油管内壁爬行机器人的设计(机械类)
管道攀爬机器人结构设计及行走动力特性分析

管道攀爬机器人结构设计及行走动力特性分析一、结构设计:1.机器人主体结构:管道攀爬机器人的主体结构一般由多个可伸缩的模块组成,每个模块包括一个电机、行走轮和一个伸缩杆。
2.伸缩机构:机器人通过伸缩杆来适应不同管道尺寸。
伸缩杆一般采用多节设计,每个节段之间通过齿轮或链条进行连接,以实现伸缩功能。
3.行走轮和传动机构:机器人采用行走轮来实现在管道内的行走。
行走轮通常由橡胶材料制成,提供良好的摩擦力。
传动机构一般为电机与行走轮的传动装置,通常采用齿轮传动或链条传动。
4.控制系统:机器人的控制系统包括传感器、执行器和控制器。
传感器可以感知机器人的位置、姿态和环境条件等信息,以便进行自主导航和任务执行。
执行器包括电机和伸缩杆等组件,用于控制机器人的运动和伸缩。
控制器负责接收传感器信息,并根据预设的算法控制机器人的运动。
二、行走动力特性分析:1.爬行速度:管道攀爬机器人的爬行速度取决于行走轮的直径、电机的转速和传动机构的设计等因素。
一般来说,机器人爬行速度应该足够快,以提高任务完成效率。
2.负载能力:机器人承载工具和传感器进行任务执行,因此需要具有较大的负载能力。
负载能力的大小与机器人的结构强度和设计参数有关。
3.自稳定性:机器人在管道内行走时需要具备较好的自稳定性,以应对管道内的复杂环境。
自稳定性主要通过控制系统实现,通过传感器检测机器人的姿态和环境条件,并及时做出调整。
4.能耗与动力供应:管道攀爬机器人通常采用电池供电,因此需要考虑能耗和续航时间。
一般通过优化结构设计和控制算法,减小阻力和能耗,延长电池寿命。
5.适应性:管道攀爬机器人需要适应多种管道的尺寸和形状。
因此,其结构设计应具有一定的自适应性,能够根据管道的不同尺寸进行伸缩和调整。
综上所述,管道攀爬机器人的结构设计和行走动力特性是保证机器人能够在管道内进行任务执行的关键要素。
通过合理的结构设计和动力调节,可以使机器人具有较高的工作效率和可靠性,适应不同尺寸和形状的管道。
油管内壁爬行机器人的设计

目录目录 ......................................................................................................................................................................... 0前言 ......................................................................................................................................................................... 0一、方案的结构选择 ............................................................................................................................................. 11.1总体选择.................................................................................................................................................... 11.2前进方案的选择........................................................................................................................................ 21.3卡紧方案的选择........................................................................................................................................ 21.4旋转方案的选择........................................................................................................................................ 51.5调节方案的选择........................................................................................................................................ 51.6结构方案改进............................................................................................................................................ 7二、主要部件的计算选择 ................................................................................................................................... 82.1步进电机的选择........................................................................................................................................ 82.2推拉式电磁铁的选择............................................................................................................................ 10三、关键件的校核 ............................................................................................................................................. 133.1丝杠的校核............................................................................................................................................ 133.2轴承的校核............................................................................................................................................ 133.3键的校核................................................................................................................................................ 13四、驱动系统设计 ............................................................................................................................................. 14五、机器人工作过程 ......................................................................................................................................... 16六、控制系统的设计 ......................................................................................................................................... 176.1电磁铁及步进电机的控制.................................................................................................................... 176.2控制系统的硬件设计............................................................................................................................ 176.2.1 总体设计 ..................................................................................................................................... 176.2.2 程序存储器的扩展 ..................................................................................................................... 196.2.3 数据存储器的扩展 ..................................................................................................................... 206.2.4输入\输出口的扩展........................................................................................................................ 206.2.5抗干扰的设计.................................................................................................................................. 22七、结论 ............................................................................................................................................................. 24参考文献 ............................................................................................................................................................. 25前言随着现代科学技术的发展,管道运输作为一种高效、安全、可靠的手段应用日益广泛,城市中的地下排水系统、取暖系统、煤气系统、自来水系统等都应用了各种管道;另外,在现代工农业、石油、化学、核工业等领域也大量使用了管道。
管道爬壁机器人的设计

管道爬壁机器人设计作品内容简介现在的管道机器人在竖直或者是水平方向都很好的实现了检测与清理功能。
但至今还没有管道产品在复杂的管道中很好的工作。
为此我们设计了这款管道爬壁机器人,它既可以在水平管道中很好的工作还可以在竖直管道中完成工作,能够自如的在水平竖直交叉的复杂管道中完成检测,清理等工作。
该产品的主题结构为车体结构,在水平方向依靠车载力运动,在车体上安装有四个机械手臂,在机械手臂的前端安装有吸盘跟电磁铁,在塑料管道中依靠吸盘在竖直方向上运动,在铁质管道上利用电磁铁的磁力和机械手臂的交叉前进实现竖直方向的运动。
该作品灵活多变,不但可以适应复杂的管道还能够进行多样的工作。
我们依靠机械臂的灵活度与吸盘,电磁铁的吸力来实现该产品的爬壁功能,在水平方向上利用最传统的智能车作为动力,这样的设计完全可以满足水平方向与竖直方向的灵活转变,实现复杂管道的自由穿梭,进而可以让该机器人更好的实现其检测与清理功能。
该管道爬行机器人实现远程电脑控制,所得数据通过反馈处理使机器人能够完成各项做业。
一、研制背景及意义1、随着社会的快速发展,国家生产水平不断提高,产品更新也越来越快。
管道运输在我国运用比较普遍,但管道长期处在压力大的恶劣环境中,受到水油混合物、硫化氢等有害气体的腐蚀。
这些管道受腐后,管壁变薄,容易产生裂缝,造成漏油、漏气的问题,存在重大安全隐患和经济损失。
在管道广泛使用的今天,管道的检测、清理、维护成了一个亟待解决的问题。
但是管道的封闭性和工作环境决定了这项工作的艰难。
时至今日,虽然经过各国学者的努力,已经有各种各样的机器人,但是他们大都存在这样或那样的问题,而且功能不够强大。
2、人民对管道清洁机械的要求是不仅科技含量要高,而且还要绿色、节能、环保。
能够满足不同类型管道的检测、维护、清理等要求。
3、管道爬行机器人的研究更好地为管道的检测、维护、清理提供了新的技术手段,这种技术更好的提高了管道监测的准确性和管道清理的安全性,也便于管道工程管理维护人员制定维护方案,清除管道垃圾防止堵塞,事前消除管道的安全隐患,从而节约大量的维修费用,降低管道维护成本,保障工业生产和人民生活及财产安全。
爬壁机器人设计与操作方式标准建设出有

爬壁机器人设计与操作方式标准建设出有随着科技的不断发展,机器人技术正越来越广泛地应用于各个领域,其中之一就是爬壁机器人。
爬壁机器人具备在垂直墙面上移动的能力,可以在高空、狭小空间等人类难以到达的环境中执行任务,为各行各业带来了巨大的便利和效益。
为了确保爬壁机器人的设计与操作方式达到一定的标准,本文将探讨爬壁机器人设计与操作方式的标准建设。
1. 爬壁机器人的设计要求1.1 适应多种环境爬壁机器人应设计成能够适应多种不同垂直墙面的表面材料和结构,例如水泥、玻璃、金属等。
在设计过程中,应考虑机器人的吸附力、稳定性和移动速度等因素,以确保其能够牢固地附着在墙面上并稳定地移动。
1.2 安全性在设计爬壁机器人时,安全性是一个至关重要的因素。
机器人应具备避免摔落的功能,例如采用传感器和算法识别墙面表面的凹凸,以避免机器人因表面不平而摔落。
此外,机器人的电源系统和机械结构也需要经过严格的测试和验证,确保其能够在任何工作环境下安全可靠地运行。
1.3 轻量化和紧凑化设计由于爬壁机器人常常需要在狭小的空间中进行工作,因此,设计时应尽量减小机器人的体积和重量,以提高其机动性和适应性。
同时,机器人的紧凑化设计也有利于减少与墙面的接触面积,从而降低机器人与墙面之间的摩擦力,提高其爬行效率。
2. 爬壁机器人的操作方式标准2.1 遥控操作爬壁机器人通常通过遥控操作来实现。
操作者可以通过遥控设备,如遥控器或手机APP,对机器人进行控制。
遥控操作方式的优点是简单易学,可以迅速掌握机器人的基本操作,缺点是需要操作者具备一定的操作技能和经验。
2.2 自动化操作随着人工智能技术的不断发展,爬壁机器人的自动化操作逐渐成为可能。
通过在机器人中引入各种传感器和算法,可以实现机器人的自主导航、避障和任务执行等功能。
自动化操作方式的优点是减轻操作者的负担,提高工作效率,缺点是需要额外的技术和设备支持。
2.3 远程监控与控制由于爬壁机器人常常工作在高空或狭小空间等人类难以到达的环境中,远程监控和控制是非常重要的。
管道攀爬机器人结构设计及行走动力特性分析

虽然串联机器人动力学特性及结构优化设计已经取得了许多重要成果,但仍 然存在许多研究方向值得进一步探索。例如,如何建立更加精确、高效的动力学 模型,以满足实时控制的需求;如何将新型优化算法应用于结构优化设计中,以 获得更好的优化效果;如何提高机器人的柔性和自适应性,以适应更加复杂和动 态的环境等。
此外,随着和机器学习技术的快速发展,这些技术也开始被应用于串联机器 人的设计和控制中。例如,通过机器学习方法,可以实现对机器人的自适应控制、 故障诊断和维护等。这为串联机器人的进一步发展提供了新的机遇和挑战。
因此,在未来的研究中,可以综合考虑这两种方法,设计一种混合式的控制 策略,以实现机器人在不同条件下的稳定攀爬。此外,还可以进一步研究机器人 感知和决策等方面的技术,以提高机器人在复杂环境中的自主能力。
感谢观看
控制算法
管道攀爬机器人的控制算法包括位姿估计、轨迹跟踪等。位姿估计是指对机 器人在管道中的位置和姿态进行估计,通过对传感器数据的处理和分析来实现。 轨迹跟踪是指根据位姿估计结果,控制机器人按照预设的轨迹行走,通过对电机 进行控制来实现。
在控制算法的设计过程中,需要考虑机器人的作业效率和安全性。为了提高 作业效率,需要缩短位姿估计的时间,提高轨迹跟踪的精度。为了确保安全性, 需要加入防抖动和异常情况处理等功能,以避免机器人在行走过程中出现问题。
爬杆机器人是一种能够在垂直杆上自主攀爬的机器人,这种机器人在电力线 路巡检、救援、建筑等领域有广泛的应用前景。然而,要实现机器人的自主攀爬, 需要解决一系列的关键问题,包括对环境的感知、运动规划、控制策略等方面。 在本次演示中,我们将重点探讨爬杆机器人的攀爬控制。
机器人攀爬控制是实现自主攀爬的关键技术之一。在攀爬过程中,机器人需 要通过对环境的感知,获取关于杆子位置、姿态等信息,再根据这些信息调整自 身的运动状态,实现稳定的攀爬。在这个过程中,控制算法起着至关重要的作用。
爬壁机器人机械创新设计

机械创新设计课程设计2014-2015第2 学期姓名:刘兵梁从军李庆铁李勇邓再林班级:机越2013级2班指导教师:李军方轶琉成绩:日期:2015 年7 月爬墙清洁机器人原理与设计目录1.设计目的1.1课题背景和研究意义1.2 机器人的发展现状与趋势2. 设计方案3. 正文3.1动力部分(风机部分)3.2驱动部分3.3电子控制机构3.4车体部分4.结论创新点未来改进趋势:5. 谢辞6. 参考文献【内容摘要】从分析机械清扫工具机理入手,在此基础上详细阐述了其对未来清扫工具造成的影响,由此引出了机器人的重要性,继而针对自行设计制作的爬墙清扫机器人,对其机动原理、设计过程和使用说明进行详细论述。
【关键词】:爬墙清扫摩擦力伯努利原理风机红外控制1. 设计目的1.1课题背景和研究意义机器人的万能性和可编程序性,决定了它将取代一些自动化机器,特别是在生产中它与我们人类紧密相连。
由于它的万能性,可以提高生产率,改进生产质量,并从多方面降低成本。
对于一个产品经常变化的市场来说,对机器人重新调整和编程所需要费用,远远低于重新调整固定化的自动化机器。
另外由于机器人承担了很多危险或令人厌烦的工作,许多的职业病、工伤及因此需要支付的高昂代价都可以避免了。
因为机器人中可以总是可以以相同的方式完成其工作,所以产品质量十分稳定,这也会给制造者带来确定的效益;产品总价值中每一项费用的节省,都将提高产品在各种市场上的竞争能力。
机器人的另一大优点是可用于小批量生产,而固定化的自动装置一般只对大批量的、标准化的生产才是有利的。
所以综合上述,研究机器人势在必行。
在西方国家,由于劳动力成本的提高为企业带来了不小的压力,而机器人价格指数的降低又恰巧为其进一步推广应用带来了契机。
减少员工与增加机器人的设备投资,在两者费用达到某一平衡点的时候,采用机器人的利显然要比采用人工所带来的利大,它一方面可大大提高生产设备的自动化水平,从而提高劳动生产率,同时又可提升企业的产品质量,提高企业的整体竞争力。
管道爬行器的设计与分析(全)
管道爬行器的研究与设计
学生:XX
指导教师:XXX
工程领域:机械工程
论文主审人:XXX
XXXXXX
2013 年 9 月
毕业设计(论文)任务书
专业班级姓名 XX
一、课题名称:管道爬行器的研究与设计
二、主要技术指标:
1、爬行器爬行最小内径为450mm,爬行最大内径1100mm
2、机身内径为150mm,外径为200mm机壁厚度最小处为10mm
3、管道爬行满园:400-1000MM
三、工作内容和要求:
1、爬行器总装配图 A0 1 张;相当零件图不少于10张,大小A4-A2之间
2、总电控系统图 A1 1 张
3、全套SolidWorks造型三维图
4、设计说明书 1 份,设计说明书1.5万字以上,分析、计算准确详尽,格式符合“毕业设计
撰写规范”
5、参考文献(不包括教科书)15篇以上,含一篇外文文献并译成中文(5千字)
四、主要参考文献:
1、齐占庆.机床电气控制技术[M].机械工业出版社,1994
2、杨天明.电机与拖动[M].北京大学出版社,2006
3、电机工程手册[M].机械工业出版社,1996
4、李国厚,杨青杰.PLC原理与应用设计[M].化学工业出版社,2005
5、王永章.数控技术[M].高等教育出版社,2001
6、黄立培.电动机控制[M].清华大学出版社,2003
学生(签名)年月日
指导教师(签名)年月日
教研室主任(签名)年月日
系主任(签名)年月日
毕业设计(论文)开题报告。
一种可调式管道爬行机器人
一种可调式管道爬行机器人摘要:针对石油、化工、天然气及核工业等产业迅速发展,各种管道作为一种重要的物料输送设施,得到了广泛应用。
由于腐蚀、重压等作用,管道不可避免地会出现裂纹、漏孔等现象。
而管道所处的环境往往是人们不易或不能直接接触的,因此,对于管道的检测和维护成了工业生产中的一道难题,管道机器人有巨大需求,本文提出了管道机器人中的一种。
关键词:石油,化工,管道,机器人1.爬行原理的设计充分利用仿尺蠖昆虫的爬行原理,利用曲柄滑块机构实现管道机器人[19]的前行,具体实施过程如下:启动电机,转盘转动,连杆随动受拉力,带动后大滑块向前,后大滑块通过两个后滑杆带动两足收拢,脱离管道侧壁,后大滑块通过滑槽前壁推动后机体往前移动,此时,转盘受到阻力通过电机整体传力至前机体,由于前大滑块已处于滑槽最后面,两个前滑杆带动两个前足向管道两侧撑开,足够大的摩擦力抵抗前机体向后移动,结果只能是后机体往前运动,从而解决了前行问题。
2.结构及原理图1为可调式管道爬行机器人的结构示意图,其由三部分组成,前体部分、后体部分及前后体连接部分。
前体部分包括带有封闭滑槽的前机体1、固连有驱动电机5的前大滑块4、与前大滑块铰接且带有小滑槽的前滑杆、与前机体铰接且带有小滑块的前足。
后体部分包括带有封闭滑槽的后机体15、后大滑块14、与后大滑块铰接且带有小滑槽的后滑杆、与后机体铰接且带有小滑块的后足。
后机体连接部分包括连接转盘和后大滑块的连杆7、连接前后机体承托电缆的拖链8。
这种可调式管道爬行机器人的工作原理是:工作前,前大滑块处于前机体滑槽的后部,后大滑块处于后机体滑槽的前部,启动电机,转盘转动,连杆随动受拉力,带动后大滑块向前,后大滑块通过两个后滑杆带动两足收拢,脱离管道侧壁,后大滑块通过滑槽前壁推动后机体往前移动,此时,转盘受到阻力通过电机整体传力至前机体,由于前大滑块已处于滑槽最后面,两个前滑杆带动两个前足向管道两侧撑开,足够大的摩擦力抵抗前机体向后移动,结果只能是后机体往前运动。
爬壁机器人的设计
爬壁机器人的设计爬壁机器人是一种能够在墙壁、天花板或其他垂直表面上移动和操作的机器人。
它通常具有一些独特的设计特点和功能,以便能够在垂直表面上保持稳定和安全的移动。
以下是一个设计爬壁机器人的详细说明,共计1200字以上。
一、机器人结构设计1.轮胎设计:机器人通常配备具有高摩擦力的轮胎,以确保在垂直表面上有良好的附着力。
轮胎材料可以选择具有优异摩擦性能的橡胶材料,比如硅胶,以确保机器人可以牢固地粘附于表面上。
2.传动系统:机器人的传动系统应确保它能够在垂直表面上稳定地移动。
可以采用齿轮传动或链传动等机构,这样可以保证机器人的动力传递效率以及稳定性。
3.重心调节:机器人应设计具有可调节重心的机构,以便在不同表面上保持平衡。
这可以通过使用可调节重心的负载托盘或重心偏移机构来实现。
4.机械臂设计:机器人应配备能够在垂直表面上进行操作的机械臂。
机械臂设计应灵活,可以旋转和伸缩,以便机器人能够完成各种任务。
二、传感器和控制系统设计传感器和控制系统是爬壁机器人实现自动化和智能化的关键。
以下是一些应考虑的传感器和控制系统设计要点:1.触觉传感器:机器人应配备压力传感器或接触传感器,以便能够检测自身与表面的接触力,从而确保机器人在垂直表面上的粘附力和稳定性。
2.惯性测量单元(IMU):爬壁机器人应搭载IMU,以便测量和监测机器人的姿态、加速度和角速度等信息。
这些数据可以用于实时调整和控制机器人的运动。
3.视觉传感器:机器人可以搭载摄像头或激光传感器等视觉传感器,以便在垂直表面上进行环境感知、障碍物识别和导航等操作。
4.控制算法:机器人的控制系统应配备适当的控制算法,以便能够根据传感器数据实时决策和控制机器人的移动和操作。
这些算法可以基于机器学习、计算机视觉和规划等技术进行设计。
三、电源和能源管理电源和能源管理是机器人设计的重要组成部分。
以下是一些考虑的要点:1.电池容量:机器人应配备高能量密度的电池,以确保足够的工作时间。
管道爬行器的研究与设计
管道爬行器的研究与设计1 绪论随着社会的发展和人民生活水平的提高,天然气管道以及各种输送管道的应用越来越多。
在我国及世界各个国家内,由于地形的限制和土地资源的有限,在地下都埋设了很多的输送管道,例如,一方面天然气管道、石油管道等,在埋有管道的地面上都已经建成了很多的建筑物、公路等,给管道的维修和维护造成了很大的困难。
当这些管道由于某些原因造成了泄露、堵塞等问题时,人们普通的做法是挖开道路进行维修,有些时候如果不能准确判断泄露和堵塞的具体位置时,会浪费很多的时间和精力,同时降低了工作效率[7]。
另一方面石油、天然气、化工、电力、冶金等工业的管道工程大多采用焊接管路。
为了保证焊接管路的焊接质量和运行安全,管道工程都要对焊缝进行检测,检测焊接部位是否存在虚焊、漏焊、伤痕等焊接缺陷。
常用的焊缝检测方法是采用无损检测,如超声、射线、涡流等。
对于管路检测,则大多采用管道内爬行探伤检验设备(简称爬行器) 对焊缝进行射线检测。
这类爬行器由于受管道尺寸的限制,大多结构十分紧凑。
在检测过程中,爬行器在其控制系统的控制下,可连续对同一管道不同位置上的焊缝质量进行检验。
考虑管道焊缝检测的效率,常常当管道焊接具有一定长度之后,才集中对管道进行检测。
如果一次要检测的管道比较长,爬行器的控制系统应采用车载式布置。
使用时,通过外部的控制器对爬行器上的控制系统发出指令,决定爬行器的工作状态。
随着机电一体化技术的发展,以及机器人技术的发展和管道测试等技术的进一步发展,相互之间的渗透程度越来越深,管道爬行机器人是在狭窄空间中进行精密操作、检测或作业的机器人系统。
其中机器人的作业环境一般是危险的。
火力发电厂、核电厂、化工厂、民用建筑等用到各种各小管道,其安全使用需要定期检修。
但由于窄小空间的限制,自动维修存在一定难度。
仅以核电站为例,检查时工人劳动条件恶劣。
因此管道内机器人化自动检查技术的研究与应用十分必要。
人们不再为了维修、维护管道时挖开道路,节省了大量的人力,物力和财力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前言
随着现代科学技术的发展,管道运输作为一种高效、安全、可靠的手段应用日益广泛,城市中的地下排水系统、取暖系统、煤气系统、自来水系统等都应用了各种管道;另外,在现代工农业、石油、化学、核工业等领域也大量使用了管道。
经过长期使用,它们会出现裂纹、腐蚀、堵塞等故障。
有的管道中输送的是剧毒或放射性介质,若这些管道产生裂纹、漏孔会造成介质泄漏,引起事故甚至发生灾难。
为了防患于未然,必须对这些管道进行定期检测和维修。
但是它们有的埋在地下,甚至埋在海底,有的口径很小,人无法进入。
挖出管道进行检测、维修既不经济又不现实,由此可见,管道机器人有着广阔的市场。
我国早在1987年就开展了管内机器人的研究,并试制了几种模型,但总体水平较国外差。
管内机器人研究是机电一体化的高科技研究项目。
在石油、化工、核工业、给排水等许多管道工程中,都需要进行管内检测、喷涂及加工等工作,管内机器人在完成这些工作中会发挥重要作用,因此,开发研究管内机器人意义很大[1]。
本次题目的内容就是设计一种可在油管内壁爬行,并且搭载工作体的部分可协助工作体完成相应作业的机器人。
采用机械结构和电气控制来达到设计目的。
要实现的理想过程是:人对主机输入一个控制信号,可以通过单片机对电机、电磁铁进行电气控制,从而使机器人能够按照所搭载工作体的要求进行移动,并在工作体的工作位置做出相应的辅助动作。
机器人在行进过程中可在任意位置停止前进,并可以在该位置开始作业,工作体可在步进电机驱动下完成小于360度的任意角度的旋转。
1 方案的结构选择
1.1 总体选择
总体上,本次设计主要采用机械结构设计来完成指定的动作,而用电气设计来控制这些动作。
1.2 前进方案的选择
目前在管道内机器人的行进方式多种多样,本设计采用蠕动式行进的方式。
前进方案由旋转式步进电机、直线式步进电机、气缸中进行选择。
现将3种方式在本设计中的应用
进行比较。
由于本设计前进方式为直线,所以其中使用直线式电机最为简便,直线电机的电机轴是丝杠形式的,于是可以通过丝杠的导程来计算机器人的行进距离。
使用旋转式步进电机的原理与直线式步进电机相似,可通过一个小型连轴器与丝杠相连组成一个直线式步进电机,也可以通过一组齿轮减速器将丝杠与电机轴相连,简图见图1-1。
图1-1结构简图
第三种方法是使用气缸推动机器人前进。
综合比较三种方法后发现,气缸实现直线运动过程简单,但其行程不易控制,要实现精确控制需要成本过高。
两种步进电机的特点相似,但直线式的步进电机在安装时不易对心,且价格远高于旋转式步进电机。
所以综合考虑最终选择采用旋转电机的方案。
1.3 卡紧方案的选择
机器人在蠕动式爬行的时候,需要卡紧装置进行配合。
所以需要选择合理的卡紧方案。
由于本次设计的机器人需要适应从4.5到7英寸的不同管径的管道,这给卡紧方案的设计带来很大的难度。
方案1为采用推拉式电磁铁直接进行卡紧,并使用适当的连杆机构调整电磁铁位置,当连杆机构将电磁铁调整到指定位置后,电磁铁得电,推杆伸长,机器人卡紧管壁。
工作完成后,电磁铁失电,机器人放松[6]。
结构简图见图1-2
图1-2结构简图
方案2为使用一个旋转电磁铁,用旋转电磁铁来带动凸轮实现卡紧,通过对凸轮进行设计可以计算出支撑杆的移动距离。
当旋转电磁铁得电后,旋转一定角度,带动凸轮旋转,使支撑杆在径向产生移动从而卡进管壁。
电磁铁失电后,通过弹簧的作用使凸轮和支撑足复位,机器人放松。
结构简图见图1-3。
图1-3结构简图
Diagram 1-3 structure sketch plans
方案3为使用一推拉式电磁铁推动锥形滑块,同时设计三个长度可调的支撑杆,当电磁铁得电后,电磁铁推杆伸出并带动锥形滑块沿轴向前进。
由于滑块为锥形,支撑足产生径向移动,机器人被卡紧[7]。
电磁铁失电后,机器人放松,原理同方案2。
结构简图见图1-4。
图1-4结构简图
Diagram 1-4 structure sketch plans
综合比较以上三种方案,首先放弃了方案1,由于管道内空间有限,电磁铁的体积太
大,无法合理的安放电磁铁,并且电磁铁的重量也相对较大,设计与之相应的连杆机构也很困难。
方案2与方案3在原理上基本相同,不同之处在于方案2用的是凸轮,而方案3用的是锥形滑块。
凸轮的结构复杂,且其表面需要非常光滑,由于凸轮曲面为复杂曲面,所以普通磨床难以加工,需用数控加工中心进行加工,这样加大了成本。
经过综合比较决定选择方案3。
另外,在卡紧方面也可使用气缸,此类型的设备已被开发,但由于空间问题并不适合于本设计,故本设计不使用该方法。
1.4 旋转方案的选择
旋转部分采用一个旋转式步进电机,电机轴带动法兰,可在法兰上连接工作体,通过控制步进电机的转动角度来控制工作体的转动。
结构如图1-5所示。
图1-5
Diagram 1-5
1.5 调节方案的选择
由于本次设计的机器人要适应不同的管径,所以需要设计一个结构合理的可调机构。
初步拟订3个方案,方案1采用一个推拉式电磁铁推动一个连杆机构,结构与卡紧方案1相似,结构简图见图1-2。
通过控制推杆伸出的长度及连杆机构来调整支撑足。
方案2也是一种连杆机构,结构见图1-6。
通过调整螺栓来调整支撑足的高度。
它的结构与汽车修理厂所用千斤顶相似。
图1-6结构简图
Diagram 1-6 structure sketch plans
方案3较为简单,将支撑杆上做出几个槽,槽的位置分别与机器人所需要工作的管径相对应,在外安装套筒,并在套筒上开螺纹孔,通过紧钉螺钉将支撑杆与套筒相连。
再将套筒与机体相连,通过紧定螺钉与不同槽之间的配合来适应不同的管径。
结构详见图1-7。
图1-7结构简图
Diagram 1-7 structure sketch plans
再对以上三种方案进行比较,方案1的自动化程度很高,可以通过控制计算机来控制调整机构,节省了人力。
方案2的机构很合理,调整方便。
但由于管道内空间的限制,这个方案都很难在本设计中应用,而方案3虽然不是最精确的,但它制造方便,并且在空间上设计的很合理。
并且为可换,在需要适应新的管径的时候,只需要重新制造支撑杆,十。