金刚石钻头国内外研究现状及发展趋势
2023年金刚石行业市场调研报告

2023年金刚石行业市场调研报告金刚石行业市场调研报告一、行业概述金刚石是目前世界上最硬的物质,广泛应用于多种领域,如石油开采、矿山钻探、电子、建筑材料等。
随着科技的进步和产品使用领域的不断扩大,金刚石行业也得到了迅速的发展。
国内金刚石行业的发展始于20世纪50年代,经过几十年的发展,现已成为世界上最大的金刚石加工和消费国家之一。
二、行业现状1.行业规模和产值自2000年以来,我国金刚石行业保持了稳定增长。
数据显示,2019年我国金刚石行业的规模达到1800亿元,增长了近10%。
根据全球市场研究机构Fact.MR发布的报告称,2018年,全球金刚石行业产值超过80亿美元。
未来几年,全球金刚石行业的年复合增长率有望超过5%,到2022年金刚石行业的产值将达到100亿美元。
2.行业发展趋势(1)技术创新趋势明显随着技术的进步,相较于传统金刚石工具,新型金刚石工具具有更优越的性能表现。
目前,国内外金刚石工具的技术更新已经深入到研究和设计层面,这为行业的发展注入了新的动力。
(2)绿色环保趋势不断发展壮大的金刚石行业引起了人们对其环境影响的关注。
同时,新兴技术和理念的出现让人们开始重视金刚石行业的绿色发展。
因此,行业必须积极参与环境保护,采取相应的绿色技术和管理方式来降低对环境的影响。
(3)高精尖产业趋势金刚石工具不仅在建筑工程中广泛应用,还在石油开采、医药等领域产生了重要影响。
随着全球科技水准的不断提高,金刚石行业也必然朝着高精尖产业发展。
因此,行业需要持续加大技术研究与开发力度,逐渐转向高端智能制造。
三、主要问题分析1.产能过于集中目前我国金刚石的生产企业数量较多,但实际作用的大型企业为数不多。
当前,我国金刚石生产企业的规模相对较小,产能分散,难以满足高质量和大规模的需求。
2.品牌知名度不足尽管我国金刚石行业的产能较大,但品牌知名度相对较低。
外国品牌在国内市场具有一定的影响力,面对同质化产品的竞争,我国金刚石行业应加快品牌建设,提高品质和竞争力。
金刚石行业年度总结(3篇)

第1篇2023年,金刚石行业在全球范围内经历了深刻的变化和发展。
作为重要的超硬材料,金刚石在工业制造、科研创新、航空航天等多个领域发挥着不可替代的作用。
以下是金刚石行业2023年度的总结:一、行业整体发展1. 产能扩张:2023年,全球金刚石产能持续扩张,主要产出国如俄罗斯、南非、中国等均加大了金刚石矿山的投资和开发力度。
我国金刚石产量继续保持全球领先地位,占据了全球总产量的90%以上。
2. 技术创新:金刚石行业在技术创新方面取得了显著成果。
我国在培育钻石、金刚石微粉等领域取得了重要突破,产品品质不断提升,市场竞争力逐渐增强。
3. 应用领域拓展:金刚石在光伏、半导体、航空航天等领域的应用不断拓展,市场需求持续增长。
特别是在光伏产业,金刚石线作为核心材料,对提高光伏电池效率具有重要意义。
二、主要企业动态1. 力量钻石:作为我国人造金刚石行业的代表企业之一,力量钻石在2023年积极推进新产能建设,产量快速增长。
公司在技术研发、品牌效应和市场占有率等方面取得显著成绩。
2. 岱勒新材:岱勒新材专注于金刚石线研发、生产和销售,其产品在光伏、蓝宝石等领域应用广泛。
2023年,公司营业收入主要来自太阳能光伏行业,其次为蓝宝石应用领域。
3. 奔朗新材:奔朗新材是一家金刚石工具研发、生产和销售的高新技术企业。
公司在金刚石工具、稀土永磁元器件和碳化硅工具等领域拥有较强的技术研发能力。
4. 美畅股份:美畅股份在金刚石线领域处于行业领先地位,2023年业绩增长得益于光伏新增装机容量增长。
公司在钢丝细线化方面取得重要突破,进一步提升产品竞争力。
5. 黄河旋风:黄河旋风主要从事超硬材料及其制品的研发、生产和销售。
公司在2023年注重调整产能、满足客户需求、降低经营风险,同时加强内部控制和风险管理。
三、未来展望1. 市场需求持续增长:随着金刚石在各个领域的应用不断拓展,市场需求将持续增长。
2. 技术创新推动行业升级:金刚石行业将继续加大技术创新力度,提高产品品质和竞争力。
金刚石行业分析报告

金刚石行业分析报告金刚石是一种非常重要的工业材料,具有极高的硬度和热导率,被广泛应用于切割、磨削、研磨和磨粉等工业领域。
本文将对金刚石行业进行分析,包括市场规模、竞争格局、发展趋势等方面。
金刚石行业的市场规模庞大。
随着中国工业化进程的加快,对金刚石的需求量也逐年增长。
金刚石在机械制造、建材、电子、汽车等行业都有广泛的应用,其中磨削、研磨领域是金刚石的主要应用领域,占据了市场的相当大的份额。
根据统计数据显示,2024年,中国金刚石磨削研磨工具的市场规模超过500亿元,预计未来几年将继续保持高速增长。
金刚石行业的竞争格局相对分散,但存在一些领先企业。
中国金刚石行业发展相对较晚,但在近几年取得了快速增长。
目前,国内金刚石主要生产企业主要集中在东部沿海地区,如山东、浙江等地。
其中,山东地区的金刚石企业数量最多,市场份额也最大。
此外,国外一些跨国公司也在中国设立了生产基地,加剧了市场竞争。
金刚石行业的发展受到多方面的影响。
首先是技术创新的推动。
随着科技的不断进步,金刚石行业也不断引入新的制造技术和工艺,提高了产品的质量和性能。
其次是市场需求的变化。
随着中国制造业的转型升级,对高端金刚石产品的需求也日益增长。
在此背景下,金刚石行业需要不断提高产品品质、降低成本,以满足市场需求。
最后,环保意识的提升也对金刚石行业发展产生积极影响。
金刚石行业产生的废弃物和污水对环境造成严重影响,相关政策的出台对企业进行了限制,促使行业转型升级。
未来,金刚石行业有望继续保持快速增长。
首先,随着中国经济的发展,制造业和建筑业的需求将持续增长,为金刚石行业提供了巨大的市场空间。
其次,技术创新将进一步推动行业发展。
例如,纳米金刚石材料的研发和应用将改善其热导率和光学性能,拓展其在电子和光电子行业的应用。
此外,环保要求的提高将促使行业加快转型升级,推动金刚石行业实现可持续发展。
综上所述,金刚石行业市场规模庞大,竞争格局相对分散,发展受到技术创新、市场需求和环保限制等多方面因素的影响。
2024年金刚石市场前景分析

2024年金刚石市场前景分析概述本文对金刚石市场的前景进行深入分析,包括市场规模、发展趋势、竞争态势等方面的内容,旨在帮助读者了解金刚石市场的潜力和机遇。
市场规模金刚石作为一种高硬度、高热导率、高耐磨性的材料,在工业领域有广泛的应用。
根据市场研究机构的数据显示,金刚石市场从2017年到2021年的年均增长率约为6%,市场规模逐渐扩大。
金刚石市场主要分为人造金刚石和天然金刚石两大板块。
目前,人造金刚石市场占据主导地位,占据金刚石市场总体份额的70%以上。
随着技术的进步和工艺的不断改进,人造金刚石的品质不断提高,对于一些特定领域的需求将进一步增长。
发展趋势技术创新驱动市场增长随着科技的发展,金刚石的制备技术也在不断创新,为金刚石市场的增长提供了有力支持。
目前,纳米金刚石、单晶金刚石、多晶金刚石等新型金刚石材料得到广泛应用,为金刚石市场带来了新的增长点。
应用领域不断拓展金刚石在工业、电子、建筑、医疗等领域有广泛的应用。
随着各行各业对高性能材料的需求不断增加,金刚石市场的应用领域也在不断拓展。
尤其是在电子行业和汽车行业,金刚石材料的应用增长迅猛,将为金刚石市场带来新的发展机遇。
区域市场发展不平衡金刚石市场的发展在全球范围内存在一定的不平衡性。
目前,北美地区和欧洲地区是金刚石市场的主要消费地区,占据了全球市场份额的较大比例。
而亚太地区和中东地区的金刚石市场发展相对滞后。
随着亚太地区经济的不断发展和工业结构的调整,金刚石市场在这些地区的潜力逐渐释放。
竞争态势金刚石市场竞争激烈,主要厂商包括De Beers、Element Six、Saint Gobain等知名金刚石生产商。
这些公司通过技术创新、品牌建设和市场定位等手段来提高市场份额。
此外,一些新兴厂商也在不断涌现,加剧了市场的竞争。
结论综上所述,金刚石市场在技术创新、应用拓展和市场需求推动下呈现出良好的发展态势。
尽管市场竞争激烈,但金刚石市场仍然存在巨大的潜力和机遇。
金刚石钻头的研究与应用现状_陈婧

基金项目:辽宁省教育厅创新团队资助项目(2007T151)收稿日期:2009年1月金刚石钻头的研究与应用现状陈婧,黄树涛沈阳理工大学摘要:随着新型复合材料的应用日益广泛,以及精密和超精密加工技术的不断进步,金刚石刀具获得了迅速发展。
本文对包括电镀型金刚石钻头、钎焊式金刚石钻头、CVD 金刚石钻头、聚晶金刚石(PCD )钻头在内的各种金刚石钻头的研究和应用现状进行了综合评述。
关键词:金刚石;钻头;电镀;钎焊;化学气相沉积;聚晶金刚石中图分类号:TG58 文献标志码:AResearches and Applications of Diamond DrillsChen Jing ,Huang ShutaoA bstract :As the increasing wider applications of new composite materials and the great advances of precision and ultra -pre -cision machining ,the diamond tools are developin g rapidly .The research and application status of diamond drills ,including elec -troplating diamond drill bit ,brazing -type diamond bit ,C VD diamond bit and polycrystalline diamond (PCD )bit ,was summa -rized .Keywords :diamond ;drill ;electroplate ;brazing ;chemical vapour deposition (CVD );polycrystalline diamond (PCD )1 引言随着制造技术和材料科学的迅速发展,各种新型工程材料(如SiC 颗粒或纤维增强铝基复合材料、钛合金、高硅铝合金以及陶瓷等非铁类难加工材料)的应用日益增多。
金刚石行业分析报告正文

金刚石行业分析报告正文金刚石是一种使用广泛的宝石,它被广泛用于珠宝首饰以及各种工业应用中。
本文将对金刚石行业进行分析,包括市场规模、竞争环境、发展趋势等方面的内容。
其次,金刚石行业竞争激烈。
金刚石的市场竞争主要体现在两个方面:产业链上下游的竞争和品牌竞争。
在供应链方面,金刚石矿产的开采和加工是行业的基础。
目前,全球金刚石生产主要集中在几个国家,如南非、俄罗斯、澳大利亚等,这些国家拥有丰富的金刚石资源。
在加工环节上,金刚石加工设备和技术的先进性也成为行业竞争的重点。
在市场销售方面,各金刚石品牌之间的竞争非常激烈,品牌形象和市场影响力成为企业竞争的关键。
再次,金刚石行业有一定的发展趋势。
随着科技的发展,人工合成金刚石技术不断成熟,合成金刚石的质量越来越接近天然金刚石,同时价格更为便宜,这对天然金刚石市场带来了一定的冲击。
此外,环保意识的提升也促使行业转型升级,金刚石加工过程中的环境污染问题成为行业关注的焦点。
因此,绿色工艺和可持续发展成为金刚石行业的发展方向。
最后,金刚石行业的发展还受到经济形势和政策环境的影响。
金刚石作为一种奢侈品和工业原材料,其需求对经济状况和市场环境十分敏感。
全球经济放缓和政策调控的影响可能导致金刚石行业的波动。
此外,金刚石行业还需要面对政府对资源开发的限制和环境保护的要求,因此,行业需要投入更多的研发力量,提高技术水平,实现创新发展。
综上所述,金刚石行业市场庞大,竞争激烈,发展趋势明显。
行业发展需要关注技术创新、环境保护和市场需求等多个方面。
随着科技和经济的不断发展,金刚石行业有望实现更加稳健的发展,为社会经济做出更大的贡献。
国内外PDC_钻头新进展与发展趋势展望

◀钻井技术与装备▶国内外PDC钻头新进展与发展趋势展望∗呼怀刚1ꎬ2㊀黄洪春1ꎬ2㊀汪海阁1ꎬ2㊀李忠明3㊀席传明4㊀武强1ꎬ2㊀刘力1ꎬ2(1 中国石油集团工程技术研究院有限公司㊀2 油气钻完井技术国家工程研究中心3 中国石油集团川庆钻探工程有限公司新疆分公司㊀4 新疆油田公司工程技术研究院)呼怀刚ꎬ黄洪春ꎬ汪海阁ꎬ等.国内外PDC钻头新进展与发展趋势展望[J].石油机械ꎬ2024ꎬ52(2):1-10.HuHuaigangꎬHuangHongchunꎬWangHaigeꎬetal.NewprogressanddevelopmenttrendsofPDCbitsinChinaandabroad[J].ChinaPetroleumMachineryꎬ2024ꎬ52(2):1-10.摘要:PDC钻头近年来发展迅速ꎮ为了能够及时掌握PDC钻头的最新进展ꎬ系统梳理了国内外油气井用PDC钻头新进展ꎬ介绍了中国石油在新型钻头研发与应用方面的工作ꎬ进一步阐述了国内PDC钻头研发面临的形势与挑战ꎬ展望了油气井用PDC钻头发展新趋势ꎮ研究结果表明:在油气资源勘探向着万米深层进军的大背景下ꎬ仍然面临地层可钻性差导致钻头破岩效率低㊁砾石层引起钻头振动先期损坏㊁大尺寸井眼钻井周期长等严峻挑战ꎬ技术与材料革新型高效钻头㊁混合式钻头㊁自适应钻头等能够明显提高钻进效率延长钻头寿命ꎻ智慧钻头所能提供的丰富井下数据能够提高对于深部破岩机理㊁岩石物性的认知ꎬ对于进一步优化钻头结构㊁识别可能存在的油气储层等具有重要的意义ꎮ应积极借鉴和移植这些成果ꎬ尽早研发出适用于深部油气勘探或深地科学钻探等领域的高端耐用钻头ꎮ研究结果可为高端PDC钻头国产化㊁系列化工作和相关从业人员提供借鉴ꎮ关键词:PDC钻头ꎻPDC复合片ꎻ混合式钻头ꎻ自适应钻头ꎻ智能钻头ꎻ国产化中图分类号:TE921㊀文献标识码:A㊀DOI:10 16082/j cnki issn 1001-4578 2024 02 001NewProgressandDevelopmentTrendsofPDCBitsinChinaandAbroadHuHuaigang1ꎬ2㊀HuangHongchun1ꎬ2㊀WangHaige1ꎬ2㊀LiZhongming3XiChuanming4㊀WuQiang1ꎬ2㊀LiuLi1ꎬ2(1 CNPCEngineeringTechnologyR&DCompanyLimitedꎻ2 NationalEngineeringResearchCenterofOil&GasDrillingandCompletionTechnologyꎻ3 CCDCXinjiangBranchCompanyꎻ4 ResearchInstituteofEngineeringTechnologyꎬPetroChinaXinjiangOilfieldCompany)Abstract:PDCbitshavedevelopedrapidlyinrecentyears.ThenewprogressofPDCbitsusedinoilandgaswellsinChinaandabroadwasreviewedꎬandCNPC seffortsintheresearchandapplicationofnewbitswereintro ̄duced.FurthermoreꎬthesituationandchallengesforPDCbitresearchanddevelopmentinChinawereelaboratedꎬandthenewtrendsinthedevelopmentofPDCbitswereforecasted.Theresultsshowthatunderthebackgroundofoilandgasresourceexplorationadvancingtowardsadepthoftensofthousandsofmetersꎬtherearestillseriouschallengessuchaslowrock ̄breakingefficiencyofbitsduetopoorformationdrillabilityꎬearlydamageofbitscauseditsshakingbygravellayersandlongdrillingcyclesoflarge ̄sizedwellbores.Technologyandmaterialinno ̄1 ㊀2024年㊀第52卷㊀第2期石㊀油㊀机㊀械CHINAPETROLEUMMACHINERY㊀㊀㊀∗基金项目:中国石油天然气集团有限公司前瞻性基础性技术攻关项目 深井超深井优快钻井技术研究 (2021DJ4101)ꎻ中国石油天然气集团有限公司关键核心技术攻关项目 万米超深层油气资源钻完井关键技术与装备研究 (2022ZG06)ꎻ油气钻完井技术国家工程研究中心基金项目 基于破岩过程扭矩自适应控制的井下减振提速机理研究 ꎻ中国石油集团直属院所项目 高温高压下PDC钻头切削齿破岩系统研制 (CPET2022-10S)ꎮvationtypeefficientbitsꎬhybridbitsandadaptivebitscansignificantlyimprovedrillingefficiencyandbitlife.Theabundantdownholedataprovidedbysmartbitscanenhanceunderstandingofdeeprock ̄breakingmechanismsandrockpropertiesꎬandisofgreatsignificanceforfurtheroptimizingbitstructuresandidentifyingpotentialoilandgasreservoirs.Theresultsofhybridꎬadaptiveandintelligentbitsshouldbeactivelyusedforreferenceandtransplan ̄tedꎬsoastosuccessfullydevelophigh ̄enddurablebitssuitablefordeepoilandgasexplorationordeepgeologicalscientificdrillingassoonaspossible.Theresearchfindingsprovidereferenceforthelocalizationandserializationofhigh ̄endPDCbitsaswellasrelatedresearchers.Keywords:PDCbitꎻPDCcompactꎻhybridbitꎻadaptivebitꎻintelligentbitꎻhomemade0㊀引㊀言油气钻井自PDC钻头成功应用以来发生了 天翻地覆 的变化ꎬ尤其是经过诸如能显著提高抗研磨性和抗冲击性的聚晶金刚石复合层㊁增强金刚石层与硬质基底黏结强度的非平面界面技术ꎬ减轻扭转冲击的抗回旋技术ꎬ提高复合片热稳定性的滤钴工艺㊁基于计算流体力学的水力学优化㊁计算机辅助建模㊁基于大数据的钻头选型和个性化设计㊁智能制造技术等的创新技术[1-4]ꎮ近年来PDC钻头发展极其迅速ꎬ其钻进性能和类型品种等已基本满足油气钻井的需求ꎬ且已占近80%的世界油气市场份额ꎬ世界钻井总进尺数占比更是超过了90%ꎬ但其仍有进一步改进提高的空间[5]ꎮ为了满足现代油气大位移井㊁长水平段水平井以及超深井的需求ꎬ各石油公司与科研院所都积极在诸如PDC切削齿的材质㊁形状㊁加工工艺及其在钻头上的配置ꎬ钻头结构㊁水力学㊁切削原理和制造工艺等方面深入探索ꎮPDC钻头因在材料和切削原理上的局限性ꎬ对于深井中坚硬地层㊁强研磨性地层㊁软硬互层及砾石层㊁地热井钻进终归不能完全胜任ꎮ对上述难钻地层ꎬ除应用金刚石钻头外ꎬ近年来诞生的技术和材料革新型钻头㊁混合式钻头以及智能化钻头等都是重要的选择和开拓[6-8]ꎮ笔者从国内国外两方面梳理了近年来出现的新型钻头ꎬ介绍了新型钻头的结构特征㊁工作原理和应用状况等ꎬ分析了国内油气井用PDC钻头研发所面临的挑战ꎬ进而对油气井用PDC钻头的研发趋势进行了展望ꎬ以期为高端PDC钻头的国产化㊁系列化工作和相关从业人员提供借鉴ꎮ1㊀国外油气井用PDC钻头发展概况1 1㊀技术㊁材料革新型高效钻头近年来ꎬNOV公司推出了HeliosImpact(见图1a)与ION+Alpha切削齿技术(见图1b)ꎬ将上述切削齿配置于不同的钻头并且针对不同区域进行相应的技术升级ꎬ形成了诸如用于地热钻井Phoenix钻头系列(见图2a)㊁与水力剪切喷嘴配合用于强化岩石剪切损伤的Tektonic钻头系列(见图2b)㊁用于美国市场的Pursuit钻头系列(见图2c)等ꎮ上述钻头在钻进硬岩与研磨性地层时热稳定性㊁抗研磨性㊁抗冲击性及导向性等方面有明显提升ꎬ成功应用于美国㊁拉丁美洲㊁印度尼西亚等地区的油气田ꎮSchlumberger公司通过本身的技术积淀及收购SmithBit公司积累了大量的切削齿㊁新材料和钻头的专利技术ꎬ例如ONYX360Rolling㊁AxeBladeElement㊁StingerElement㊁HyperBlade切削齿专利(见图1c~图1f)㊁增强切削齿强度及攻击性的Ae ̄gis超级涂层技术(见图1g)ꎮ采用上述先进切削齿技术的FireStorm/SHARC/Aegis/Spear系列钻头(见图1㊁图2d~图2f)㊁扩孔钻头和空气锤等特殊用途钻头ꎬ在油气钻井中得到了广泛的应用ꎬ能够以较高的钻进效率和工作寿命钻进某些硬岩和研磨性地层等[9-13]ꎮHalliburton在2017年推出了2款新型切削齿ꎬCruzer旋转吃深控制单元用于常规固定齿钻头ꎬ降低破岩扭矩和钻头摩阻㊁减少钻进过程中热量的产生㊁强化钻进性能ꎬ在长水平段S形井眼轨迹中展现了较好的效果[14](见图2g)ꎻGeometrix4DCut ̄ters通过对切削齿结构进行优化设计ꎬ使其在降低摩阻㊁促进岩屑排出㊁降低切削齿热降解方面具有较大的优势(见图1h)ꎮ应用在墨西哥湾花岗岩-页岩地层中ꎬ机械钻速翻倍ꎬ同时最大化降低了金刚石材料的热降解ꎮBakerHughes基于所研发的能够适用于砾石层㊁夹层中的StayTure切削元件和抗磨损且保持自锐的StayCool切削齿(见图1i㊁图1j)ꎬ推出了Dynamus抗涡动钻头系列(见图2h)ꎬ能够明显缩短定向井滑动钻进时间ꎬ提高整体机械钻速和井身质量ꎬ实现较少的起下钻次数ꎬ提高钻头机械能量2 ㊀㊀㊀石㊀油㊀机㊀械2024年㊀第52卷㊀第2期利用率ꎮ为了满足特殊工艺井㊁特殊区域㊁特殊层位的要求ꎬ特别在大位移井㊁水平井㊁非常规油气井㊁地热井等发挥钻头的最大效能ꎬ减少钻头失效情况的发生ꎬ延长钻头寿命并降低钻井成本ꎬ各石油公司推出了诸多个性化定制的新型钻头ꎬ并形成了各自的产品系列ꎮ如能提高水力能量利用率的Split ̄Blade钻头(见图2i)㊁减轻横向振动的Counter ̄Force钻头(见图2j)㊁用于定向井造斜的EVOSPDC钻头(见图2k)㊁适用于旋转导向钻井的LyngPDC钻头㊁SeekerPDC钻头(见图2l)等ꎬ均取得了良好的效果[15-18]ꎮ图1㊀新型切削齿技术Fig 1㊀Newcutterstechnology图2㊀基于技术&材料革新的新型钻头Fig 2㊀Newbitsbasedontechnologyandmaterialinnovation3 2024年㊀第52卷㊀第2期呼怀刚ꎬ等:国内外PDC钻头新进展与发展趋势展望㊀㊀㊀1 2㊀混合式钻头针对ø311mm及更大直径井段增多致使全井钻井周期和钻井成本增加这一问题ꎬ胜利钻井工艺研究院曾进行了双级PDC钻头的相关理论与试验研究(见图3a)ꎬ但限于切削齿材料㊁加工工艺㊁钻头寿命等限制并未大规模推广ꎮ2011年BakerHughes推出了PDC钻头与牙轮钻头组合的KymeraMach和KymeraXtreme混合式钻头(见图3b)ꎬ主要针对深井硬地层㊁砾石层和软硬互层等可能产生严重黏滑振动的地层ꎬ借助于牙轮钻头侵入能力和PDC钻头高效剪切作用ꎬ提高钻头破岩效率㊁降低可能出现的PDC复合片的冲击损伤㊁提高定向井中钻头的定向能力等ꎬ在中国㊁美国㊁加拿大等地的油田应用ꎬ均取得了良好的效果[19-20]ꎮ2012年NOV公司针对坚硬火成岩地层井段研发了SpeedDrill同心双径PDC钻头(见图3c)ꎬ与低速高扭动力钻具配合使用ꎬ钻进包含火成岩地层在内的整个井段ꎬ能够明显提高钻进效率ꎬ定向钻进过程中轨迹控制较为理想ꎬ达到了预期效果[21]ꎮ2013年NOV公司推出FuseTek混合式钻头(见图3d)ꎬ针对中硬-坚硬和强研磨性地层ꎬ结合PDC切削齿的高剪切性能与孕镶块的强抗研磨性ꎬ在中国㊁非洲㊁北美等地进行了大量应用ꎬ与常规PDC钻头或牙轮钻头相比ꎬ能够明显提高钻进效率ꎬ钻头进尺也增加了1~3倍[22]ꎮ2014年ShearBits公司推出Pexus混合式钻头(见图3e)ꎬ将硬质合金齿与PDC复合片有机结合ꎬ当钻遇井段上部砾石层时利用可转动硬质合金齿侵入地层形成破碎坑ꎬ降低后排PDC切削齿剪切破岩的难度ꎻ在钻遇下部较软的砂岩和页岩时ꎬ则主要依靠PDC复合片进行大体积剪切破碎ꎮ在加拿大冰川冰碛物中应用ꎬPexus混合式钻头完整钻穿冰碛物地层[23-24]ꎮ2019年Halliburton公司推出了Crush&Shear混合式钻头(见图3f)ꎬ将传统PDC钻头高效破岩的能力与滚动元件降低破岩扭矩的特点有机结合ꎬ2种切削结构显著增强了钻头在软硬互层或过渡性地层中的破岩稳定性ꎬ钻进效率大幅提升ꎮ钻头在白俄罗斯某定向井中成功钻穿塑性页岩地层ꎬ一趟钻实现进尺1841mꎬ平均机械钻速23 7m/h[25]ꎮ图3㊀新型混合式钻头Fig 3㊀Newhybridbits1 3㊀智能化钻头2017年BHGE油气公司发布的TerrAdapt智能钻头可根据持续变化的地层特征自动调节钻头的切削深度(DOC)ꎬ在提高机械钻速的同时减缓黏滑现象ꎬ克服了常规PDC钻头切削深度控制的局限性(见图4a)ꎮ可调节的DOC控制单元收缩特性避免了切削齿对地层的过度切削ꎬ从而防止黏滑现象导致的钻头过早失效ꎮø215 9mmTerrAdapt智能钻头的现场试验结果证实该钻头可以有效抑制黏滑振动ꎬ拓宽了钻头稳定钻进的使用参数范围ꎬ提高了钻进效率[26-27]ꎮ2018年Halliburton公司推出了概念产品Cere ̄broForce自动感知钻头(见图4b)ꎬ通过在钻头内部设置多种传感器实现钻头工况数据的实时采集ꎬ以减少地面数据测量的不确定性ꎮ该钻头井下所能获取的数据包括:振动㊁钻压㊁扭矩及液体压力4 ㊀㊀㊀石㊀油㊀机㊀械2024年㊀第52卷㊀第2期等ꎬ使得地面操作人员可以对钻头在井下的实际工况进行充分的掌握ꎬ从而对钻进参数等进行实时调节ꎬ最大化钻进效率[28]ꎮ2020年NOV提出了通过水力参数来实现钻头切削结构或者吃入深度控制单元对地层特征的 智能适应 ꎬ并初步研发出Smart ̄adaptive钻头(见图4c)ꎮ该钻头的设想是在钻进上下不同地层时可以实现刀翼数量的自动或人为控制ꎬ从而减少不必要的起下钻次数ꎬ为此NOV公司设计出了工业样品ꎬ其实际效果有待进一步现场验证[28]ꎮ2021年NOV公司推出了一款BitIQ钻头传感器ꎬ通过将传感器安装在PDC钻头接头处(见图4d)ꎬ可以实现对钻头振动(包括轴向㊁横向和切向振动ꎬ量程为ʃ120G)㊁井底温度(0~125ħ)及钻头转速(ʃ666r/min)在内的信息进行高频率(采样频率128Hz)测量㊁存储和数据统计ꎬ安装与操作较为简单ꎬ无需再经常安排额外操作人员ꎮ起钻后ꎬ使用专用手机应用对传感器存储数据进行下载并上传至云端系统进行数据处理ꎬ通过自动生成的分析报告ꎬ可以获得钻头磨损情况与井下振动之间的相关性ꎬ为后续钻头优化设计㊁提高钻头性能提供数据支撑ꎮ图4㊀智能化钻头Fig 4㊀Intelligentbits2㊀国内油气井用PDC钻头发展概况国内新型钻头的研发路线如下ꎮ①基于改变钻头井底的射流形式进而提高辅助破岩效果ꎬ有自激共振式钻头㊁空化射流钻头㊁脉冲空化多孔射流钻头㊁自旋式喷嘴射流钻头等ꎮ②通过设计并改变常规PDC钻头的切削结构ꎬ使钻头在井底的破岩方式发生变化ꎻ或者通过钻进过程中改变井底应力状况ꎬ降低岩石的抗钻特性ꎬ进而达到提高破岩效率的目的ꎮ有差压步进式钻头㊁微心钻头㊁旋切模块式钻头和环脊式PDC钻头等ꎮ③集井下数据采集和钻头动态行为监测为一体的智能钻头ꎬ将 黑匣子 (传感器)布置在钻头本体上ꎬ用于实时监测钻头的钻压㊁扭矩㊁转速㊁加速度㊁冲击载荷以及井底温度等信息ꎬ国内中石油工程院㊁胜利钻井工艺研究院等单位均开展了相关研究ꎬ开发的样机已初步进行了现场试验ꎬ达到了预期的目的ꎮ2 1㊀新型射流式PDC钻头国内部分研究团队在自激振荡(水力脉冲空化射流)理论与应用方面做了大量的工作[29-30]ꎬ空化射流的产生是基于在钻头上部(内部)添加自激振荡工具或结构ꎬ使用空化射流喷嘴或者脉冲空化射流耦合发生器ꎬ利用瞬态流和水声学原理调制射流流场ꎬ使射流剪切涡脱落㊁演化ꎬ发展成为大尺度涡环结构ꎬ诱导空化的发生ꎮ现阶段所研发的空化射流PDC钻头㊁脉冲空化多孔射流钻头也是基于上述原理ꎬ当流场中的空化气泡发生溃灭时会释放高温高压冲击波ꎬ进而提高空化射流的冲蚀性能ꎬ现场应用机械钻速平均提高30%~40%ꎮ2 2㊀结构创新型PDC钻头近年来ꎬ国内石油高校㊁企业加大了对于新型结构钻头的创新力度ꎬ从破岩方法㊁破岩机理[31-33]上做了诸多有益的探索ꎮ中国石油大学(华东)与中石油工程院在深井大尺寸井眼段长度增加㊁可钻性变差㊁常规PDC钻头钻速低㊁提速难的背景下ꎬ从降低深井岩石抗钻强度㊁增强钻头攻击能量2个角度出发ꎬ共同研发了一种自适应同心双径的PDC钻头(命名为差压步进式钻头)[34](见图5a)ꎮ室内试验与理论计算结果均表明ꎬ该钻头能够明显提高机械钻速(提速幅度为68%~330%)ꎬ在较小的破岩扭矩增加(增加69%)的情况下实现钻速的大幅度提升(提高280%)ꎮ同时弹性元件的存在使得钻压在领扩眼钻头之间可以自适应分配ꎬ提高了破岩能量利用率ꎬ进而最大化钻头的破岩效率[35]ꎮ为了使常规PDC钻头在深部难钻地层中的机械钻速有进一步的提升ꎬ中石油工程院研发了一种5 2024年㊀第52卷㊀第2期呼怀刚ꎬ等:国内外PDC钻头新进展与发展趋势展望㊀㊀㊀含亥姆霍兹共振腔的自激共振式钻头(见图5b)ꎬ该钻头水力激振腔引发的超高频振动能够使钻头与所钻地层之间发生共振ꎬ进而降低岩石强度㊁提高破岩效率ꎮ室内试验中平均机械钻速较常规PDC钻头提高80%以上ꎮ为解决普通PDC钻头形成的岩屑细碎㊁无法满足岩屑录井要求ꎬ胜利钻井工艺研究院㊁西南石油大学分别研发了一款微心PDC钻头[36-37]ꎮ此类微取心PDC钻头取消了常规PDC钻头心部的主切削齿ꎬ设置特殊的水力结构ꎬ使钻头心部在钻进过程中形成一定直径的竖直岩心并适时折断ꎬ通过负压抽吸作用将断的微岩心从钻头体内部流道带离井底ꎮ室内及现场试验结果表明ꎬ该钻头采集的岩心以柱状为主ꎬ岩性的完整性和采集率较高ꎬ可以代替牙轮钻头在岩屑录井井段使用ꎮ中国石油大学㊁西南石油大学等相关学者从破岩方式上对常规PDC钻头做了有益的探索与改进ꎬ研发了刮刀轮式[38]㊁旋转模块式[39]㊁旋切式[40]㊁环脊式[41]PDC钻头ꎮ此类钻头在常规PDC钻头的基础上加装了旋转切削模块(见图5c)ꎬ与固定式PDC切削齿 交叉刮切 破碎岩石ꎬ期望旋转切削模块中切削单元轮流工作方式能够提高钻头的整体破岩效率ꎮ环脊式PDC钻头(见图5d)则是在钻头的布齿区域内ꎬ至少有一个不设置主切削齿的环形空白带(简称 环带 )ꎬ且在刀翼的环带相应位置处开设周向贯通的凹槽ꎬ在凹槽底面或侧面可设置二级切削齿ꎮ目前ꎬ该类钻头多处于概念设计㊁室内测试阶段ꎬ距现场应用尚有较大距离ꎮ图5㊀结构创新型PDC钻头Fig 5㊀StructuralinnovativePDCbits2 3㊀中石油新型PDC钻头的应用情况依托中石油工程院休斯顿研发中心ꎬ在宝石机械㊁渤海中成㊁川庆钻探㊁长城钻探等生产单位的大力协作下ꎬ通过 十三五 持续攻关ꎬ中石油形成了从复合片材料及加工工艺㊁PDC钻头设计加工及应用一体化的专有技术[42]ꎮ为解决砂砾岩㊁火山岩㊁灰岩㊁云岩㊁燧石等难钻地层提速瓶颈问题ꎬ中石油休斯顿研究中心突破金刚石复合片选粉处理工艺㊁粉料封装工艺以及深度脱钴工艺ꎬ形成了硬质合金基体(见图6a㊁图6b)设计与试验评价方法ꎬ并首创三维凸脊形非平面齿(见图6c)ꎬ抗冲击性由300J提升至400J以上ꎬ较常规平面PDC切削齿抗冲击性能提高9倍以上㊁断裂韧性提高40%ꎻ脱钴深度由400~600μm提升至800~1200μmꎬ通过全角度脱钴ꎬ切削齿的抗研磨性和热稳定性得到了全面提升ꎬ延长钻头使用寿命ꎮ基于性能优异的非平面切削齿研发了3个系列11种尺寸22个型号的PDC钻头产品(见图6d)ꎬ在新疆㊁塔里木㊁西南㊁大庆等油田复杂难钻地层现场应用1000余井次ꎬ平均进尺和机械钻速提高29%和57%以上ꎬ屡创国内五大盆地多项新的钻井纪录ꎮ图6㊀中石油研发的高效异形PDC切削齿及Tridon系列PDC钻头Fig 6㊀Highefficiencyspecial ̄shapedPDCcuttersandTridonPDCbitsofCNPC 6 ㊀㊀㊀石㊀油㊀机㊀械2024年㊀第52卷㊀第2期㊀㊀中国石油针对不同区块㊁不同井型㊁不同地层㊁不同井段实施 一井一策ꎬ一层一策 的个性化钻头设计与应用方案ꎮ中石油工程院与渤海装备联合研制的川渝页岩气㊁玛湖致密油水平段专用PDC钻头(见图7a㊁图7b)ꎬ通过复合片深度脱钴与优选㊁刀翼和布齿优化等设计ꎬ显著提高了钻头的攻击和导向性能ꎮ现场应用30余井次ꎬ在川渝页岩气井钻进ꎬ平均单趟进尺1000m以上ꎻ在玛湖区块玛XXX井乌尔禾组地层钻进ꎬ单趟进尺325mꎬ平均机械钻速5m/hꎬ与进口PDC钻头相当ꎮ川庆钻探公司针对川渝页岩气三开可钻性差的难题ꎬ研发了混合布齿㊁常规螺杆专用和旋转导向专用的系列个性化PDC钻头(见图7c㊁图7d)ꎬ其中常规螺杆专用钻头的平均机械钻速和单趟进尺分别为7 7m/h和510mꎬ同比提高11 4%和18 5%ꎬ单只钻头的最高进尺达1288mꎻ旋转导向专用钻头的平均机械钻速和单趟进尺分别为11 6m/h和1093mꎬ同比提高43%和48%ꎬ单只钻头的最高进尺1586mꎮ宝鸡石油机械有限责任公司研制的PDC-牙轮复合钻头ꎬ规格在ø149 2~ø444 5mm(ø5 ~ø17⅟ in)之间ꎬ在川渝㊁松辽盆地等难钻地层累计应用286只ꎬ与PDC钻头相比ꎬ钻头进尺和平均机械钻速分别提高20%~108%和10%~75%ꎮ图7㊀中石油部分专打PDC钻头Fig 7㊀PDCbitsforspecializeddrillingofCNPC3㊀国内PDC钻头研发面临挑战3 1㊀油气勘探所面临的形势随着塔里木盆地大北㊁博孜㊁克深㊁顺北超深层ꎬ准噶尔盆地南缘深层超深层㊁玛湖吉木萨尔页岩油气ꎬ四川盆地川东㊁川西北㊁川中古隆起北斜坡ꎬ大庆古龙页岩油气等一大批大油田的发现ꎬ 十四五 及今后若干年增储上产的重点仍然是深层超深层ꎮ而在上述地层中钻进依然面临地层可钻性差导致的破岩效率低㊁砾石层及软硬交互地层引起钻头振动造成先期损坏㊁深井大尺寸井眼钻井周期长㊁钻头用量大等严峻挑战ꎮ例如川西地区的须家河组㊁二叠系等地层可钻性差8~10级㊁研磨性强8~10级ꎬ金宝石组石英含量高达90%以上ꎬ钻头破岩效率较低ꎬ吴家坪组-栖霞组机械钻速仅1 29m/hꎬ钻头进尺小于60mꎻ大庆深部地层的流纹岩㊁花岗岩㊁砾岩等难钻地层ꎬ可钻性达8~10级ꎬ钻头钻进过程振动剧烈且频繁ꎬ平均进尺56mꎬ机械钻速1 30m/hꎬ单井钻头用量大(水平井平均用量36只ꎬ直井10只)ꎻ库车山前地区的砾石层平均段长超5200mꎬ砾石含量高㊁粒径大ꎬ机械钻速平均仅为2m/hꎬ巴什基奇克组等复杂地层厚度占全井4%~21%ꎬ钻时占全井25%~51%ꎬ钻头用量占全井40%~62%ꎮ3 2㊀高端钻头研发所面临的瓶颈问题首先是基础学科领域有待进一步突破ꎬ其中新型钻头基体的材料研发㊁金刚石材料与基底的黏结工艺㊁深部高温高压复杂地层钻头与岩石相互作用机理亟需科研攻关ꎮ其次是PDC钻头设计㊁模拟㊁加工㊁后评价一体化的智能设计制造技术有待进一步集成升级ꎬ具有特殊工况㊁地层适应性的个性化钻头模块化设计软件㊁性能模拟与磨损预测软件㊁五轴数控加工与自动化检测平台等方面亟待优化升级和功能开发ꎮ再次是钻头创新研发与应用进度尚不匹配ꎬ国内石油高校在新型结构钻头创新㊁理论计算与数值模拟上具有先天性优势ꎬ而国内相关企业则在PDC钻头加工生产㊁科学试验㊁产业化应用方面具有得天独厚的有利条件ꎬ两者之间的联通渠道有待进一步加速拓宽ꎬ以发挥各自的比较优势ꎮ最后是国内钻头研发尚需一条或多条明确的开发线路ꎬ多为单点创新性研发ꎬ系统性㊁系列性㊁特殊地层适用性较国外知名钻头公司还有一定的差距ꎮ7 2024年㊀第52卷㊀第2期呼怀刚ꎬ等:国内外PDC钻头新进展与发展趋势展望㊀㊀㊀4㊀结论与展望(1)将PDC切削齿与其他类型切削元件进行有机结合㊁在结构参数和材料等方面进行不同组合的混合式钻头已成为国际上油气井钻头发展的重要趋势之一ꎮ(2)以BHGE油气公司TerrAdapt智能钻头为代表ꎬ通过对切削结构或吃深控制单元进行自动控制ꎬ在抑制黏滑振动和减小钻头冲击损坏方面表现出色ꎬ也逐渐成为油气井用钻头的研发方向之一ꎮ(3)以Halliburton公司的CerebroForce自动感知钻头为代表ꎬ将信息采集传感器集成于钻头内ꎬ实现井下工况的实时监测与反馈ꎮ随着科技与材料科学的进一步发展ꎬ智能感知钻头终将普遍用于油气行业ꎬ实现基于测量信息的钻进过程实时优化㊁信息存储用于钻后分析ꎮ钻头供应商需要与钻井承包商深度合作ꎬ甄别井底所获取的信息哪些具有较大的价值ꎬ并将上述数据以最快的速度发挥其最大的价值ꎮ(4)钻头的个性化设计始终是深部复杂地层提高破岩效率㊁长水平段水平井实现 一趟钻 目标的必然选择与要求ꎮ针对细化的区块㊁工况㊁地层等大力实施 一井一策ꎬ一层一策 的个性化钻头设计与应用方案ꎻ同时ꎬPDC钻头研发也应与配套钻井工艺㊁钻井工具㊁导向工具集成化服务相结合ꎬ以最大化钻头与底部钻具的组合潜能ꎬ尽可能实现不同复杂地层中的一趟钻完钻ꎮ参㊀考㊀文㊀献[1]㊀左汝强.国际油气井钻头进展概述(一):Kymera组合式(Hybrid)钻头系列[J].探矿工程(岩土钻掘工程)ꎬ2016ꎬ43(1):4-6.ZUORQ.Internationaladvancementofdrillingbitsforoilandgaswell(1)-kymerahybridbit[J].Explo ̄rationEngineering(Rock&SoilDrillingandTunne ̄ling)ꎬ2016ꎬ43(1):4-6[2]㊀左汝强.国际油气井钻头进展概述(三):PDC钻头发展进程及当今态势(上)[J].探矿工程(岩土钻掘工程)ꎬ2016ꎬ43(3):1-8.ZUORQ.Internationaladvancementofdrillingbitsforoilandgaswell(3)-PDCbitsprogressandpresenttrend(Ⅰ)[J].ExplorationEngineering(Rock&SoilDrillingandTunneling)ꎬ2016ꎬ43(3):1-8 [3]㊀左汝强.国际油气井钻头进展概述(四):PDC钻头发展进程及当今态势(下)[J].探矿工程(岩土钻掘工程)ꎬ2016ꎬ43(4):40-48.ZUORQ.Internationaladvancementofdrillingbitsforoilandgaswell(4)-PDCbitsprogressandpresenttrend(Ⅱ)[J].ExplorationEngineering(Rock&SoilDrillingandTunneling)ꎬ2016ꎬ43(4):40-48 [4]㊀万夫磊ꎬ韩烈祥ꎬ姚建林.个性化钻头技术研究与展望[J].钻采工艺ꎬ2020ꎬ43(4):16-19.WANFLꎬHANLXꎬYAOJL.Researchandpros ̄pectofpersonalizedbittechnology[J].Drilling&Pro ̄ductionTechnologyꎬ2020ꎬ43(4):16-19 [5]㊀SCOTTDꎬHUGHESB.Abitofhistory:overcomingearlysetbacksꎬPDCbitsnowdrill90%-plusofworld ̄widefootage[EB/OL].(2015-07-07)[2016-05-24].http:ʊwww.drillingcontractor.org/a-bit-of-history-overcoming-early-setbacks-pdc-bits-now-drill-90-plus-of-worldwide-footage-35932 [6]㊀刘丁源ꎬ李军ꎬ高德伟ꎬ等.PDC钻头在砾岩地层中的破岩机理与适应性分析[J].石油机械ꎬ2023ꎬ51(7):51-58ꎬ67.LIUDYꎬLIJꎬGAODWꎬetal.AnalysisonrockbreakingmechanismandadaptabilityofPDCbitincon ̄glomerateformation[J].ChinaPetroleumMachineryꎬ2023ꎬ51(7):51-58ꎬ67[7]㊀AL ̄AJMIKꎬAL ̄HAMADIEꎬBAQERYꎬetal.Newconcentricdual ̄diameterfixed ̄cuttertechnologybitdrills35%fasterandsavesoperatordrillingtimethroughchallengingabrasivesandstoneinoneofthelargestres ̄ervoirsinthemiddleeast[C]ʊSPE/IADCMiddleEastDrillingTechnologyConferenceandExhibition.AbuDhabi:SPEꎬ2016:SPE178208-MS. [8]㊀龙伟ꎬ况雨春ꎬ何璟彬ꎬ等.水平井PDC钻头黏滑振动规律试验研究[J].石油机械ꎬ2023ꎬ51(9):18-25.LONGWꎬKUANGYCꎬHEJBꎬetal.Testonstick ̄slipvibrationofPDCbitinhorizontalwells[J].ChinaPetroleumMachineryꎬ2023ꎬ51(9):18-25 [9]㊀ZHANGYHꎬBAKERRꎬBURHANYꎬetal.Inno ̄vativerollingPDCcutterincreasesdrillingefficiencyim ̄provingbitperformanceinchallengingapplications[C]ʊSPE/IADCDrillingConference.Amsterdam:SPEꎬ2013:SPE163536-MS.[10]㊀PLATTJꎬVALLIYAPPANSꎬKARUPPIAHV.In ̄novativerollingcuttertechnologysignificantlyimprovedfootageandROPinlateralandverticalgasapplicationsinSaudiArabia[C]ʊSPE/IADCMiddleEastDrill ̄ingTechnologyConferenceandExhibition.AbuDha ̄bi:SPEꎬ2016:SPE178201-MS.[11]㊀FAROUKHꎬELWEKEELWꎬSHOKRYAEꎬetal.InnovativePDCbitdesignincreasesdrillingefficiency8 ㊀㊀㊀石㊀油㊀机㊀械2024年㊀第52卷㊀第2期inEgypt snotoriouslydifficultwesterndesertdeepli ̄thologycolumn[C]ʊSPENorthAfricaTechnicalConferenceandExhibition.Cairo:SPEꎬ2015:SPE175756-MS.[12]㊀SANCHEZJLꎬCARRIZOHꎬSALGADOJꎬetal.AdvanceddrillingandloggingtechnologiesgivenewlifetoagingfieldsinEcuadorbyenablingreentrydrill ̄ing[C]ʊSPELatinAmericanandCaribbeanPetro ̄leumEngineeringConference.Quito:SPEꎬ2015:SPE177087-MS.[13]㊀VANHEEKERENHꎬSTORMRꎬKRAANAVꎬetal.Conicaldiamondelementbitsetsnewperformancebenchmarksdrillinghardandabrasiveformationsꎬoff ̄shoreNetherlands[C]ʊSPENorthAfricaTechnicalConferenceandExhibition.Cairo:SPEꎬ2015:SPE175859-MS.[14]㊀HalliburtonInc.OperatorsetsbenchmarkdrillinglonglateralS ̄shapewell[EB/OL].(2019-10-06)[2020-03-24].https:ʊwww.halliburton.com/en/resources/operator-sets-new-benchmark-drilling-long-lateral-s-shaped-well.[15]㊀MELIRꎬSALASCꎬMARTINRꎬetal.IntegratedBHAsystemdrillscurve/lateralinonerunatrecordROPsavingsevendaysrigtime[C]ʊIADC/SPEDrillingConferenceandExhibition.FortWorth:SPEꎬ2014:SPE167920-MS.[16]㊀HANNACꎬDOUGLASCꎬASRHꎬetal.Applica ̄tionspecificsteelbodyPDCbittechnologyreducesdrillingcostsinunconventionalNorthAmericashaleplays[C]ʊSPEAnnualTechnicalConferenceandExhibition.Denver:SPEꎬ2011:SPE144456-MS. [17]㊀COCKRAMMꎬRITCHIEAꎬNORGEBGꎬetal.MultidisciplinaryapproachandengineeredsolutionsetsnewNorthseaperformancebenchmarks[C]ʊSPEDeepwaterDrillingandCompletionsConference.Galveston:SPEꎬ2012:SPE155475-MS. [18]㊀WUXPꎬKARUPPIAHVꎬNAGARAJMꎬetal.I ̄dentifyingtherootcauseofdrillingvibrationandstick ̄slipenablesfit ̄for ̄purposesolutions[C]ʊIADC/SPEDrillingConferenceandExhibition.SanDiego:SPEꎬ2012:SPE151347-MS.[19]㊀DOLEZALTꎬFELDERHOFFFꎬHOLLIDAYAꎬetal.Expansionoffieldtestingandapplicationofnewhybriddrillbit[C]ʊSPEAnnualTechnicalConfer ̄enceandExhibition.Denver:SPEꎬ2011:SPE146737-MS.[20]㊀OMARMꎬAGAWANIWꎬABDELHAMIDAꎬetal.MultipledeploymentsofhybriddrillbitswithoptimizeddrillingsystemsproveenhancedefficiencyinNorthKu ̄waitdevelopmentwells[C]ʊSPEMiddleEastOil&GasShowandConference.Manama:SPEꎬ2017:SPE184026-MS.[21]㊀HELLVIKSꎬNYGAARDRꎬHOELEꎬetal.PDCcutterandbitdevelopmentforchallengingconglomer ̄atedrillingintheLunoField ̄OffshoreNorway[C]ʊIADC/SPEDrillingConferenceandExhibition.SanDiego:SPEꎬ2012:SPE151456-MS.[22]㊀GARCIAAꎬBAROCIOHꎬNICHOLLDꎬetal.No ̄veldrillbitmaterialstechnologyfusiondeliversper ̄formancestepchangeinhardanddifficultformations[C]ʊSPE/IADCDrillingConference.Amsterdam:SPEꎬ2013:SPE163458-MS.[23]㊀HSIEHLꎬEDITORMꎬENDRESSAꎬetal.Betterandbetterꎬbitbybit/newdrillbitsutilizeuniquecut ̄tingstructuresꎬcutterelementshapesꎬadvancedmodelingsoftwaretoincreaseROPꎬcontrolꎬdurabili ̄ty[EB/OL].(2015-07-09)[2023-08-07].ht ̄tps:ʊdrillingcontractor.org/better-and-better-bit-by-bit-35780[24]㊀WONGAꎬDENOUDENBꎬHERMANJJꎬetal.Newhybridbittechnologyprovidesimprovedperform ̄anceinconventionalintervals[C]ʊSPEAnnualTechnicalConferenceandExhibition.Dubai:SPEꎬ2016:SPE181668-MS.[25]㊀HalliburtonInc.Crush&ShearTMhybriddrillbits[EB/OL].(2019-10-12)[2021-02-15].https:ʊwww.halliburton.com/en/products/crush-shear-hy ̄brid-drill-bits.[26]㊀DAVISJEꎬSMYTHGFꎬBOLIVARNꎬetal.E ̄liminatingstick-slipbymanagingbitdepthofcutandminimizingvariabletorqueinthedrillstring[C]ʊIADC/SPEDrillingConferenceandExhibition.SanDiego:SPEꎬ2012:SPE151133-MS.[27]㊀JAINJRꎬRICKSGꎬBAXTERBꎬetal.Astepchangeindrillbittechnologywithself-adjustingPDCbits[C]ʊIADC/SPEDrillingConferenceandExhi ̄bition.FortWorth:SPEꎬ2016:SPE178815-MS. [28]㊀NOVInc.Safeꎬefficientdrillingsolutions[EB/OL].(2020-10-12)[2021-02-15].https:ʊwww.nov.com/products-and-services/capabilities/drilling. [29]㊀王委ꎬ程智勇ꎬ陈小元ꎬ等.脉冲空化PDC钻头的研究及应用[J].石油机械ꎬ2021ꎬ49(11):24-30ꎬ38.WANGWꎬCHENGZYꎬCHENXYꎬetal.DesignandapplicationofpulsecavitationPDCbit[J].Chi ̄naPetroleumMachineryꎬ2021ꎬ49(11):24-30ꎬ38[30]㊀彭可文ꎬ田守嶒ꎬ李根生ꎬ等.自振空化射流空泡92024年㊀第52卷㊀第2期呼怀刚ꎬ等:国内外PDC钻头新进展与发展趋势展望㊀㊀㊀动力学特征及溃灭强度影响因素[J].石油勘探与开发ꎬ2018ꎬ45(2):326-332.PENGKWꎬTIANSCꎬLIGSꎬetal.Bubbledy ̄namicscharacteristicsandinfluencingfactorsonthecavitationcollapseintensityforself-resonatingcavitat ̄ingjets[J].PetroleumExplorationandDevelop ̄mentꎬ2018ꎬ45(2):326-332[31]㊀彭齐ꎬ杨雄文ꎬ任海涛ꎬ等.扇形齿PDC钻头破岩机理及工作性能仿真分析[J].石油机械ꎬ2023ꎬ51(7):28-35.PENGQꎬYANGXWꎬRENHTꎬetal.Simulationanalysisofrockbreakingmechanismandworkingper ̄formanceofPDCbitwithfan-shapedcutter[J].Chi ̄naPetroleumMachineryꎬ2023ꎬ51(7):28-35 [32]㊀张文波ꎬ史怀忠ꎬ席传明ꎬ等.锥形PDC齿和常规PDC齿混合切削破岩试验研究[J].石油机械ꎬ2023ꎬ51(3):33-39.ZHANGWBꎬSHIHZꎬXICMꎬetal.Experimen ̄talstudyonrockcuttingwiththecombinationofconi ̄caldiamondelementsandconventionalPDCcutters[J].ChinaPetroleumMachineryꎬ2023ꎬ51(3):33-39[33]㊀龚均云ꎬ吴文秀ꎬ周宗赣.斧形齿破岩机理数值模拟研究[J].石油机械ꎬ2022ꎬ50(9):44-51.GONGJYꎬWUWXꎬZHOUZG.Numericalsimu ̄lationonrock-breakingmechanismofaxe-shapedcut ̄ter[J].ChinaPetroleumMachineryꎬ2022ꎬ50(9):44-51[34]㊀管志川ꎬ刘永旺ꎬ李敬皎ꎬ等.差压式钻头:CN201510789231 X[P].2015-11-17.GAUNZCꎬLIUYWꎬLIJJꎬetal.Weight-on-bitself-adjustbit:CN201510789231 X[P].2015-11-17[35]㊀HUHGꎬGUANZCꎬZHANGBꎬetal.Structuredesignofweight ̄on ̄bitself ̄adjustingPDCbitbasedonstressfieldanalysisandexperimentevaluation[J].JournalofPetroleumScienceandEngineeringꎬ2021ꎬ196:107692[36]㊀田京燕ꎬ徐玉超.微心PDC钻头设计及现场试验[J].石油钻探技术ꎬ2019ꎬ47(1):65-68.TIANJYꎬXUYC.Designandfieldapplicationofamicro ̄coringPDCbit[J].PetroleumDrillingTech ̄niquesꎬ2019ꎬ47(1):65-68[37]㊀况雨春ꎬ罗金武ꎬ王利ꎬ等.抽吸式微取心PDC钻头的研究与应用[J].石油学报ꎬ2017ꎬ38(9):1073-1081.KUANGYCꎬLUOJWꎬWANGLꎬetal.Researchandapplicationofsuction ̄typemicrocoringPDCdrillbit[J].ActaPetroleiSinicaꎬ2017ꎬ38(9):1073-1081[38]㊀CHENLꎬYANGYXꎬLIUYꎬetal.Theoperationaltheoryandexperimentalstudyofscraping ̄wheeldia ̄mondbit[J].JournalofPetroleumScienceandEngi ̄neeringꎬ2017ꎬ156:152-159[39]㊀钟云鹏ꎬ杨迎新ꎬ于洪波ꎬ等.旋转模块式PDC钻头破岩机理研究[J].地下空间与工程学报ꎬ2019ꎬ15(6):1741-1748.ZHONGYPꎬYANGYXꎬYUHBꎬetal.Studyonrock ̄breakingmechanismofrotarymodularPDCbit[J].ChineseJournalofUndergroundSpaceandEngi ̄neeringꎬ2019ꎬ15(6):1741-1748[40]㊀曹扬ꎬ王海涛.旋切式PDC钻头切削结构设计研究[J].石油机械ꎬ2020ꎬ48(7):42-48.CAOYꎬWANGHT.DesignandstudyonthecuttingstructureofrotarycuttingPDCbit[J].ChinaPetro ̄leumMachineryꎬ2020ꎬ48(7):42-48 [41]㊀杨迎新ꎬ胡浩然ꎬ黄奎林ꎬ等.环脊式PDC钻头破岩机理试验研究[J].地下空间与工程学报ꎬ2019ꎬ15(5):1451-1460.YANGYXꎬHUHRꎬHUANGKLꎬetal.Experi ̄mentalresearchontherock ̄breakingmechanismofan ̄nular ̄ridgePDCbit[J].ChineseJournalofUnder ̄groundSpaceandEngineeringꎬ2019ꎬ15(5):1451-1460[42]㊀汪海阁ꎬ黄洪春ꎬ毕文欣ꎬ等.深井超深井油气钻井技术进展与展望[J].天然气工业ꎬ2021ꎬ41(8):163-177.WANGHGꎬHUANGHCꎬBIWXꎬetal.Deepandultra ̄deepoil/gaswelldrillingtechnologies:pro ̄gressandprospect[J].NaturalGasIndustryꎬ2021ꎬ41(8):163-177㊀㊀第一作者简介:呼怀刚ꎬ高级工程师ꎬ生于1988年ꎬ2021年毕业于中国石油大学(华东)油气井工程专业ꎬ现从事高效破岩㊁钻井提速㊁钻井工程规划与技术支持方面的研究工作ꎮ地址:(102206)北京市昌平区ꎮ电话:(010)80162237ꎮemail:huhg0536@126 comꎮ通信作者:汪海阁ꎬemail:wanghaigedri@cnpc com cnꎮ㊀收稿日期:2023-10-10(本文编辑㊀南丽华)01 ㊀㊀㊀石㊀油㊀机㊀械2024年㊀第52卷㊀第2期。
2023年金刚石行业市场分析现状

2023年金刚石行业市场分析现状金刚石是目前世界上最硬的材料之一,具有优异的物理性能和化学稳定性。
它广泛用于工业领域,包括制造工具、刀具、磨料、传感器等。
金刚石行业市场分析现状如下。
一、行业市场规模和发展趋势金刚石行业是一个庞大的市场,其市场规模逐年增长。
根据市场研究机构的数据,全球金刚石市场价值在2020年达到142亿美元,并预计在2026年将增长至202亿美元。
这主要受到对于金刚石工具和磨料的需求增长的推动。
目前,金刚石行业正处于快速发展阶段。
随着技术的不断进步和创新,金刚石的应用范围越来越广泛。
尤其是在高科技领域,如光电子、通信、航空航天等领域,金刚石的需求量持续增加。
二、主要市场细分和应用领域金刚石行业市场可以细分为金刚石工具和磨料两个主要领域。
金刚石工具是应用最广泛的领域之一,包括刀具、磨头、钻头等。
这些工具具有极高的硬度和耐磨性,能够在高温、高压和腐蚀等恶劣环境下工作。
金刚石工具主要用于加工和切削各种材料,如金属、陶瓷、复合材料等。
金刚石磨料是另一个重要的市场细分领域。
金刚石磨料具有优异的磨削性能,可用于对硬材料的精密磨削和抛光。
金刚石磨料主要应用于制造工业,如精密机械、汽车零部件、光学器件等领域。
除此之外,金刚石还广泛应用于电子和半导体行业。
金刚石在制造光电子器件、光通信器件和太阳能电池等方面具有重要的应用价值。
此外,金刚石还用于制造传感器、高温超导等高新技术领域。
三、市场竞争格局金刚石行业市场竞争激烈,主要由国内外各类企业共同参与。
国外企业在技术和品质方面具有一定优势,但国内企业也在不断提升技术水平和产品质量。
市场上的主要金刚石企业包括美国戴蒙德工业公司、德国埃尔滕集团、日本SUMITOMO电气工业公司等。
这些企业在全球范围内拥有较大的市场份额和声誉。
国内的金刚石企业有创新能力和成本优势,逐渐崭露头角。
如中国戴蒙德工业集团、中国金刚石公司等。
这些企业通过不断地技术创新和提高产品质量,逐渐在国内市场上取得了一定的份额。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年第2O期 内蒙古石油化工 19
金刚石钻头国内外研究现状及发展趋势
翟 嵩 ,曹 建
(1.渤海钻井管具公司,山东东营476642}2.渤海钻井二公司,山东东营476642)
摘要:近年来,随着石油勘探开发的难度增加,在现有钻井技术条件下,使用牙轮钻头已经很难大
幅度提高钻井速度,因此国内外研究的热点集中在对金刚石钻头的研究开发方面。目前国内外在金刚石
钻头设计、切削齿研制、水力能量利用研究等诸方面都取得很大进展,推出不少新理论、新技术、新产品。
关键词:钻井;钻头;金刚石钻头;刮刀;切削齿
众所周知,钻井是石油勘探开发的“龙头”,行业
中有句名言:“钻头不到,石油不冒”,说得就是这个
道理。此话既形象地比喻出钻井工程在油气田勘探 开发工程中的重要地位,更道出了“钻头”这一用于 凿岩成孔的硬件在钻井工程中所处的重要作用。故 此,世界各国均在注重钻井工艺技术研究的同时,加 大工作力度进行高效钻头的研制和新产品研究开 发。 1新工艺、新技术 以休斯.克里斯坦森公司为代表的一些主要钻 头设计制造公司,在钻头的改进和开发方面做了大 量的工作,取得可喜成果,推出了混合式钻头、抗回 旋钻头、抗振钻头、快速硬地层钻头、双切削结构钻 头、新型金刚石钻头等。其最新研究成果有: 1.1 在应力处理齿,黑冰抛光齿、硬质合金支撑边 缘齿的基础上,又研制出加厚复合片切削齿、双切削 刃齿等新型切削结构。 1.2在金刚石钻头力学的研究中也有新的突破,提 出漫流水力设计概念(即在靠近和远离钻头中心各 布一对称喷嘴,使水力能量分配更合理)、异形喷嘴 结构等新的水力设计方案。 1.3与此同时,近几年运用电渗透原理减轻钻头泥 包的研究也比较活跃,并开发出使钻头表面呈负电 特性的工艺——气体渗氮处理技术。 1.4在加强保径、改进排屑槽设计、延长钻头寿命、 钢体钻头表面硬化、增加切削面积、有效清除岩屑等 方面的研究中也做了大量工作,取得不少成果。 1.5金刚石钻头切削元件的规格也从单一品种发 展到今天的品种多样。目前,热稳定聚晶金刚石有三 角聚晶系列、圆柱系列、园片系列;聚晶金刚石复合
片直径有3/8"、1/2"、3/4”、1”系列等,从常规片到爪
形片、弧形片、精磨片等,使切削元件的规格品种多
样化。
2新产品
最近几年,Christensen、Smith、Hycalog、SeCU—
rity DBS、Geodiamond等外国公司以及国内的川.
克、新星、石油大学(华东)、胜利油田等单位都在致
力于金刚石钻头的研制与改进、推出一批设计新颖
的钻头。
2.1适用多地层的新型金刚石钻头
种被称为“变换式”的钻头钻软地层时能象布
齿密度低的钻头那样快速钻进,而在较硬地层钻进
时又能象布齿密度高的钻头那样具有坚韧的耐久
性。这一特点是通过把主刮刀与辅助刮刀之间可变
夹角特性与享有专利的新型水力系统相结合而实现
的。这种钻头上装有两种形式的刮刀、通过调节这两
种刮刀的切削作用可使钻头适用各种地层。
2.2 多水眼金刚石钻头
休斯·克里斯坦森公司最近研制出一种装五个
刮刀片和19ram切削齿的多水眼金刚石钻头。这种
多水眼金刚石钻头配有两个斜置的中心主喷嘴和八
个辅助水眼。通过喷嘴和水眼的液流指向每一个切
削齿,使总过流面积从484mm。增加到774平方
mm。
,
降低了钻头处的压降,获得更大的流量,钻头
收稿日期:2O09一O4—27
作者简介:翟嵩(198O一),男,河南永城人,工程硕士,研究方向为钻井工程。
20 内蒙古石油化工 2009年第2O期
处只消耗泵压5 ,有效地清除了钻头泥包 这种设
计还提高了钻头在低水马力范围内的工作效率。
休斯·克里斯坦森公司在这种钻头的设计中加
入了碳化钨支撑边缘(CSE)切削齿,以防止切削齿
发生早期断裂。之后又采用了优质抛光的黑冰CSE
切削齿,进一步提高了钻头的耐磨性和工作性能。这
种钻头与贝克·休斯Inteq公司的井底泥浆马达配
套使用。
2.3 带有自锐式切削齿的水力辅助破岩钻头
石油大学(华东)研制了一种新型的、带有自锐
式切削齿的水力辅助破岩系统,既可提高对工作重 点切削齿的冷却,又可实现水力一机械破岩的目的。 这种钻头由钻头基体、水力喷射系统及自锐式切削 齿构 ,其特征在于水力喷射系统是由布置在钻头 基体顶端的、中心径向倾斜喷嘴及外圈近切向喷嘴 组成,并将自锐式切削齿布置在钻头基体的顶端。试 验结果表明,由于该钻头采用了合理的水力喷射系 统和自锐式切削齿,使得重点切削齿实现与水力联 合破岩的目的,弥补了普通金刚石钻头的纯机械切 削、切削齿过快钝化及清岩不畅等缺陷,可大幅度提 高钻进速度。 2.4“金”系列与“星”系列钻头 “金”系列钻头是克里斯坦森公司近年开发出的 种金刚石全面钻进钻头,它的最大特点是大幅度 提高钻头寿命和机械钻速。“金”系列包括十四种不 同结构、适用于不同地层的钻头,“金”系列钻头具有 独特的设计使其在金刚石钻头市场上处于高科技领 先地位。 “星”系列钻头可容易地对切削齿的后倾角和磨 损节进行调整,从而减轻其吃入性并降低扭矩的变 化,适合在大斜度井和水平井中应用。“星”系列金刚 石钻头包含了“金”系列金刚石钻头的全新概念。 2.5适合多夹层地层的金刚石钻头 胜利油田钻井工艺研究院研制出一种适合多夹 层地层的金刚石钻头。这种金刚石钻头具有独特的 切削结构,以金刚石复合片作为主切削齿,以热稳定 聚晶金刚石作为辅助切削齿,二种切削齿以一定的 加工形式形成复合切削结构,大大提高了金刚石钻 头的应用范围。 3结论 金刚石钻头技术的发展已经有二十多年的历 史,但目前金刚石钻头在设计上的改进步伐比以往 任何时候都快。因为金刚石钻头的应用范围越来越 广泛,人们对它的期望值越来越高,于是迫使设计人 员要不断的努力,不断地创新,开发出新的更有效的 方法来优化钻头设计,改进钻头设计,研制出新型钻 头。目前,金刚石钻头研究的焦点已从治疗型向预防 型转变。 从国内外钻井趋势来看,在现有钻井技术条件 下,使用牙轮钻头已经很难大幅度提高钻井速度,特
别是在易斜等特殊地层,受钻井参数影响,机械钻速
较低,大大影响了建井周期。而金刚石钻头机械钻速
高、进尺多、寿命长,极大地提高了钻井速度,在深井
中更是具有寿命长的优势。使用金刚石钻头是加快
勘探开发速度的趋势所在。
EI3 Ez3 [31 [4] E53 E63 [7] [8] [参考文献] 孙明光,德坤,张云连.多夹层PDC钻头设计
及应用.石油学报,2001;(O5):95 ̄99.
周龙昌,吴天乾,吕从容.复合钻井用新型金刚
石钻头研制及现场试验.石油钻探技术,2004;
32(O2):42~43.
张汉林,李季.PDC钻头在普光1O井空气钻
井中的应用.石油钻采工艺,2007;29(01):
25~27.
贾美玲,蔡家品,赵尔信.新型镶齿式金刚石钻
头及工艺研究应用,“十五”地质行业获奖成
果资料汇编,“十五”重要地质科技成果暨重大
找矿成果交流会,北京,2006:227---228.
管志川,陈庭根,刘希圣.PDC钻头水力结构
研究进展.1994,18(6).
陶长有,赵金英,张玉兰,刘德辉.PDC钻头失
效的技术经济分析.大庆石油学院学报,
1996,20(4).
马保松.PDC钻头的新发展及应用.世界地
质,1996,15(4).
陈庭根,管志川等.钻井工程理论与技术.石油
大学出版社,2000.