类:沿一个解释层开一个常数时窗,在此时窗内提取地震属性,提取方式有4种(图2-1a)。

用两个解释层提取某一段地层对应的地震属性,提取方式也有4种(图2-1b)。

常用地震属性的计算方法总结如下:(1)、均方根振幅(RMS Amplitude)均方根振幅是将振幅平方的平均值开平方。

由于振幅值在平均前平方了,因此,它对特别大的振幅非常敏感。

(2)、平均绝对值振幅(Average Absolute Amplitude)平均绝对值振幅没有均方根振幅那样,对特别大的振幅敏感。

地震属性原理

地震属性原理

地震属性原理振幅统计类属性能反映流体的变化、岩性的变化、储层孔隙度的变化、河流三角洲砂体、某种类型的礁体、不整合面、地层调协效应和地层层序变化。

反映反射波强弱。

用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。

1.均方根振幅(RMS Amplitude)均方根振幅是将振幅平方的平均值再开平方.由于振幅值在平均前平方了,因此,它对特别大的振幅非常敏感.适合于地层的砂泥岩百分比含量分析,也用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。

√2.平均绝对值振幅(Average Absolute Amplitude)平均绝对值振幅没有均方根振幅那样,对特别大的振幅敏感.适于地层的岩性变化趋势分析,地震相分析,也可用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。

3.最大波峰振幅(Maximum Peak Amplitude)最大波峰振幅的求取方法是,对于每一道,PAL在分析时窗里做一抛物线,恰好通过最大正的振幅值和它两边的两个采样点,沿着这曲线内插可得到最大波峰值振幅值。

PAL画一个使这三个采样点适合曲线并且沿这一曲线确定出最大值。

最大波峰振幅= 125最大波峰振幅是分析时窗内的最大正振幅,最适合绘制层序内或沿着特定的反射体上的振幅异常图;这些异常可能是由于气体和流体的聚集,不整合,或是调谐效应而引起的。

适于沿某一层面进行储层分析,也可用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。

4.平均波峰振幅(Average Peak Amplitude)平均峰值振幅是对每一道在分析时窗里的所有正振幅值相加,得到总数除以时窗里的正振幅值采样数得到的。

适合研究某一层的岩性变化,也可用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。

常用地震属性的意义之欧阳法创编

常用地震属性的意义地震反射波来自地下地层,地下地层特征的横向变化,将导致地震反射波特征的横向变化,进而影响地震属性的变化,因此,地震属性中携带有地下地层信息,这是利用地震属性预测油气储层参数的物理基础。

随着地震属性处理及提取技术的大量涌现,属性种类多达几百种,实际应用人员应用起来遇到了很大困难,迫切需要按实用的角度,总结各地震属性参数与储层特征参数间的内在联系,为进一步研究建立地震信息与储层参数之间的关系提供可靠的前提条件,做到信息提取有方向、有目标。

为了达到这一目的,首先按类别较全面总结了目前常用地震属性,从算法开始,分析了各属性所表达的在地震波波形上的意义,从正向上分析地震属性变化与油气储层特征变化的关系,进而探讨总结了它的潜在地质应用。

1、属性体、属性剖面这类属性是按剖面(或体)处理的,是一个体文件(或剖面文件),属性值对应空间位置,即(x、y、t0、属性值),可以用于常规地震剖面的方式显示与使用,常用的属性有:相干体(方差体、相似体等)、波阻抗、道积分数据体,经希尔伯特变换得到的瞬时属性体、倾角、倾向数据体等,这些属性体可以直接应用于解释,也可以用解释层位提取出来转变为属性层,下表为常用属性体属性意义及潜在地质应用一览表。

反射强度交流分量相位余弦(Perigram cosine of Phase)GRPXPERI (缩写)2、沿层地震属性这种属性是用解释层位在地震数据体(剖面)中提取出来的属性,它的数值对应一个层位或一套地层,每个属性值对应一个x、y坐标。

提取方式有两类:沿一个解释层开一个常数时窗,在此时窗内提取地震属性,提取方式有4种(图2-1a)。

用两个解释层提取某一段地层对应的地震属性,提取方式也有4种(图2-1b)。

常用地震属性的计算方法总结如下:(1)、均方根振幅(RMS Amplitude)均方根振幅是将振幅平方的平均值开平方。

由于振幅值在平均前平方了,因此,它对特别大的振幅非常敏感。

地震属性分类及其应用


波形 视极性 平均振动路径长 度 峰值振幅的最大 值 谷值振幅的最大 值 振幅峰态
频率
瞬时频率 振幅加权瞬时频 率 能量加权瞬时频 率 瞬时频率的斜率 响应频率 平均振动路径长 度 平均零交叉点 带宽额定值 主频额定值 中心频率额定值 心迹线频率额定 值 第一谱峰值频率 第二谱峰值频率 第三谱峰值频率 衰减敏感带宽
2009 年第 2 期 阳飞舟等 地震属性分类及其应用
95
一定的地质特征)、界面属性 (基于地质界面的属性, 从平面上去揭示地质特征)、体属性 (基于三维数据 体的属性, 从三维立体的角度揭示地质特征)。
第 3 种: T aner 等人 (1994) 对地震属性按计算 方法及其应用进行归纳, 将其分为几何属性和物理 属性两大类。其中, 几何属性是通过对反射结构及连 续性进行计算得到, 可用于地震地层学、层序地层学 及断层与构造解释, 如旅行时、地震反射构形、地震 相单元边界反射结构 (即层序边界反射终端) 以及同 相轴反射强度与横向连续性等。 地震反射构形包括 地震相单元的外形与地震相内部的反射结构, 它们 反应宏观沉积环境与沉积特征。 地震相单元边界反 射结构主要反映了沉积过程中所发生的地质事件, 如沉积物来源、构造运动、海平面的相对变化等, 主 要用于地震相解释与体系域划分。 物理属性则是通 过对复数道的计算得到, 可用于预测岩性及储层特 征[3 ]。
到目前为止, 产生了种类繁多的地震属性, 但是 还没有公认的统一的分类, 也很难建立一个完整的 地震属性列表。 很多作者基于不同的理解和原则对 地震属性进行了归纳和总结。 在此基础上大致可以 归为以下几种分类:
第 1 种: 基于地震属性提取所采用的数据体的 差别, 可将地震属性分为叠前地震属性、叠后地震属 性。 但现今应用最广泛的绝大多数还是叠后地震属 性, 而叠前地震属性种类很少, 且应用最为典型的是 AVO。 不过可以预期叠前地震属性还会有新的发 展。

完整版地震属性原理

地震属性原理振幅统计类属性能反应流体的变化、岩性的变化、储层孔隙度的变化、河流三角洲砂体、某种种类的礁体、不整合面、地层调协效应和地层层序变化。

反应反射波强弱。

用于地层岩性相变剖析,计算薄砂层厚度,辨别亮点、暗点,指示烃类显示,辨别火成岩等特别岩性。

1.均方根振幅(RMS Amplitude)均方根振幅是将振幅平方的均匀值再开平方。

因为振幅值在均匀前平方了,所以,它对特别大的振幅特别敏感。

合适于地层的砂泥岩百分比含量剖析,也用于地层岩性相变剖析,计算薄砂层厚度,辨别亮点、暗点,指示烃类显示,辨别火成岩等特别岩性。

√2.均匀绝对值振幅( Average Absolute Amplitude)均匀绝对值振幅没有均方根振幅那样,对特别大的振幅敏感。

适于地层的岩性变化趋向剖析,地震相剖析,也可用于地层岩性相变剖析,计算薄砂层厚度,辨别亮点、暗点,指示烃类显示,辨别火成岩等特别岩性。

3.最大波峰振幅( Maximum Peak Amplitude )最大波峰振幅的求取方法是,关于每一道,PAL 在剖析时窗里做一抛物线,恰巧经过最大正的振幅值和它两边的两个采样点,沿着这曲线内插可获得最大波峰值振幅值。

PAL画一个使这三个采样点合适曲线而且沿这一曲线确立出最大值。

最大波峰振幅 = 125最大波峰振幅是剖析时窗内的最大正振幅,最合适绘制层序内或沿着特定的反射体上的振幅异样图;这些异样可能是因为气体和流体的齐集,不整合,或是调谐效应而惹起的。

适于沿某一层面进行储层剖析,也可用于地层岩性相变剖析,计算薄砂层厚度,辨别亮点、暗点,指示烃类显示,辨别火成岩等特别岩性。

4.均匀波峰振幅(Average Peak Amplitude)均匀峰值振幅是对每一道在剖析时窗里的全部正振幅值相加,获得总数除以时窗里的正振幅值采样数获得的。

合适研究某一层的岩性变化,也可用于地层岩性相变剖析,计算薄砂层厚度,辨别亮点、暗点,指示烃类显示,辨别火成岩等特别岩性。

常用地震属性的意义

常用地震属性的意义常用地震属性的意义地震反射波来自地下地层,地下地层特征的横向变化,将导致地震反射波特征的横向变化,进而影响地震属性的变化,因此,地震属性中携带有地下地层信息,这是利用地震属性预测油气储层参数的物理基础。

随着地震属性处理及提取技术的大量涌现,属性种类多达几百种,实际应用人员应用起来遇到了很大困难,迫切需要按实用的角度,总结各地震属性参数与储层特征参数间的内在联系,为进一步研究建立地震信息与储层参数之间的关系提供可靠的前提条件,做到信息提取有方向、有目标。

为了达到这一目的,首先按类别较全面总结了目前常用地震属性,从算法开始,分析了各属性所表达的在地震波波形上的意义,从正向上分析地震属性变化与油气储层特征变化的关系,进而探讨总结了它的潜在地质应用。

1、属性体、属性剖面这类属性是按剖面(或体)处理的,是一个体文件(或剖面文件),属性值对应空间位置,即(x、y、t o、属性值),可以用于常规地震剖面的方式显示与使用,常用的属性有:相干体(方差体、相似体等)、波阻抗、道积分数据体,经希尔伯特变换得到的瞬时属性体、倾角、倾向数据体等,这些属性体可以直接应用于解释,也可以用解释层位提取出来转变为属性层,下表为常用属性体属性意义及潜在地质应用一览表。

甞震、曰 轴^ 一 w特^ 识h 连此含hf 11n 怕X 17不。

乂匕曰「指口H 宀佰e 纤S T (ha s MH 潮。

^^花h 瞬百嘗 1相^为储心 大提疋;、MK O带带;I 尖界^ M 集频别|X蚩聚^!显烃边变w(t)Qt)')dt瞬时 频率 (Instaneous Freque ncy ) INSTFR EQ (缩写) ,于^实点 当是的伯,正交道 (QuadratureTrace) 希尔伯特变换(Hilb ertTransf orm ) QUADRA TR (缩写)视极性(Appa rent Polari ty ) APPAPO LA (缩写)f(t)的90°相移h(t)=】*f (t)在振幅包络峰值处实地震道的极性在振幅包络峰值处的瞬时相onse Resp位值 Phase ) RESPPHAS (缩在曆香具I 应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地震属性列表及其描述、应用
我们将经常应用到的地震属性的简单描述,经过物理分析与长期应用地震属性实践中认识到的地震属性潜在应用情况进行了总结,现列表如下:
Average Reflection Strength 平均反射强度:识别振幅异常,追踪三角洲、河道、含气砂岩等引起的地震振幅异常;指示主
要的岩性变化、不整合、天然气或流体的聚集;该属性为预测
砂岩厚度的常用属性;
Slope Half Time 能量半衰时的斜率:突出砂岩/泥岩分布的突
变点;预测砂岩厚度的常用属性;
Average Trough Amplitude 平均波谷振幅:用于识别岩性变
化、含气砂岩或地层。

可以有效的区分整合沉积物、丘状沉
积物、杂乱的沉积物等;预测含油气性的常用属性;
Average Instantaneous Phase 平均瞬时相位:由于相位的横
向变化可能与地层中的流体成分变化相关,因此该属性可以检
测油气的分布。

同时还可以识别由于调谐效应引起的振幅异
常,为预测含油气性的常用属性;
Energy Half Time 能量半衰时:区分进积/退积层序,该属性
的横向变化指示地层或由于流体成分、不整合、岩性变化引起
的振幅异常;预测砂岩厚度的常用属性;
Total Energy 总能量:识别振幅异常或层序特征,有效识别
岩性或含气砂岩的变化;区分整合沉积物、丘状沉积物、杂乱
的沉积物等;预测含油气性的常用属性;
Total Amplitude 总振幅:识别振幅异常或层序特征,有效识别岩性或含气砂岩的变化;区分整合沉积物、丘状沉积物、杂乱的沉积物等;预测含油气性的常用属性;
Maximum Trough Amplitude 最大波谷振幅:识别岩性或含气砂岩的变化振幅异常,特别是层附近;是层序内或沿指定反射进行振幅异常成图的最佳属性之一;该属性通常用于储层的油气预测;
Average Peak Amplitude平均波峰振幅:用于识别岩性变化、含气砂岩或地层。

可以有效的区分整合沉积物、丘状沉积物、杂乱的沉积物等;预测含油气性的常用属性;
Peak Spectral Frequency 频谱峰值:最大熵谱分析结果,为峰值主频,提供了一种追踪由于含气饱和度、断裂、岩性或地层变化引起的相关的频率吸收特征的变化;例如含气砂岩吸收地震高频,因此在该情况下你只能看到低的频谱峰值;Amplitude of Maximum 最大振幅:识别岩性或含气砂岩的变化振幅异常,特别是层附近;是层序内或沿指定反射进行振幅异常成图的最佳属性之一;该属性通常用于储层的油气预测;Positive Magnitude剖面正极值的平均值:用于识别岩性变化、含气砂岩或地层。

用于预测含油气性和砂岩厚度的属性;Correlation Components 相关成分:P1 第一主组分用于度量同相轴的线性相干、P2 第二主组分用于指示剩余特征、P3 第
三主组分也用于指示剩余特征;通常用于预测断裂系统的分布;
RMS Amplitude 均方根振幅:识别振幅异常或描述层序;追踪地层地震异常,例如三角洲、河道及含气砂岩引起的振幅异常,区分整合沉积物、丘状沉积物、杂乱的沉积物等,可应用于预测储层的含油气性;
Slope Instantaneous Frequency 瞬时频率的斜率:侦测层间频率吸收的变化情况,对储层流体成分的变化和断裂系统得变化比较敏感;通常用于预测天然气的聚集与分布;
Slope Spectral Frequency 从波峰到最大频率的斜率:可以识别频率的“阴影带”,进而预测油气;
Absorption S sw/S ww能量吸收属性:参考频率到低截频范围内的能量与参考频率到高截频范围内的能量的比值,可识别识别含气砂岩;
Effective Amplitude 在64ms时窗内的有效振幅:识别振幅异常或描述层序;追踪地层地震异常,例如三角洲、河道及含气砂岩引起的振幅异常,区分整合沉积物、丘状沉积物、杂乱的沉积物等,可应用于预测储层的含油气性;
Decrement of Absorption 吸收消耗,相邻两层的吸收特征:识别由于砂岩含油气后不同层位对能量的吸收特性,通过判断吸收的突变点,来发挥作用,该属性通常应用于预测储层的含油气性;
Amplitude of Maximum 最大极值:用于识别由于岩性变化或
者烃类聚集引起的振幅异常,主要用于预测储层的含油气性;
Ratio of Amplitude squared to Effective Amplitude
(Func_8)地震采样振幅与有效振幅的比率:用于识别由于
岩性变化或者烃类聚集引起的振幅异常,主要用于预测储层的
含油气性;
储层属性优选方法
Alistair R. Brown 指出“成功应用地震属性的关键是选择对解决问题最有效的地震属性。

而且使用地震属性的统计分析必须基于对属性(物理)意义的理解,不能只是简单的使用数学的相关计算”。

为了将已知井上的岩性信息,在整个工区进行有效的外推,需要优选出在该区对岩性参数和含油气性反映敏感的属性,我们通过两个层次来完成这一个工作。

第一个层次是选择对岩性变化相对敏感的地震属性,这部分工作在属性提取时已完成,其最基本的理论基础是:▪时间派生的属性有利于对构造的细节进行解释;
▪振幅和频率派生的属性用于解决地层和储层特征;
▪一般认为振幅是最稳健和有价值的属性;
▪频率属性更有利于揭示地层的细节;
▪混合属性包含振幅和频率的因素,因此更有利于地震特征的测量;
同时在对所提取的地震属性的物理意义的理解也有助于对地震属性的提取;
第二个层次是使用数学和信息学的方法优选属性。

“地震属性和井数据采样伪相关在独立的井数据较少或者参加考虑的独立的地震属性过多时产生的概率较大”(CYNTHIA T. KALKOMEY),由于对于该区已知的独立井信息多数情况下较少,勉强满足统计分析的样本要求,单纯使用相关分析方法产生伪相关的概率较大,因此我们在经过第一个层次的筛选之后,采用数据相关和信息优化组合方法进行属性优选.
三种主要储层参数敏感地震属性的一般性认识
在理论和实践经验的角度出发认为:
对储层含气性敏感的属性包括:
Maximum Peak Amplitude
Average Peak Amplitude
Maximum Trough Amplitude
Average Though Amplitude
Average Instantaneous Phase
Energy Half-Time
Total Absolute Amplitude
Total Amplitude
Average Energy
Total Energy
Dominant Frequency
Instantaneous Frequency
RMS Amplitude
Spectral Energy
Dominant F1,2,3
及其衍生属性;
对储层厚度变化敏感的属性包括:
Thickness
Average Reflection Strength
Slope of Reflection Strength
Energy Half-Time
Number of Peaks/Troughs
Effective Bandwidth
Slope at Energy Half-Time
Arc Length
Average Energy
及其衍生属性;
对储层砂岩孔隙性变化敏感的属性包括:Average Energy
Sum of Amplitudes
Energy Half-Time
First Zero Cross Time Auto-Correlation。

相关文档
最新文档