广东省江门市台山市中考数学一模试卷含答案解析

合集下载

2023年广东省中考数学模拟试卷(一)及答案解析

2023年广东省中考数学模拟试卷(一)及答案解析

2023年广东省中考数学模拟试卷(一)一、选择题(共30分)1.(3分)6﹣1=()A.﹣6B.6C.﹣D.2.(3分)下列各组数中互为相反数的是()A.与﹣2B.﹣1与﹣(+1)C.﹣(﹣3)与﹣3D.2与|﹣2| 3.(3分)如图是由6个相同的小正方体组成的几何体,其俯视图是()A.B.C.D.4.(3分)在平面直角坐标系中,点(2,﹣1)关于x轴对称的点是()A.(2,1)B.(1,﹣2)C.(﹣1,2)D.(﹣2,﹣1)5.(3分)将一把直尺与一块直角三角板按如图所示的方式放置,若∠1=125°,则∠2的度数为()A.35°B.40°C.45°D.55°6.(3分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.则斜坡CD的长度为()米.A.80B.40﹣60C.120﹣60D.120﹣407.(3分)某公司今年1~6月份的利润增长率的变化情况如图所示.根据图示条件判断,下列结论正确的是()A.该公司1~6月份利润在逐渐减少B.在这六个月中,该公司1月份的利润最大C.在这六个月中,该公司每月的利润逐渐增加D.在这六个月中,该公司的利润有增有减8.(3分)如图,在△ABC中,∠C=90°,∠A=30°,以点B为圆心,适当长为半径画弧,分别交BA,BC于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若AC=12,则在△ABD中AB边上的高为()A.3B.4C.5D.69.(3分)随着国产芯片自主研发的突破,某种型号芯片的价格经过两次降价,由原来每片a元下降到每片b元,已知第一次下降了10%,第二次下降了20%,则a与b满足的数量关系是()A.b=a(1﹣10%﹣20%)B.b=a(1﹣10%)(1﹣20%)C.a=b(1+10%+20%)D.a=b(1+10%)(1+20%)10.(3分)如图,在正方形ABCD中,F为CD上一点,AF交对角线BD于点E,点G是BC上的一点且AE=EG,连结AG,交BD于点H.满足AH2=HE•HD,现给出下列结论:①EG⊥AF;②BG+DF=FG;③若tan∠DAF=,则.其中正确的有()个.A.0B.1C.2D.3二、填空题(共15分)11.(3分)分解因式:2m3﹣8m=.12.(3分)一个不透明的口袋中,装有4个红球,2个黄球,1个白球,这些球除颜色外完全相同.从口袋中随机摸一个球,则摸到红球的概率是.13.(3分)如图是测量玻璃管内径的示意图,点D正对10mm刻度线,点A正对30mm刻度线,DE∥AB.若量得AB的长为6mm,则内径DE的长为mm.14.(3分)已知x=m是一元二次方程x2﹣x+1=0的一个根,则代数式2m﹣2m2+2021的值为.15.(3分)已知在Rt△ABC中,∠C=90°,∠ABC=75°,AB=5.点E为边AC上的动点,点F为边AB上的动点,则线段FE+EB的最小值是.三、解答题(共75分)16.(8分)计算:(2022﹣π)0+3tan30°+|﹣3|﹣()﹣1.17.(8分)解不等式组:.18.(8分)“端午节”吃粽子是我国流传了上千年的习俗.某班学生在“端午节”前组织了一次综合实践活动,购买了一些材料制作爱心粽,每人从自己制作的粽子中随机选取两个献给自己的父母,其余的全部送给敬老院的老人们.统计全班学生制作粽子的个数,将制作粽子数量相同的学生分为一组,全班学生可分为A,B,C,D四个组,各组每人制作的粽子个数分别为4,5,6,7.根据如图不完整的统计图解答下列问题:(1)请补全上面两个统计图;(不写过程)(2)该班学生制作粽子个数的平均数是;(3)若制作的粽子有红枣馅(记为M)和蛋黄馅(记为N)两种,该班小明同学制作这两种粽子各两个混放在一起,请用列表或画树形图的方法求小明献给父母的粽子馅料不同的概率.19.(9分)如图,四边形ABCD内接于⊙O,对角线AC,BD交于点E,过点A作⊙O的切线MN,若MN∥BD,CE=4,AC=5.(1)求证:∠ACD=∠ACB;(2)求AD的长.20.(9分)2019年10月1日是中华人民共和国成立70周年纪念日,某商家用3200元购进了一批纪念衫,上市后果然供不应求,商家又用7200元购进了第二批这种纪念衫,所购数量是第一批购进量的2倍,但每件贵了10元.(1)该商家购进的第一批纪念衫单价是多少元?(2)若两批纪念衫按相同的标价销售,最后剩下20件按标价八折优惠卖出,如果两批纪念衫全部售完利润不低于3520元(不考虑其他因素),那么每件纪念衫的标价至少是多少元?21.(9分)如图,直线y=kx+b与双曲线y=相交于A(1,2),B两点,与x轴相交于点C(4,0).(1)分别求直线AC和双曲线对应的函数表达式;(2)连接OA,OB,求△AOB的面积;(3)直接写出当x>0时,关于x的不等式kx+b>的解集.22.(12分)在平面直角坐标系xOy中,已知抛物线y=mx2﹣3(m﹣1)x+2m﹣1(m≠0).(1)当m=3时,求抛物线的顶点坐标;(2)已知点A(1,2).试说明抛物线总经过点A;(3)已知点B(0,2),将点B向右平移3个单位长度,得到点C,若抛物线与线段BC 只有一个公共点,求m的取值范围.23.(12分)△ABC和△ADF均为等边三角形,点E、D分别从点A,B同时出发,以相同的速度沿AB、BC运动,运动到点B、C停止.(1)如图1,当点E、D分别与点A、B重合时,请判断:线段CD、EF的数量关系是,位置关系是;(2)如图2,当点E、D不与点A,B重合时,(1)中的结论是否依然成立?若成立,请给予证明;若不成立,请说明理由;(3)当点D运动到什么位置时,四边形CEFD的面积是△ABC面积的一半,请直接写出答案;此时,四边形BDEF是哪种特殊四边形?请在备用图中画出图形并给予证明.2023年广东省中考数学模拟试卷(一)参考答案与试题解析一、选择题(共30分)1.【分析】根据负整数指数幂:a﹣p=(a≠0,p为正整数)可得答案.【解答】解:原式=,故选:D.【点评】此题主要考查了负整数指数幂,关键是掌握负整数指数幂计算公式.2.【分析】根据相反数的定义及符号的化简逐一进行判断即可得到答案.【解答】解:A、与﹣2互为倒数,不符合题意;B、﹣(+1)=﹣1与﹣1相同,不符合题意;C、﹣(﹣3)=3与﹣3是相反数,符合题意;D、|﹣2|=2与2相同,不符合题意;故选:C.【点评】本题考查了相反数,绝对值化简,掌握相反数的定义:只有符号不同的两个数叫做互为相反数是关键.3.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:由6个相同的小正方体组成的几何体,那么这个几何体的俯视图是:故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.【分析】直接利用关于x轴对称点的性质进而得出答案.【解答】解:点(2,﹣1)关于x轴对称的点是:(2,1).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.5.【分析】由平行线的性质可得∠3=∠1=125°,再利用三角形的外角性质即可求解.【解答】解:如图,由题意得:∠E=90°,AB∥CD,∴∠3=∠1=125°,∵∠3是△ABE的外角,∴∠2=∠3﹣∠E=35°,故选:A.【点评】本题主要考查平行线的性质,熟记平行线的性质是解题的关键.6.【分析】在直角三角形ABC中,利用锐角三角函数定义求出AC的长,然后设CD=2x,则DE=x,CE=x,构建方程即可解决问题.【解答】解:在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,AC===20(米),∵∠DCE=30°,设CD=2x米,则DE=x米,CE=x米,在Rt△BDF中,∵∠BDF=45°,∴BF=DF,∴AB﹣AF=AC+CE,∴60﹣x=20+x,∴x=40﹣60,∴CD=2x=(80﹣120)(米),∴CD的长为(80﹣120)米.故选:A.【点评】此题考查了解直角三角形﹣仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键.7.【分析】根据折线统计图中数据的变化以及折线的变化情况进行分析即可.【解答】A.该公司1~4月份的利润率在逐渐减少,4~6月份的利润率在逐渐增加,则A选项错误,不合题意;B.在图中可以看出:在这六个月中,该公司1月份的利润率最大,不代表1月份的利润最大,则B选项错误,不合题意;C.在这6个月中,利润增长率为正数,说明利润每月在上月基础上都在增加,则C选项正确,符合题意,D有误,不合题意.故选:C.【点评】本题考查了折线统计图,准确识图分析是解题的关键.8.【分析】作DE⊥AB于E,利用BD是角平分线以及直角三角形30°所对的直角边是斜边的一半即可求解.【解答】解:作DE⊥AB于E.如图:由作图可知,BD是△ABC的角平分线,∴DE=CD,∵∠A=30°,∠AED=90°,∴AD=2DE,∵AC=12,∴AD+DC=2DE+DE=12,∴DE=4.故选:B.【点评】本题主要考查了含30°角的直角三角形,以及30°角的直角三角形三边的关系,解答本题的关键在于利用其性质进行解答.9.【分析】利用经过两次降价后的价格=原价×(1﹣第一次价格下降的百分率)×(1﹣第二次价格下降的百分率),即可找出a与b满足的数量关系.【解答】解:根据题意得:b=a(1﹣10%)(1﹣20%).故选:B.【点评】本题考查了列代数式,根据各数量之间的关系,找出a与b满足的关系式是解题的关键.10.【分析】①把它AH2=HE•HD化为=,证明△AHE∽△DHA,推出∠HAE=∠ADH,再根据正方形的性质得出∠ADH=45°,再根据AE=EG和三角形内角和求出∠AEG=90°,进而得出EG⊥AF;②将△ADF绕点A顺时针旋转90°到△ABM,推出AF=AM,DF=BM,∠DAF=∠BAM,进而证明△FAG≌△MAG(SAS),推出FG=MG,最后得出BG+DF=FG;③设正方形的边长为4,BG=a,根据tan∠DAF=,求出DF=FC=BM=2,进而得CG=4﹣a,MG=GF=2+a,根据勾股定理求出a,进而求出=.【解答】解:∵AH2=HE•HD,∴=,∵∠AHE=∠DHA,∴△AHE∽△DHA,∴∠HAE=∠ADH,∵四边形ABCD是正方形,∴∠ADC=90°,AC平分∠ADC,∴∠ADH=45°,∴∠HAE=∠EGA=45°,∵AE=EG,∴∠EAH=∠EGA=45°,∴∠AEG=90°,∴EG⊥AF,∴①正确;将△ADF绕点A顺时针旋转90°到△ABM,∴△ADF≌△ABM,∴AF=AM,DF=BM,∠DAF=∠BAM,∵∠FAG=45°,∠DAB=90°,∴∠DAF+∠GAB=45°,∴∠GAB+∠BAM=45°,∴∠FAG=∠MAG,在△FAG和△MAG中,,∴△FAG≌△MAG(SAS),∴FG=MG,∴MB+BG=FG,∴BG+DF=GF,∴②正确;设正方形的边长为4,BG=a,∵tan∠DAF=,∴DF=FC=BM=2,∴CG=4﹣a,MG=GF=2+a,在Rt△FCG中,CG2+CF2=GF2,∴(4﹣a)2+4=(a+2)2,解得:a=,即BG=,GC=,∴=,∴③错误.正确的有2个.故选:C.【点评】本题考查三角形相似的判定和性质、全等三角形的判定与性质、正方形的性质、解直角三角形,熟练掌握这四个知识点的综合应用,将△ADF绕点A顺时针旋转90°到△ABM是证明△FAG≌△MAG的解题关键.二、填空题(共15分)11.【分析】提公因式2m,再运用平方差公式对括号里的因式分解.【解答】解:2m3﹣8m=2m(m2﹣4)=2m(m+2)(m﹣2).故答案为:2m(m+2)(m﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.【分析】直接利用概率公式求解即可求得答案.【解答】解:∵袋子中共有4+2+1=7个球,其中红球有4个,∴摸到红球的概率是,故答案为:.【点评】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.【分析】直接利用相似三角形的判定与性质得出△CDE∽△CAB进而得出比例式求出答案.【解答】解:由题意可得:∵DE∥AB,∴△CDE∽△CAB,∴=,即=,解得:DE=2,故答案为:2.【点评】此题主要考查了相似三角形的应用,根据题意得出正确比例关系是解题关键.14.【分析】根据题意可得:把x=m代入方程x2﹣x+1=0中得:m2﹣m+1=0,从而可得m2﹣m=﹣1,然后代入式子中进行计算即可解答.【解答】解:由题意得:把x=m代入方程x2﹣x+1=0中得:m2﹣m+1=0,∴m2﹣m=﹣1,∴2m﹣2m2+2021=﹣2(m2﹣m)+2021=﹣2×(﹣1)+2021=2+2021=2023,故答案为:2023.【点评】本题考查了一元二次方程的解,一元二次方程的定义,熟练掌握一元二次方程的解的意义是解题的关键.15.【分析】作F关于AC的对称点F',延长AF'、BC交于点B',当B、E、F'共线且与AB'垂直时,求BD的长即可.【解答】解:作F关于AC的对称点F',延长AF'、BC交于点B',作BD⊥AB'于D,∴∠BAB'=30°,EF=EF',∴FE+EB=BE+EF',∴当B、E、F'共线且与AB'垂直时,BE+EF'长度最小,即求BD的长,在△ABD中,BD=AB=,故答案为:.【点评】本题主要考查轴对称﹣最短路线问题,将BE+EF转化为求线段BD是解题的关键.三、解答题(共75分)16.【分析】直接特殊角的三角函数值、零指数幂的性质、负整数指数幂的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=1+3×+3﹣﹣=1++3﹣﹣=.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.17.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:,解不等式①,得:x≥﹣1,解不等式②,得:x<2,∴原不等式组的解集为:﹣1≤x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.【分析】(1)由A的人数除以所占的百分比求出总人数,进而求出D的人数,得到C占的百分比,补全统计图即可;(2)根据题意列出算式,计算即可得到结果;(3)列表得出所有等可能的情况数,找出粽子馅料不同的结果,即可求出所求的概率.【解答】解:(1)根据题意得:6÷15%=40(人),D的人数为40×40%=16(人),C占的百分比为1﹣(10%+15%+40%)=35%,补全统计图,如图所示:(2)根据题意得:(6×4+4×5+14×6+16×7)÷40=6(个),则该班学生制作粽子个数的平均数是6个;故答案为:6个;(3)列表如下:M M N N M﹣﹣﹣(M,M)(N,M)(N,M)M(M,M)﹣﹣﹣(N,M)(N,M)N(M,N)(M,N)﹣﹣﹣(N,N)N(M,N)(M,N)(N,N)﹣﹣﹣所有等可能的情况有12种,其中粽子馅料不同的结果有8种,则P==.【点评】此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.19.【分析】(1)由切线的性质得到半径OA⊥MN,而MN∥BD,得到OA⊥BD,由垂径定理推出=,即可证明问题;(2)由圆周角定理推出△ADE∽△ACD,得到AD:AC=AE:AD,即可求出AD的长.【解答】(1)证明:连接OA,∵MN切⊙O于A,∴半径OA⊥MN,∵MN∥BD,∴OA⊥BD,∴=,∴∠ACD=∠ACB;(2)∵∠ADE=∠ACB,∠ACD=∠ACB,∴∠ADE=∠ACD,∵∠DAE=∠DAC,∴△ADE∽△ACD,∴AD:AC=AE:AD,∵AE=AC﹣CE=5﹣4=1,∴AD:5=1:AD,∴AD=.【点评】本题考查切线的性质,垂径定理,圆周角定理,相似三角形的判定和性质,熟练掌握以上知识点是解题的关键.20.【分析】(1)设该商家购进的第一批纪念衫单价是x元,则第二批纪念衫单价是(x+10)元,根据购进了第二批这种纪念衫数量是第一批购进量的2倍列出方程,求出方程的解即可得到结果;(2)根据(1)得:第一批数量为40件,第二批为80件,设每件纪念衫的标价是y元,由题意列出不等式,求出不等式的解集确定出y的最小值即可.【解答】解:(1)设该商家购进的第一批纪念衫单价是x元,则第二批纪念衫单价是(x+10)元,根据题意得:×2=,解得:x=80,经检验x=80是分式方程的解,且符合题意,则该商家购进的第一批纪念衫单价是80元;(2)根据(1)得:第一批数量为40件,第二批为80件,设每件纪念衫的标价是y元,根据题意得:40y﹣3200+60y+20×80%y﹣7200≥3520,解得:y≥120,则每件纪念衫的标价至少是120元.【点评】此题考查了分式方程的应用,以及一元一次不等式的应用,弄清题意是解本题的关键.21.【分析】(1)将已知点坐标代入函数表达式,即可求解;(2)直线AC:y=﹣x+与双曲线:y=(x>0)相交于A(1,2),B两点,联立方程组,求出点B的坐标为(3,),根据组合法(即基本图形面积的和差)即可以解决问题;(3)根据图象即可解决问题.【解答】解:(1)将A(1,2),C(4,0)代入y=kx+b,得,解得:,∴直线AC的解析式为y=﹣x+,将A(1,2)代入y=(x>0),得m=2,∴双曲线的解析式为y=(x>0);(2)∵直线AC的解析式为y=﹣x+与y轴交点D,∴点D的坐标为(0,),∵直线AC:y=﹣x+与双曲线:y=(x>0)相交于A(1,2),B两点,∴,∴,,∴点B的坐标为(3,),∴△AOB的面积=4×﹣4×﹣×1=;(3)观察图象,∵A(1,2),B(3,),∴当x>0时,关于x的不等式kx+b>的解集是1<x<3.【点评】本题是反比例函数与一次函数的交点问题,主要考查了待定系数法求一次函数和反比例函数解析式、三角形面积等;解题时着重使用一次函数,体现了方程思想,综合性较强.22.【分析】(1)求出抛物线的解析式,由配方法可得出答案;(2)把x=1,y=2代入y=mx2﹣3(m﹣1)x+2m﹣1,可得出答案;(3)分三种情况:①当抛物线的顶点是点A(1,2)时,抛物线与线段BC只有一个公共点,求出m=3;②当抛物线过点B(0,2)时,将点B(0,2)代入抛物线表达式,得2m﹣1=2.解得m=,则当0<m<时,抛物线与线段BC只有一个公共点.③当抛物线过点C(3,2)时,将点C(3,2)代入抛物线表达式,得m=﹣3<0.则当﹣3<m<0时,抛物线与线段BC只有一个公共点.【解答】解:(1)把m=3代入y=mx2﹣3(m﹣1)x+2m﹣1中,得y=3x2﹣6x+5=3(x ﹣1)2+2,∴抛物线的顶点坐标是(1,2).(2)当x=1时,y=m﹣3(m﹣1)+2m﹣1=m﹣3m+3+2m﹣1=2.∵点A(1,2),∴抛物线总经过点A.(3)∵点B(0,2),由平移得C(3,2).①当抛物线的顶点是点A(1,2)时,抛物线与线段BC只有一个公共点.由(1)知,此时,m=3.②当抛物线过点B(0,2)时,将点B(0,2)代入抛物线表达式,得2m﹣1=2.∴m=>0.此时抛物线开口向上(如图1).∴当0<m<时,抛物线与线段BC只有一个公共点.③当抛物线过点C(3,2)时,将点C(3,2)代入抛物线表达式,得9m﹣9(m﹣1)+2m﹣1=2.∴m=﹣3<0.此时抛物线开口向下(如图2).∴当﹣3<m<0时,抛物线与线段BC只有一个公共点.综上,m的取值范围是m=3或0<m<或﹣3<m<0.【点评】本题是二次函数综合题,考查了二次函数的图象及其性质,二次函数图象上点的坐标特征,平移的性质等知识,熟练利用数形结合的解题方法是解决本题的关键.23.【分析】(1)利用等边三角形的性质解决问题即可;(2)证明△FAB≌△DAC(SAS),推出BF=CD,∠ABF=∠ACD=60°,再证明△EFB 是等边三角形,可得结论;(3)当点D是BC的中点时,四边形EFDC的面积是△ABC的面积的一半.利用相似三角形的性质,等高模型解决问题.【解答】解:(1)∵△ABC,△ADF都是等边三角形,∴EF=AB=CD,∠ADC=∠FED,∴EF∥CD,故答案为:CD=EF,CD∥EF;(2)结论成立.理由:如图2中,连接BF.∵△ABC,△ADF都是等边三角形,∴∠FAD=∠BAC,AF=AD,AB=AC,∴∠FAB=∠DAC,∴△FAB≌△DAC(SAS),∴BF=CD,∠ABF=∠ACD=60°,∵AE=BD,AB=BC,∴BE=CD=BF,∴△EFB是等边三角形,∴EF=BF=CD,∠FEB=∠ABC=60°∴EF∥CD;证法二:先证△CAE≌△ABD,得到CE=AD=DF,再证明CE∥DF,即可得四边形CDFE是平行四边形,即可得出结论平行且相等.(3)当点D是BC的中点时,四边形EFDC的面积是△ABC的面积的一半.此时四边形BDEF是菱形.理由:如图3中,连接DF.由(2)可知,△BEF是等边三角形,BE=CD,∵BD=CD,∴BE=CB,∵△BEF∽△ABC,∴=()2=,∵EF∥CD,EF=CD,∴四边形EFDC是平行四边形,=2S△EFB,∴S平行四边形EFDC∴=.连接DE.∵BE=BD,∠EBD=60°,∴△BDE是等边三角形,∵△BEF是等边三角形,∴四边形BDEF是菱形.【点评】本题属于四边形综合题,考查了等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题。

江门市中考数学一模试卷

江门市中考数学一模试卷

江门市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2019七上·江都月考) 下列四个算式:①﹣2﹣3=﹣1;②2﹣|﹣3|=﹣1;③(﹣2)3=﹣6;④﹣2÷ =﹣6.其中,正确的算式有()A . 0个B . 1个C . 2个D . 3个2. (2分)世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是()A . 7.6×10-7克B . 7.6×10-8克C . 7.6×10-9克D . 7.6×10-10克3. (2分)(2017·通州模拟) 剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A .B .C .D .4. (2分)计算y2(﹣xy3)2的结果是()A . x3y10B . x2y8C . ﹣x3y8D . x4y125. (2分) (2020八下·温州月考) 如图所示的几何体的主视图是()A .B .C .D .6. (2分) (2017八下·抚宁期末) 小华的爷爷每天坚持体育锻炼,某天他漫步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家.下面能反映当天小华的爷爷离家的距离y与时间x的函数关系的大致图象是()A .B .C .D .7. (2分)如图,△ABC内接于⊙O,其外角平分线AD交⊙O于D,DM⊥AC于M,下列结论:其中正确的有()①DB=DC;②AC-AB=2AM;③AC+AB=2CM;④S△ABD=2S△CDB .A . 只有④②B . 只有①②③C . 只有③④D . ①②③④8. (2分)如图所示的二次函数y=ax2+bx+c的图象中,刘星同学观察得出了下面四条信息:(1)b2-4ac>0;(2)c>1;(3)2a-b<0;(4)a+b+c<0.你认为其中错误的有().A . 2个B . 3个C . 4个D . 1个二、填空题 (共6题;共6分)9. (1分)计算:( + )× =________..10. (1分)(2020·岳阳) 在,,1,2,3五个数中随机选取一个数作为二次函数中a的值,则该二次函数图象开口向上的概率是________.11. (1分)某城市进行道路改造,若甲、乙两工程队合作施工20天可完成;若甲、乙两工程队合作施工5天后,乙工程队再单独施工45天可完成.求乙工程队单独完成此工程需要多少天?设乙工程队单独完成此工程需要x天,可列方程为________.12. (1分)(2019·宿迁) 直角三角形的两条直角边分别是5和12,则它的内切圆半径为________.13. (1分) (2019九下·常德期中) 如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),顶点B在第一象限,若点B在直线y=kx+3上,则k的值为________.14. (1分) (2019七下·吉林期末) △ABC是等边三角形,点O是三条中线的交点,△ABC以点O为旋转中心,则至少旋转________度后能与原来图形重合.三、作图题 (共1题;共5分)15. (5分)(2017·胶州模拟) 已知:如图,线段a,∠α求作:△ABC,使∠A=∠α,AB=AC,且BC边上的高AD=a.四、解答题 (共9题;共100分)16. (5分) (2020九下·凤县月考) 化简17. (5分)袋子中装有2个红球,1个黄球,它们除颜色外其余都相同.小明和小英做摸球游戏,约定游戏规则是:小英先从袋中任意摸出1个球记下颜色后放回,小明再从袋中摸出1个球记下颜色后放回,如果两人摸到的球的颜色相同则小英赢,否则小明赢.(1)请用树状图或列表格法表示一次游戏中所有可能出现的结果;(2)这个游戏规则公平吗?请说明理由.18. (15分) (2015八下·杭州期中) 某学校抽查了某班级某月5天的用电量,数据如下表(单位:度):度数91011天数311(1)求这5天的用电量的平均数;(2)求这5天用电量的众数、中位数;(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.19. (5分)观察与思考:阅读下列材料,并解决后面的问题.在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作AD⊥BC于D(如图),则sinB=, sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即=.同理有:=,=,所以==即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图,△ABC中,∠B=450 ,∠C=750 , BC=60,则∠A=;AC= ;(2)如图,一货轮在C处测得灯塔A在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得灯塔A在货轮的北偏西75°的方向上(如图),求此时货轮距灯塔A的距离AB.20. (15分) (2019八上·盐城期末) 某化妆品公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.设x(件)是销售商品的数量,y(元)是销售人员的月工资.如图所示,y1为方案一的函数图象,y2为方案二的函数图象.已知每件商品的销售提成方案二比方案一少8元.从图中信息解答如下问题(注:销售提成是指从销售每件商品得到的销售额中提取一定数量的费用):(1)求y1的函数解析式;(2)请问方案二中每月付给销售人员的底薪是多少元?(3)小丽应选择哪种销售方案,才能使月工资更多?21. (10分) (2019八上·保山期中) 如图,点E、F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:∠AFB=∠DEC;(2)若∠EOF=60°,试判断△OEF的形状,并说明理由.22. (25分) (2016八上·赫章期中) 如图信息,L1为走私船,L2为我公安快艇,航行时路程与时间的函数图象,问(1)在刚出发时我公安快艇距走私船多少海里?(2)计算走私船与公安快艇的速度分别是多少?(3)写出L1 , L2的解析式(4)问6分钟时两艇相距几海里.(5)猜想,公安快艇能否追上走私船,若能追上,那么在几分钟追上?23. (8分) (2019八上·伊川月考) 阅读下列运算过程,并完成各小题:= = ; = = 数学上把这种将分母中的根号去掉的过程称作“分母有理化”,模仿上例完成下列各小题:(1) =________。

江门市中考数学一模考试试卷

江门市中考数学一模考试试卷

江门市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2020·金华·丽水) 分式的值是零,则x的值为()A . 5B . 2C . -2D . -52. (2分) (2019七下·天台期末) 的相反数是()A .B .C .D .3. (2分) (2020九下·盐城月考) 若与是同类项,则mn的值是()A . 4B . 2C . 1D . 04. (2分)下列几何体中,主视图和俯视图都为矩形的是()A .B .C .D .5. (2分)(2020·长春模拟) 不等式组的解集在数轴上表示为A .B .C .D .6. (2分)(2020·长春模拟) 一元二次方程2x2﹣4x+1=0的根的情况是()A . 没有实数根B . 只有一个实数根C . 有两个相等的实数根D . 有两个不相等的实数根7. (2分)(2019·朝阳模拟) 如图,直线与直线交于点,关于x的不等式的解集是()A .B .C .D .8. (2分)(2019·朝阳模拟) 如图,在平面直角坐标系中,过反比例函数y= (k<0,<0)的图象上一点A作AB⊥x轴于B,连结AO,过点B作BC∥AO交y轴于点C.若点A的纵坐标为4,且tan∠BCO= ,则k的值为()A .B .C .D . 24二、填空题 (共6题;共9分)9. (1分)根据图中数字的规律,在最后一个空格中填上适当的数字________ .10. (1分)若a、b互为相反数,c、d互为倒数,p的绝对值等于2,则关于x的方程(a+b)x+3cdx+p=0的解为________.11. (2分)已知x , y , z均为正数,且|x﹣4|+(y﹣3)2+ =0,若以x , y , z的长为边长画三角形,此三角形的形状为________三角形.12. (2分) (2015九上·宁波月考) △ABC中,∠A、∠B均为锐角,且,则△ABC的形状是________.13. (2分)(2019·朝阳模拟) 如图,在平面直角坐标系中,抛物线y= -1的顶点为A,直线l过点P(0,m)且平行于x轴,与抛物线交于点B和点C.若AB=AC,∠BAC=90°,则m=________.14. (1分)(2020·长春模拟) 在数学课上,老师提出如下问题老师说:“小华的作法符合题意”请回答:小华第二步作图的依据是________.三、解答题 (共10题;共66分)15. (5分)计算(1) 13+7﹣(﹣20)﹣(﹣40)﹣6(2) 0.5+(﹣)﹣2.75+(﹣)(3)(﹣12)﹣5+(﹣14)﹣(﹣39)(4)﹣|﹣1 |﹣(+2 )﹣(﹣2.75)(5)(6) 0.47﹣4 ﹣(﹣1.53)﹣1 .16. (6分)(2019·朝阳模拟) 一个不透明的口袋中装有三个小球,上面分别标有数字3、4、5,这些小球除数字不同外其余均相同.(1)从口袋中随机摸出一个小球,小球上的数字是偶数的概率是________.(2)从口袋中随机摸出一个小球,记下数字后放回,再随机摸出一个小球,记下数字,请用画树状图(或列表)的方法,求两次摸出的小球上的数字都是奇数的概率.17. (2分)(2019·朝阳模拟) 如图,在⊙O中,点C为OB的中点,点D为弦AB的中点,连结CD并延长,交过点A的切线于点E.求证:AE⊥CE.18. (5分) (2019·朝阳模拟) 甲、乙两名同学做中国结.已知甲每小时比乙少做6个中国结,甲做30个中国结所用的时间与乙做45个中国结所用的时间相同,求甲每小时做中国结的个数.19. (2分)(2019·朝阳模拟) 如图,E是平行四边形ABCD的边BA延长线上一点,AE=AB,连结AC、DE、CE.(1)求证:四边形ACDE为平行四边形.(2)若AB=AC,AD=4,CE=6,求四边形ACDE的面积.20. (11分)(2020·长春模拟) 张老师计划通过步行锻炼身体,她用运动手环连续记录了6天的运动情况,并用统计表和统计图记录数据:日期4月1日4月2日4月3日4月4日4月5日4月6日步行数(步)10672492755436648步行距离(公里) 6.8 3.1 3.4 4.3卡路里消耗(千卡)1577991127燃烧脂肪(克)20101216(1)请你将手环记录的4月5日和4月6日的数据(如图①)填入表格(2)请你将条形统计图(如图②)补充完整(3)张老师这6天平均每天步行约________公里,张老师分析发现每天步行距离和消耗的卡路里近似成正比例关系,她打算每天消耗的卡路里至少达到100千卡,那么每天步行距离大约至少为________公里(精确到0.1公里)21. (2分)(2019·朝阳模拟) 某校初三年级进行女子800米测试,甲、乙两名同学同时起跑,甲同学先以a米/秒的速度匀速跑,一段时间后提高速度,以米/秒的速度匀速跑,b秒到达终点,乙同学在第60秒和第140秒时分别减慢了速度,设甲、乙两名同学所的路程为s(米),乙同学所用的时间为t(秒),s与t之间的函数图象如图所示.(1)乙同学起跑的速度为________米/秒;(2)求a、b的值;(3)当乙同学领先甲同学60米时,直接写出t的值是________.22. (11分)(2020·长春模拟) (感知)如图①,点C是AB中点,CD⊥AB,P是CD上任意一点,由三角形全等的判定方法“SAS”易证△PAC≌△PBC,得到线段垂直平分线的一条性质“线段垂直平分线上的点到线段两端的距离相等”(探究)如图②,(1)在平面直角坐标系中,直线y=- x+1分别交x轴、y轴于点A和点B,点C是AB中点,CD⊥AB交OA 于点D,连结BD,求BD的长(2)将线段AB绕点A顺时针旋转90°得到线段AB′,请在图③网格中画出线段AB;(3)若存在一点P,使得PA=PB′,且∠APB′≠90°,当点P的横、纵坐标均为整数时,则AP长度的最小值为________.23. (16分)(2020·长春模拟) 如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=2.点P从点A出发,以每秒个单位长度的速度向终点C运动,点Q从点B出发,以每秒2个单位长度的速度向终点A运动,连接PQ,将线段PQ绕点Q顺时针旋转90°得到线段QE,以PQ、QE为边作正方形PQEF.设点P运动的时间为t秒(t>0)(1)点P到边AB的距离为________(用含t的代数式表示)(2)当PQ∥BC时,求t的值(3)连接BE,设△BEQ的面积为S,求S与t之间的函数关系式(4)当E、F两点中只有一个点在△ABC的内部时,直接写出t的取值范围24. (6分)(2020·长春模拟) 在平面直角坐标系中,已知抛物线y=x2-2mx-3m(1)当m=1时,①抛物线的对称轴为直线________,②抛物线上一点P到x轴的距离为4,求点P的坐标③当n≤x≤ 时,函数值y的取值范围是- ≤y≤2-n,求n的值(2)设抛物线y=x2-2mx-3m在2m-1≤x≤2m+1上最低点的纵坐标为y0 ,直接写出y0与m之间的函数关系式及m的取值范围.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共9分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共10题;共66分)15-1、15-2、15-3、15-4、15-5、15-6、16-1、16-2、17-1、18-1、19-1、19-2、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、23-4、24-1、24-2、。

2022台山中考数学试题及答案

2022台山中考数学试题及答案

2022台山中考数学试题及答案1. 选择题(每题2分,共40分)1. 若等差数列的前项和为50,公差为5,则此数列的前四项和为多少?A. 80B. 70C. 60D. 502. 若正方形的边长为3x,则其对角线长为多少?A. 3xB. 3√2xC. 6xD. 6√2x3. 设函数 f(x) = 2x+5,求 f(3) + f(-3) 的值为多少?A. 19B. 1C. 11D. 54. 一条路原本需要10分钟,现在以每分钟的速度增加20秒,则现在需要多少分钟?A. 11B. 11.5C. 12D. 12.55. 已知直角三角形的斜边长为5,其中一个锐角的正弦值为0.8,则另一个锐角的余弦值为多少?A. 0.6B. 0.4C. 0.3D. 0.2......2. 解答题(共60分)1. 已知两个正数的和为20,它们的乘积最大为多少?解析:设这两个正数分别为 x 和 20-x,它们的乘积为 P(x) = x(20-x) = 20x - x²。

通过求导可得 P'(x) = 20 - 2x,令 P'(x) = 0 得 x = 10,当 x = 10 时,乘积 P(x) 取得最大值。

因此,这两个正数的乘积最大值为 P(10) = 10(20-10) = 100。

2. 甲、乙两人一起做一个工程,如果甲单独完成该工程需要8天,乙单独完成该工程需要12天。

甲、乙合作完成该工程需要多少天?解析:设甲、乙合作完成该工程需要的天数为 x。

甲每天完成工作的速度为1/8,乙每天完成工作的速度为1/12,甲、乙合作每天完成工作的速度为 1/8 + 1/12 = 5/24。

根据工作量与完成速度的关系可得 (5/24) * x = 1,解方程可得 x =24/5 = 4.8。

因此,甲、乙合作完成该工程需要4.8天。

......答案:1. B2. B3. A4. C5. D......通过以上题目及其答案的展示,我们可以看出2022年台山中考数学试题的类型和难度。

江门市中考数学一模试卷

江门市中考数学一模试卷

江门市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2019·兰州) 剪纸是中国特有的民间艺术.在如涂所示的四个剪纸图案中.既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)(2017·黑龙江模拟) 下列实数中,无理数是()A . ﹣B .C .D . ﹣|﹣5|3. (2分) (2017七上·东莞期中) 的绝对值是()A .B .C .D .4. (2分)若关于x的一元二次方程(a+1)x2+x+a2﹣1=0的一个根是0,则a的值为()A . 1B . ﹣1C . 1或﹣1D .5. (2分) (2019八下·施秉月考) 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要多少米?()A . 4B . 8C . 9D . 76. (2分)(2017·兴庆模拟) 一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为()A .B .C .D .7. (2分)与抛物线y=-x2+3x-5的形状、开口方向都相同,只有位置不同的抛物线是()A . y =x2+3x-5B . y=-x2+xC . y=x2+3x-5D . y=-x2+3x-58. (2分)Rt△ABC中,∠C=90°,tanA=, BC=5,则AB=()A . 3B . 4C .D .9. (2分) (2016八上·仙游期末) 如图所示,在△ABC中,AB=AC,AB的垂直平分线DE交BC的延长线于E,交AC于F,连接BF,∠A=50°,AB+BC=16cm,△BCF的周长和∠EFC分别等于()A . 16cm,40°B . 8cm,50°C . 16cm,50°D . 8cm,40°10. (2分)(2017·兰州模拟) 如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且∠DCE=∠B,那么下列说法中,错误的是()A . △ADE∽△ABCB . △ADE∽△ACDC . △ADE∽△DCBD . △DEC∽△CDB二、填空题 (共6题;共7分)11. (1分)(2017·黄冈模拟) 引发春季传染病的某种病毒的直径是0.00000027米,数据0.00000027用科学记数法表示为________.12. (1分) (2019七下·长春期中) 如图,在框中解不等式的步骤中,应用不等式基本性质的是________(填序号).13. (1分)(2017·江都模拟) 如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1000人,则根据此估计步行上学的有________人.14. (1分)如图,在Rt△ABC中,∠B=90°,CD平分∠ACB,过点D作DE⊥AC于点E,若AE=4,AB=10,则△ADE的周长为________ .15. (2分)如图,在Rt△ABC中,∠B=30°,AC=6,则AB=________;若AB=7,则AC=________.16. (1分)(2013·河池) 如图,正方形ABCD的边长为4,E、F分别是BC、CD上的两个动点,且AE⊥EF.则AF的最小值是________.三、解答题、 (共9题;共82分)17. (5分)解不等式组.18. (5分)已知:在△ABC中,AB=AC,AD⊥BC,垂足为点D,E在CB的延长线上,且BE=2BD,连接AE,F 是AC的中点,G是AE的中点,连接BG、BF.(1)如图1,求证:四边形AGBF是平行四边形.(2)如图2,连接GF、DF,GF与AB相交于点H,若GF=AB,在不添加任何辅助线的情况下,请直接写出图2中所有的等边三角形.19. (10分)已知y与x+1成正比例,且当x=3时,y=2.(1)求y与x之间的函数关系式.(2)当y=﹣1时,求x的值.20. (15分)(2018·潮南模拟) 2013年5月31日是第26个“世界无烟日”,校学生会书记小明同学就“戒烟方式”的了解程度对本校九年级学生进行了一次随机问卷调查,如图是他采集数据后绘制的两幅不完整的统计图(A:了解较多,B:不了解,C:了解一点,D:非常了解).请你根据图中提供的信息解答以下问题:(1)在扇形统计图中的横线上填写缺失的数据,并把条形统计图补充完整.(2) 2013年该初中九年级共有学生400人,按此调查,可以估计2013年该初中九年级学生中对戒烟方式“了解较多”以上的学生约有多少人?(3)在问卷调查中,选择“A”的是1名男生,1名女生,选择“D”的有4人且有2男2女.校学生会要从选择“A、D”的问卷中,分别抽一名学生参加活动,请你用列表法或树状图求出恰好是一名男生一名女生的概率.21. (10分) (2016九上·九台期末) 如图,利用一面足够长的墙,用铁栅栏围成一个矩形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏),设矩形ABCD的宽AD为x米,矩形的长为AB(且AB>AD).(1)若所用铁栅栏的长为40米,用含x的代数式表示矩形的长AB;(2)在(1)的条件下,若使矩形场地面积为192平方米,则AD、AB的长应分别为多少米?22. (7分)(2018·夷陵模拟) 我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所知道的四边形中是勾股四边形的两种图形的名称________,________;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°后得到△DBE,连接AD、DC,若∠DCB=30°,试证明;DC2+BC2=AC2.(即四边形ABCD是勾股四边形)23. (10分)(2017·贵港模拟) 如图,⊙O是△ABC的外接圆,AB是⊙O的直径,经过点A作AE⊥OC,垂足为点D,AE与BC交于点F,与过点B的直线交于点E,且EB=EF.(1)求证:BE是⊙O的切线;(2)若CD=1,cos∠AEB= ,求BE的长.24. (10分)(2018·广州) 如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法)(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值。

2023年广东省江门市新会区重点学校中考数学一模试卷(含解析)

2023年广东省江门市新会区重点学校中考数学一模试卷(含解析)

2023年广东省江门市新会区重点学校中考数学一模试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 2022年十三届全国人大五次会议审议通过的政府工作报告中提出,今年城镇新增就业目标为11000000人以上,数据11000000用科学记数法表示应为( )A. 0.11×108B. 1.1×107C. 11×106D. 1.1×1062. 下列运算正确的是( )A. 9=±3B. −22=−4C. −|−3|=3D. (−2)3=−63.如图,平行线AB,CD被直线EF所截,FG平分∠EFD,若∠EFD=70°,则∠EGF的度数是( )A. 35°B. 55°C. 70°D. 110°4. “杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取9株水稻苗,测得苗高(单位:cm)分别是:22,23,24,23,24,25,26,23,25.则这组数据的众数和中位数分别是( )A. 24,25B. 23,23C. 23,24D. 24,245.如图,在△ABC中,点D,E分别是AB,AC的中点若△ADE的面积是2cm2,则四边形BDEC的面积为( )A. 8B. 6C. 4D. 26. 根据图象,可得关于x的不等式kx>―x+3的解集是( )A. x<2B. x>2C. x<1D. x>17. 一次函数y=ax+1与反比例函数y=−a在同一坐标系中的大致图象是( )xA. B.C. D.8. 若关于x的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为( )A. −1B. 1C. −2或2D. −3或19. 如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若A 分别以点B,D为圆心,大于12E=2,BE=1,则EC的长度是( )A. 2B. 3C. 3D. 510. 如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.其中正确的结论有( )A. 5个B. 4个C. 3个D. 2个二、填空题(本大题共5小题,共25.0分)11. 因式分解:x3−4xy2=.12.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖.若直角三角形两条直角边的长分别是2和1,则飞镖投到小正方形(阴影)区域的概率是______.13.如图,△ABC的三个顶点分别在边长为1的正方形网格上,则cos∠ABC的值为______ .14.如图,以正方形ABCD的AB边向外作正六边形ABEFGH,连接DH,则∠ADH=______°.15.如图,在菱形ABCD中,∠BAD=60°,点E在边BC上,将△ABE沿直线AE翻折180°,得到△AB′E,点B的对应点是点B′.若AB′⊥BD,BE=3,则BB′的长是______ .三、计算题(本大题共1小题,共9.0分)16. 如图,在△ABC中,∠C=90°,点D、E分别在AC、AB上,BD平分∠ABC,DE⊥AB,A E=6,cosA=3.5求(1)DE、CD的长;(2)tan∠DBC的值.四、解答题(本大题共7小题,共66.0分。

2020年广东省江门市中考数学试卷-含详细解析

8.不等式组{B2020 年广东省江门市中考数学试卷一、选择题(本大题共 10 小题,共 30.0 分) 1. 9 的相反数是( )A. −9B. 9C. 19D. − 1 92. 一组数据 2,4,3,5,2 的中位数是( ) A. 5 B.3.5 C. 3D. 2.53. 在平面直角坐标系中,点(3,2)关于 x 轴对称的点的坐标为()A. (−3,2)B. (−2,3)C. (2, −3)D. (3, −2)4. 一个多边形的内角和是540°,那么这个多边形的边数为( ) A. 4 B. 5 C. 6 D. 75. 若式子√2x − 4在实数范围内有意义,则 x 的取值范围是( )A. x ≠ 2B. x ≥ 2C. x ≤ 2D. x ≠ −26.△已知 ABC 的周长为 16,点 D ,E ,F 分别为△ ABC 三条边的中点,则△ DEF 的周 长为( ) A. 8 B. 2√2 C. 16 D. 47.把函数y = (x − 1)2 + 2图象向右平移 1 个单位长度,平移后图象的的数解析式为( )A. y = x 2 + 2C. y = (x − 2)2 + 22 − 3x ≥ −1,x − 1 ≥ −2(x + 2)的解集为(B. y = (x − 1)2 + 1 D. y = (x − 1)2 − 3)A. 无解B. x ≤ 1C. x ≥ −1D. −1 ≤ x ≤ 19.如图,在正方形 ABCD 中,AB = 3,点 E ,F 分别在边 AB , CD 上,∠EFD = 60°.若将四边形 EBCF 沿 EF 折叠,点 B 恰 好落在 AD 边上,则 BE 的长度为( )A. 1B. √2C. √3D. 210. 如图,抛物线 y = ax 2 + bx + c 的对称轴是 x = 1,下列结论:①abc > 0;②b 2 − 4ac > 0;③8a + c < 0; ④5a + b + 2c > 0, 正确的有( )A. 4 个B. 3 个C. 2 个D. 1 个二、填空题(本大题共 7 小题,共 28.0 分) 11. 分解因式:xy − x =______.12. 如果单项式3x m y 与−5x 3y n 是同类项,那么m + n =______. 13. 若√a − 2 + |b + 1| = 0,则(a + b)2020 =______.14. 已知x = 5 − y ,xy = 2,计算3x + 3y − 4xy 的值为______.15. 如图,在菱形 ABCD 中,∠A = 30°,取大于1 AB 的2长为半径,分别以点 A , 为圆心作弧相交于两点, 过此两点的直线交 AD 边于点E(作图痕迹如图所示 ),连接 BE ,BD.则∠EBD 的度数为______.16.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为______.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:(x+y)2+(x+y)(x−y)−2x2,其中x=√2,y=√3.四、解答题(本大题共7小题,共56.0分)19.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级人数(人)非常了解24比较了解72基本了解18不太了解x(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.21. 已知关于 x ,y 的方程组{ax + 2√3y = −10√3,与{x + by = 15的解相同.⏜x − y = 2, x + y = 4(1)求 a ,b 的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于 x 的方程x 2 + ax +b = 0的解.试判断该三角形的形状,并说明理由.22. 如图 1,在四边形 ABCD 中,AD//BC ,∠DAB = 90°,AB 是⊙ O 的直径,CO 平分∠BCD .(1)求证:直线 CD 与⊙ O 相切;(2)如图 2,记(1)中的切点为 E ,P 为优弧AE 上一点,AD = 1,BC = 2.求tan∠APE 的值.23. 某社区拟建 A ,B 两类摊位以搞活“地摊经济”,每个 A 类摊位的占地面积比每个B 类摊位的占地面积多 2 平方米.建 A 类摊位每平方米的费用为 40 元,建 B 类摊 位每平方米的费用为 30 元.用 60 平方米建 A 类摊位的个数恰好是用同样面积建 B(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.24.如图,点B是反比例函数y=8(x>0)图象上一点,过点B分别向坐标轴作垂线,x垂足为A,C.反比例函数y=k(x>0)的图象经过OB的中点M,与AB,BC分别x相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=______;(2)△求BDF的面积;(3)求证:四边形BDFG为平行四边形.25.如图,抛物线y=3√3x2bx c与x轴交于A,B6两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD△与BPQ相似时,请直接写出所有满足条件的点Q的坐标.答案和解析1.【答案】A【解析】解:9的相反数是−9,故选:A.根据相反数的定义即可求解.此题主要考查相反数的定义,比较简单.2.【答案】C【解析】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.3.【答案】D【解析】解:点(3,2)关于x轴对称的点的坐标为(3,−2).故选:D.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.【答案】B【解析】解:设多边形的边数是n,则(n−2)⋅180°=540°,解得n=5.故选:B.根据多边形的内角和公式(n−2)⋅180°列式进行计算即可求解.本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.【答案】B【解析】解:∵√2x−4在实数范围内有意义,∴2x−4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.6.【答案】A【解析】解:∵ D 、E 、F 分别为△ ABC 三边的中点, ∴ DE 、DF 、EF △都是 ABC 的中位线,∴ DF = 1 AC ,DE = 1 BC ,EF = 1 AC ,22 2△故 DEF 的周长= DE + DF + EF = 1 (BC + AB + AC) =21 2× 16 = 8.故选:A .根据中位线定理可得DF = 1 AC ,DE = 1 BC ,EF = 1 AC ,继而结合△ ABC 的周长为 16,22 2可得出△ DEF 的周长.此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边, 并且等于第三边的一半,难度一般.7.【答案】C【解析】解:二次函数y = (x − 1)2 + 2的图象的顶点坐标为(1,2), ∴向右平移 1 个单位长度后的函数图象的顶点坐标为(2,2), ∴所得的图象解析式为y = (x − 2)2 + 2.故选:C .先求出y = (x − 1)2 + 2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函 数图象顶点坐标,然后利用顶点式解析式写出即可.本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”求出平移后的 函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.8.【答案】D【解析】解:解不等式2 − 3x ≥ −1,得:x ≤ 1, 解不等式x − 1 ≥ −2(x + 2),得:x ≥ −1, 则不等式组的解集为−1 ≤ x ≤ 1, 故选:D .分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大 大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取 大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.【答案】D【解析】解:∵四边形 ABCD 是正方形, ∴ AB//CD ,∠A = 90°, ∴ ∠EFD = ∠BEF = 60°,∵将四边形 EBCF 沿 EF 折叠,点 B 恰好落在 AD 边上, ∴ ∠BEF = ∠FEB′ = 60°,BE = B′E ,∴ ∠AEB′ = 180° − ∠BEF − ∠FEB′ = 60°, ∴ B′E = 2AE ,设BE = x ,则B′E = x ,AE = 3 − x , ∴ 2(3 − x) = x , 解得x = 2.故选:D .2a = 1,可得b = −2a ,nBE = B′E ,设BE = x ,则B′E = x ,AE = 3 − x ,由直角三角形的性质可得:2(3 − x) = x , 解方程求出 x 即可得出答案.本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综 合性运用性质进行推理是解此题的关键. 10.【答案】B【解析】解:由抛物线的开口向下可得:a < 0,根据抛物线的对称轴在 y 轴右边可得:a ,b 异号,所以b > 0, 根据抛物线与 y 轴的交点在正半轴可得:c > 0, ∴ abc < 0,故①错误;∵抛物线与 x 轴有两个交点, ∴ b 2 − 4ac > 0,故②正确;∵直线x = 1是抛物线y = ax 2 + bx + c(a ≠ 0)的对称轴,所以−b由图象可知,当x = −2时,y < 0,即4a − 2b + c < 0, ∴ 4a − 2 × (−2a) + c < 0, 即8a + c < 0,故③正确;由图象可知,当x = 2时,y = 4a + 2b + c > 0;当x = −1时,y = a − b + c > 0, 两式相加得,5a + b + 2c > 0,故④正确; ∴结论正确的是②③④3个,故选:B .根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答 问题.本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思 想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式. 11.【答案】x(y − 1)【解析】解:xy − x = x(y − 1). 故答案为:x(y − 1).直接提取公因式 x ,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键. 12.【答案】4【解析】解:∵单项式3x m y 与−5x 3y n 是同类项, ∴ m = 3,n = 1,∴ m + n = 3 + 1 = 4.故答案为:4.根据同类项的定义(所含字母相同,相同字母的指数相同)可得m = 3,n = 1,再代入代 数式计算即可.本题考查同类项的定义,正确根据同类项的定义得到关于 m , 的方程组是解题的关键. 13.【答案】1【解析】解:∵ √a − 2 + |b + 1| = 0, ∴ a − 2 = 0且b + 1 = 0, 解得,a = 2,b = −1,∴ (a + b)2020 = (2 − 1)2020 = 1,故答案为:1.本题考查非负数的意义和有理数的乘方,掌握非负数的意义求出a、b的值是解决问题的关键.14.【答案】7【解析】解:∵x=5−y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)−4xy=3×5−4×2=15−8=7,故答案为:7.由x=5−y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)−4xy计算可得.本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含这式子x+y、xy及整体代入思想的运用.15.【答案】45°【解析】解:∵四边形ABCD是菱形,∴AD=AB,∴∠ABD=∠ADB=1(180°−∠A)=75°,2由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD−∠ABE=75°−30°=45°,故答案为45°.根据∠EBD=∠ABD−∠ABE,求出∠ABD,∠ABE即可解决问题.本题考查作图−基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【答案】13【解析】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:120π×1,180而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=120π×1,180解得,r=1,3故答案为:1.3求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.17.【答案】2√5−2【解析】解:如图,连接BE,BD.由题意BD=√22+42=2√5,∵∠MBN=90°,MN=4,EM=NE,∴BE=1MN=2,2∴点E的运动轨迹是以B为圆心,2为半径的圆,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2√5−2.故答案为2√5−2.如图,连接BE,BD.求出BE,BD,根据DE≥BD−BE求解即可.本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.【答案】解:(x+y)2+(x+y)(x−y)−2x2,=x2+2xy+y2+x2−y2−2x2=2xy,当x=√2,y=√3时,原式=2×√2×√3=2√6.【解析】根据整式的混合运算过程,先化简,再代入值求解即可.本题考查了整式的混合运算−化简求值,解决本题的关键是先化简,再代入值求解.19.【答案】解:(1)x=120−(24+72+18)=6;(2)1800×24+72=1440(人),120答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【解析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.【答案】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,∠DBF=∠ECF在BDF△和CEF中,{∠BFD=∠CFE,△BD=CE∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,21.【答案】解:(1)由题意得,关于 x ,y 的方程组的相同解,就是程组{x − y = 2的解, 解得,x = x = 2√3,【解析】(1)关于 x ,y 的方程组{ 与{ 的解相同.实际就x + by = 15∠ABE = ∠ACD △在 ABE △和 ACD 中,{∠A = ∠A, BE = CD∴△ ABE≌△ ACD(AAS),∴ AB = AC ,∴△ ABC 是等腰三角形.【解析】△先证 BDF≌△ CEF(AAS),得出BF = CF ,DF = EF ,则BE = CD ,再证△ABE≌△ ACD(AAS),得出AB = AC 即可.本题考查了全等三角形的判定与性质、等腰三角形的判定;证明三角形全等是解题的关 键.x + y = 4x = 3 解得,{y = 1,代入原方程组得,a = −4√3,b = 12;(2)当a = −4√3,b = 12时,关于 x 的方程x 2 + ax + b = 0就变为x 2−4√3x + 12 = 0, 1 2又∵ (2√3)2 + (2√3)2 = (2√6)2,∴以2√3、2√3、2√6为边的三角形是等腰直角三角形.ax + 2√3y = −10√3, x − y = 2, x + y = 4 x + y = 4 是方程组{x − y = 2的解,可求出方程组的解,进而确定 a 、b 的值; (2)将 a 、b 的值代入关于 x 的方程x 2 + ax + b = 0,求出方程的解,再根据方程的两个解与2√6为边长,判断三角形的形状.本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次 方程的解法和勾股定理是得出正确答案的关键.22.【答案】(1)证明:作OE ⊥ CD 于 E ,如图 1 所示:则∠OEC = 90°,∵ AD//BC ,∠DAB = 90°,∴ ∠OBC = 180° − ∠DAB = 90°,∴ ∠OEC = ∠OBC ,∵ CO 平分∠BCD ,∴ ∠OCE = ∠OCB ,∠OEC = ∠OBC△在 OCE △和 OCB 中,{∠OCE = ∠OCB ,OC = OC∴△ OCE≌△ OCB(AAS),∴ OE = OB ,又∵ OE ⊥ CD ,∴直线 CD 与⊙ O 相切;(2)解:作DF ⊥ BC 于 F ,连接 BE ,如图所示:则四边形 ABFD 是矩形,∴ AB = DF ,BF = AD = 1,∴ CF = BC − BF = 2 − 1 = 1,∵ AD//BC ,∠DAB = 90°,∴ AD ⊥ AB ,BC ⊥ AB ,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF=√CD2−CF2=√32−12=2√2,∴AB=DF=2√2,∴OB=√2,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH=OB=√2.BC2【解析】(1)证明:作OE⊥CD于E△,证OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB=DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2√2,则OB=√2,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.本题考查了切线的判定与性质、全等三角形的判定与性质、直角梯形的性质、勾股定理、圆周角定理等知识;熟练掌握切线的判定与性质和圆周角定理是解题的关键.23.【答案】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:60=60⋅3,x+2x5解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90−a)个,由题意得:90−a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90−22)×3=10520,答:建造这90个摊位的最大费用是10520元.【解析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的3这个5等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90−a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.1 1 2m ),设直线 DE 的表达式为:y = s x + n ,将点 D 、E 的坐标代入上式得{m1 = ms + n b = 2m 2 x +2m ,令y = 0,则x = 5m ,故点F(5m, 0), 2m 2 x +2m ,令y = 0,则x = 5m ,故点F(5m, 0),本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.24.【答案】2【解析】解:(1)设点B(s, t ),s t = 8,则点M(1 s , 1 t ), 2 2则k = 1 s ⋅ 1 t = 1 s t = 2, 2 2 4故答案为 2;(2) △ BDF 的面积=△ OBD 的面积= △?? BOA − △?? OAD = 2 × 8 − 2 × 2 = 3;(3)设点D(m, 2 ),则点B(4m, 2 ), m m∵点 G 与点 O 关于点 C 对称,故点G(8m, 0),则点E(4m,12 = 4ms + n ,解 2mk = − 1得{ 2m 2, 52m故直线 DE 的表达式为:y = −1 5 故 FG = 8m − 5m = 3m ,而BD = 4m − m = 3m = FG ,则FG//BD ,故四边形 BDFG 为平行四边形.(1)设点B(s, t ),s t = 8,则点M(1 s , 1 t ),则k = 1 s ⋅ 1 t = 1 s t = 2; 2 2 2 2 4(2) △ BDF 的面积=△ OBD 的面积= △?? BOA − △?? OAD ,即可求解;(3)确定直线 DE 的表达式为:y = − 1 5 即可求解.本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积 的计算等,综合性强,难度适中.25.【答案】解:(1) ∵ BO = 3AO = 3,∴点B(3,0),点A(−1,0),∴抛物线解析式为:y = 3+√3 (x + 1)(x − 3) = 3+√3 x 2 − 3+√3 x − 3+√3,66 3 2∴ b = − 3+√3,c = − 3+√3; 3 2(2)如图 1,过点 D 作DE ⊥ AB 于 E ,OE ,∴CO//DE,∴BC=BO,CD OE∵BC=√3CD,BO=3,∴√3=3∴OE=√3,∴点D横坐标为−√3,∴点D坐标(−√3,√3+1),设直线BD的函数解析式为:y=kx+b,由题意可得:{√3+1=−√3k+b,0=3k+bk=−√3解得:{3,b=√3∴直线BD的函数解析式为y=−√3x+√3;3(3)∵点B(3,0),点A(−1,0),点D(−√3,√3+1),∴AB=4,AD=2√2,BD=2√3+2,对称轴为直线x=1,∵直线BD:y=−√3x+√3与y轴交于点C,3∴点C(0,√3),∴OC=√3,∵tan∠COB=CO=√3,BO3∴∠COB=30°,如图2,过点A作AK⊥BD于K,∴ BQ = 4√3×(2 32)∴ AK = 1 AB = 2, 2∴ DK = √AD 2 − AK 2 = √8 − 4 = 2,∴ DK = AK ,∴ ∠ADB = 45°,如图,设对称轴与 x 轴的交点为 N ,即点N(1,0),若∠CBO = ∠PBO = 30°,∴ BN = √3PN = 2,BP = 2PN ,∴ PN = 2√3,BP = 4√3,3 3△当 BAD∽△ BPQ ,∴ BP = BQ ,BA BD3 √4 =2 2√3,3∴点Q(1 − 2√3, 0); 3△当 BAD∽△ BQP ,∴ BP = BQ ,BD AB∴ BQ = 4√3×4 3 2√32 = 4 − 4√3,3∴点Q(−1 4√3, 0); 3若∠PBO = ∠ADB = 45°,∴ BN = PN = 2,BP = √2BN = 2√2,△当 BAD∽△ BPQ ,∴ BP = BQ ,AD BD∴ 2√2 = BQ2√2 2√32,∴ BQ = 2√3 2 ∴点Q(1 − 2√3, 0);△当 BAD∽△ PQB ,∴ BP= BQ ,BD AD∴ BQ = 2√2×2√2 = 2√3 − 2,∴点Q(5−2√3,0);综上所述:满足条件的点Q的坐标为(1−2√3,0)或(−1+4√3,0)或(1−2√3,0)或(5−332√3,0).【解析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=√3,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,相似三角形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。

2024年广东省九年级中考数学模拟试卷(含答案及部分题解析)

2023—2024学年度九年级数学模拟试卷(满分为120分,考试时间为90分钟)一.选择题(本大题共10小题,每小题3分,共30分)1.156000000用科学记数法表示为( )A.156×106 B.1.56×107 C.1.56×108 D.1.6×1082.将点A(-4,6)向右平移2个单位,向上平移3个单位得到点B,则点B 的坐标是( ) A.(-2,4) B.(-2,9) C.(-1,4) D.(-2,3)3.下列运算正确的是( )A.(-a³)²=a6 B.(a2)3=a5C.2a2•a=a D.2﹣=334.某种商品原来每件售价为230元,经过连续两次降价后,该种商品每件售价为196元,设平均每次降价的百分率为x,根据题意,所列方程正确的是( )A.230(1﹣x2)=196 B.230(1﹣x)=196 C.230(1﹣2x)=196 D.230(1﹣x)2=1965.分别标有数字π,,-2,0,-4的五张卡片中,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是()A.25B.15C.35 D.456.下列图形中是中心对称图形的是( )A. B.C. D.7.不透明的袋子中装有红、绿、黄小球各一个,除颜色外三个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么摸到一个红球一个黄球的概率是( )A.29B.C.79 D.598.若菱形中两个相邻内角的度数比是2:3,那其中较大的角的度数是( )A.72°B.108° C.120° D.135°9.一个多边形的内角和为1080°,则这个多边形是( )A.七边形B.八边形 C.九边形 D.十边形10.如图,在矩形纸片ABCD中,点E在BC边上,将△CDE沿DE翻折得到△FDE,点F落在AE上.若CE=3cm,AF=2EF,则AB=( )cm.A.3B.3 C.3 D.25 二.填空题(本大题共5小题,每小题3分, 共15分)11.分解因式:2ab 2﹣2a = .12.已知反比例函数y =﹣的图象经过点(12,a ),则a 的值为 .13.实数-9的相反数数等于 .14.如图,在△ABC 中,AB=8,∠C=90°,∠A=30°,DE 是中位线,则DE 的长为 .15.如图是二次函数y=ax²+bx+c 的图像,对称轴是直线x=2,则下列说法:①a-b+c-0;②4a+b=0;③ab c ﹥0;④16a+5b+2c ﹥0,其中正确的是 .三、解答题(一)(本大题共3小题,每小题7分,共21分)16. 解不等式组 .17.先化简,再求值:x +1x 2−2x +1÷(2x−1+1),其中x=3+1.18.如图,AD 是△ABC 的角平分线,过点D 分别作AC 、AB 的平行线,交AB 于点E ,交AC 于点F(1)求证:四边形AEDF 是菱形(2)若AF=13,AD=24.求四边形AEDF 的面积四、解答题(二)(本大题共3小题,每小题10分,共30分)19. 如图,在▱ABCD 中,AC ,BD 交于点O ,点E ,F 在AC 上,AE =CF .(1)求证:四边形EBFD 是平行四边形;(2)若∠BAC =∠DAC ,求证:四边形EBFD 是菱形.20.为落实“双减”政策,优化作业管理,某中学从全体学生中随机抽取部分学生,调查他们每天完成书面作业的时间t (单位:分钟).按照完成时间分成五组:A 组“t ≤45”,B 组“45<t ≤60”,C 组“60<t ≤75”,D 组“75<t ≤90”,E 组“t >90”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次调查的样本容量是 ,请补全条形统计图;(2)在扇形统计图中,A 组的圆心角是 度,本次调查数据的中位数落在 组内;(3)若该校有1900名学生,请你估计该校每天完成书面作业不超过90分钟的学生人数.21.某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE 与支架CB 所在直线相交于点O ,且;支架BC 与水平线AD 垂直.,,,另一支架AB 与水平线夹角,求OB 的长度(结果精确到1cm ;温馨提示:,,)五.解答题(三)(本大题共2小题,每小题12分,共24分)22.【问题情境】:数学活动课上,老师出示了一个问题:如图1,在正方形ABCD 中,E 是BC 的中点,AE ⊥EP ,EP 与正方形的外角∠DCG 的平分线交于P 点.试猜想AE 与EP 的数量关系,并加以证明;【思考尝试】:(1)同学们发现,取AB 的中点F ,连接EF 可以解决这个问题.请在图1中补全图形,解答老师提出的问题.【实践探究】:(2)希望小组受此问题启发,逆向思考这个题目,并提出新的问题:如图2,在正方形ABCD 中,E 为BC边上一动点(点E ,B 不重合),△AEP 是等腰直角三角形,∠AEP =90°,连接CP ,可以求出∠DCP 的大小,请你思考并解答这个问题.OB OE =40cm AC =30ADE ∠=︒190cm DE =65BAD ∠=︒sin650.91︒≈cos650.42︒≈tan65 2.14︒≈23.如图1,在平面直角坐标系中,直线与抛物线交于A 、B 两点,点A 在x 轴上,点B 在y 轴上.设抛物线与x 轴的另一个交点为点C .(1) 求该抛物线的解析式;(2) 若点M 是抛物线对称轴上的一个动点,当的值最小时,求点M 的坐标;(3) P 是抛物线上一动点(不与点A 、B 重合),如图2,若点P 在直线上方,连接交于点D ,求的最大值;2023—2024学年度九年级数学模拟试卷(解析卷)(满分为120分,考试时间为90分钟)一.选择题(本大题共10小题,每小题3分,共30分)1.156000000用科学记数法表示为( )A .156×106B .1.56×107C .1.56×108D .1.6×108【答案】C2.将点A (-4,6)向右平移2个单位,向上平移3个单位得到点B ,则点B 的坐标是( )A .(-2,4)B .(-2,9)C .(-1,4)D .(-2,3)【答案】B3.下列运算正确的是( )A .(-a³)²=a 6B .(a 2)3=a 5C .2a 2•a =aD .2﹣=33【答案】A4.某种商品原来每件售价为230元,经过连续两次降价后,该种商品每件售价为196元,设平均每次降价的4y x =+212y x bx c =-++MC MB +AB OP AB PD OD百分率为x,根据题意,所列方程正确的是( )A.230(1﹣x2)=196 B.230(1﹣x)=196 C.230(1﹣2x)=196 D.230(1﹣x)2=196【答案】D5.分别标有数字π,,-2,0,-4的五张卡片中,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是()A.25B.15C.35 D.45【答案】C6.下列图形中是中心对称图形的是( )A. B.C. D.【答案】C7.不透明的袋子中装有红、绿、黄小球各一个,除颜色外三个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么摸到一个红球一个黄球的概率是( )A.29B.C.79 D.59【答案】A8.若菱形中两个相邻内角的度数比是2:3,那其中较大的角的度数是( )A.72°B.108° C.120° D.135°【答案】B9.一个多边形的内角和为1080°,则这个多边形是( )A.七边形B.八边形 C.九边形 D.十边形【答案】B10.如图,在矩形纸片ABCD中,点E在BC边上,将△CDE沿DE翻折得到△FDE,点F落在AE上.若CE=3cm,AF=2EF,则AB=( )cm.A.3B.3 C.3 D.25 【答案】A【详解】二.填空题(本大题共5小题,每小题3分, 共15分)11.分解因式:2ab2﹣2a= .【答案】2a(b+1)(b-1)12.已知反比例函数y=﹣的图象经过点(12,a),则a的值为.【答案】-1213.实数-9的相反数数等于 .【答案】914.如图,在△ABC中,AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为 .【答案】215.如图是二次函数y=ax²+bx+c的图像,对称轴是直线x=2,则下列说法:①a-b+c-0;②4a+b=0;﹥0;④16a+5b+2c﹥0,其中正确的是 .③abc【答案】①②③【详解】由图象知,抛物线过点(5,0),对称轴为直线x =2,∴抛物线过点(-1,0)∴a-b+c=0故①正确;抛物线的对称轴为直线 x =2,∴-b2a=2,∴4a+b=0,故②正确;由图象知,抛物线开口向上,∴a >0,∵4a+b= 0,∴b<0,而抛物线与y轴的交点在y轴的负半轴上,∴c﹤0,故③正确;∵4a+b= 0,∴b=-4a,∵a-b+c=0,∴c=-5a,∴16a+5b+2c=16a-20a-10a=-14a <0,故④错误三、解答题(一)(本大题共3小题,每小题7分,共21分)16. 解不等式组 .【答案】2<x≤3【详解】解:,解不等式①,得:x>2,解不等式②,得:x≤3,∴原不等式组的解集是2<x≤3.17.先化简,再求值:x+1x2−2x+1÷(2x−1+1),其中x=3+1.【答案】3318.如图,AD是△ABC的角平分线,过点D分别作AC、AB的平行线,交AB于点E,交AC于点F(1)求证:四边形AEDF是菱形(2)若AF=13,AD=24.求四边形AEDF的面积【答案】(1)证明:∵AB//DF,AC//DE∴四边形AEDF 是平行四边形∵AD 是△ABC 的角平分线∴∠BAD=∠DAC又∵AC//DE,∴∠ADE=∠DAC∴∠ADE=∠BAD∴EA=ED∴四边形AEDP 是菱形(2)连接EF 交AD 于点O∵四边形AEDF 是菱形∴EF=2FO∴AO=12AD = 12.∵AD ⊥EF.在Rt △AOF 中,由勾股定理得OF=AF 2−AO 2=132−122=5∴OE=OF=5∴四边形AEDF 的面积=12AD ×OF+12AD ×OE=12×24×5+12×24×5=120四、解答题(二)(本大题共3小题,每小题10分,共30分)19. 如图,在▱ABCD 中,AC ,BD 交于点O ,点E ,F 在AC 上,AE =CF .(1)求证:四边形EBFD 是平行四边形;(2)若∠BAC =∠DAC ,求证:四边形EBFD 是菱形.【答案】证明:(1)在▱ABCD中,OA=OC,OB=OD,∵AE=CF.∴OE=OF,∴四边形EBFD是平行四边形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠BAC=∠DCA,∵∠BAC=∠DAC,∴∠DCA=∠DAC,∴DA=DC,∴▱ABCD是菱形∴DB⊥AC,即DB⊥EF,又∵四边形EBFD是平行四边形∴四边形EBFD是菱形20.为落实“双减”政策,优化作业管理,某中学从全体学生中随机抽取部分学生,调查他们每天完成书面作业的时间t(单位:分钟).按照完成时间分成五组:A组“t≤45”,B组“45<t≤60”,C组“60<t≤75”,D组“75<t≤90”,E组“t>90”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次调查的样本容量是 ,请补全条形统计图;(2)在扇形统计图中,A组的圆心角是 度,本次调查数据的中位数落在 组内;(3)若该校有1900名学生,请你估计该校每天完成书面作业不超过90分钟的学生人数.【答案】解:(1)这次调查的样本容量是:25÷25%=100,D组的人数为:100﹣10﹣20﹣25﹣5=40,补全的条形统计图如下图所示:故答案为:100;(2)在扇形统计图中,B 组的圆心角是:360°×10100=36°,∵本次调查了100个数据,第50个数据和51个数据都在C 组,∴中位数落在C 组, 故答案为:36,C ;(3)1900×=1805(人),答:估计该校每天完成书面作业不超过90分钟的学生有1805人.21. 某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE 与支架CB 所在直线相交于点O ,且;支架BC 与水平线AD 垂直.,,,另一支架AB 与水平线夹角,求OB 的长度(结果精确到1cm ;温馨提示:,,)【答案】.【详解】设,∴,∵ ,∴,∴,∵,OB OE =40cm AC =30ADE ∠=︒190cm DE =65BAD ∠=︒sin650.91︒≈cos650.42︒≈tan65 2.14︒≈OB 19cm ≈OE OB 2x ==OD DE OE 1902x =+=+ADE 30∠=︒1OC OD 95x 2==+BC OC OB 95x 2x 95x =-=+-=-BC tan BAD AC∠=∴,解得:,∴.8≈19 cm五.解答题(三)(本大题共2小题,每小题12分,共24分)22.【问题情境】:数学活动课上,老师出示了一个问题:如图1,在正方形ABCD 中,E 是BC 的中点,AE ⊥EP ,EP 与正方形的外角∠DCG 的平分线交于P 点.试猜想AE 与EP 的数量关系,并加以证明;【思考尝试】:(1)同学们发现,取AB 的中点F ,连接EF 可以解决这个问题.请在图1中补全图形,解答老师提出的问题.【实践探究】:(2)希望小组受此问题启发,逆向思考这个题目,并提出新的问题:如图2,在正方形ABCD 中,E 为BC边上一动点(点E ,B 不重合),△AEP 是等腰直角三角形,∠AEP =90°,连接CP ,可以求出∠DCP 的大小,请你思考并解答这个问题.【答案】解:(1)AE =EP ,理由如下:取AB 的中点F ,连接EF ,∵F 、E 分别为AB 、BC 的中点,∴AF =BF =BE =CE ,∴∠BFE =45°,∴∠AFE =135°,∵CP 平分∠DCG ,∴∠DCP =45°,∴∠ECP =135°,95x 2.1440-=x=9.4OB 2x 18==∴∠AFE =∠ECP ,∵AE ⊥PE ,∴∠AEP =90°,∴∠AEB +∠PEC =90°,∵∠AEB +∠BAE =90°,∴∠PEC =∠BAE ,∴△AFE ≌△ECP (ASA ),∴AE =EP ;(2)在AB 上取AF =EC ,连接EF ,由(1)同理可得∠CEP =∠FAE ,∵AF =EC ,AE =EP ,∴△FAE ≌△CEP (SAS ),∴∠ECP =∠AFE ,∵AF =EC ,AB =BC ,∴BF =BE ,∴∠BEF =∠BFE =45°,∴∠AFE =135°,∴∠ECP =135°,∴∠DCP =45°,23.如图1,在平面直角坐标系中,直线与抛物线交于A 、B 两点,点A 在x 轴上,点B 在y 轴上.设抛物线与x 轴的另一个交点为点C.4y x =+212y x bx c =-++(2) 求该抛物线的解析式;(2) 若点M 是抛物线对称轴上的一个动点,当的值最小时,求点M 的坐标;(3) P 是抛物线上一动点(不与点A 、B 重合),如图2,若点P 在直线上方,连接交于点D ,求的最大值;【答案】(1) (2) (3)【详解】(1)解: 直线与坐标轴交于A 、B 两点,当时,,当时,,,,将A 、B 代入抛物线,得 ,解得 ,抛物线的解析式为:.(2)∵抛物线的解析式为:.∴当时,解得,∴,∴抛物线的对称轴为,∵点关于对称,连接交对称轴于点M ,MC MB +AB OP AB PD OD2142y x x =--+()1,3M -124y x =+0x =4y =0y =4x =-(40A ∴-,)()0,4B 212y x bx c =-++()210=4424b c c ⎧-⨯--+⎪⎨⎪=⎩14b c =-⎧⎨=⎩∴2142y x x =--+2142y x x =--+0y =124,2=-=x x ()()4,0,2,0A C -4212x -+==-()()4,0,2,0A C -=1x -AB∴,此时取得最小值,∴当时,,∴;(3)过点P 作交直线于点E ,则,设点 , ,,, 代数式,当时有最大值 ,的最大值为.MB MC MB MA AB +=+=MC MB +=1x -143y =-+=()1,3M -PE OB ∥AB PDE ODB ∽PD PE DO OB∴=21(,4)(40)2P m m m m --+-<<(,4)E m m ∴+221144222PE m m m m m ∴=--+--=--21224m m PD DO --∴= 2122m m --22122m -=-=-⎛⎫⨯- ⎪⎝⎭PD DO ∴()()212221242-⨯--⨯-=。

模拟测评:2022年江门市中考数学真题汇总 卷(Ⅱ)(含答案及解析)

2022年江门市中考数学真题汇总 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、下列方程中,关于x 的一元二次方程的是( ) A .x 2-1=2x B .x 3+2x 2=0 C .210x x += D .x 2-y +1=0 2、下列利用等式的性质,错误的是( ) A .由a b =,得到11a b +=+ B .由ac bc =,得到a b = C .由a b =,得到ac bc =D .由22ab =,得到a b = 3、如图,在矩形ABCD 中,点E 在CD 边上,连接AE ,将ADE 沿AE 翻折,使点D 落在BC 边的点F 处,连接AF ,在AF 上取点O ,以O 为圆心,线段OF 的长为半径作⊙O ,⊙O 与AB ,AE 分别相切于点G ,H ,连接FG ,GH .则下列结论错误的是( ) ·线○封○密○外A .2BAE DAE ∠=∠B .四边形EFGH 是菱形C .3AD CE =D .GH AO ⊥ 4、-6的倒数是( )A .-6B .6C .±6D .16- 5、下列关于整式的说法错误..的是( ) A .单项式xy -的系数是-1B .单项式222mn 的次数是3C .多项式23xy x y +是二次三项式D .单项式32ab -与ba 是同类项 6、下列各组图形中一定是相似形的是( )A .两个等腰梯形B .两个矩形C .两个直角三角形D .两个等边三角形7、下列对一元二次方程x 2-2x -4=0根的情况的判断,正确的是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法判断8、任何一个正整数n 都可以进行这样的分解:n =p ×q (p 、q 是正整数.且p ≤q ),如果p ×q 在n 的所有这种分解中两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并规定:S (n )=p q ,例如18可以分解成1×18,2×9或3×6,则S (18)=36=12,例如35可以分解成1×35,5×7,则S (35)=57,则S (128)的值是( )A .12B .34C .18D .1329、育种小组对某品种小麦发芽情况进行测试,在测试条件相同的情况下,得到如下数据:则a 的值最有可能是( )A .2700B .2780C .2880D .2940 10、下列计算正确的是( ) A .422a a -= B .426a b ab += C .2426a a a += D .422ab ba ab -+=- 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、方程233x k x x =---无解,那么k 的值为________. 2、一名男生推铅球,铅球行进的高度y (单位:米)与水平距离x (单位:米)之间的关系为21251233y x x =-++,则这名男生这次推铅球的成绩是______米. 3、已知x 2﹣4x ﹣1=0,则代数式(2x ﹣3)2﹣(x +y )(x ﹣y )﹣y 2=_____. 4、将0.094932用四舍五入法取近似值精确到百分位,其结果是______. 5、已知x 为不等式组()21211x x x -<⎧⎨-<+⎩的解,则31x x -+-的值为______. 三、解答题(5小题,每小题10分,共计50分) 1、如图,点A 、B 在O 上,点P 为O 外一点. ·线○封○密○外(1)请用直尺和圆规在优弧AmB 上求一点C ,使CP 平分ACB ∠(不写作法,保留作图痕迹);(2)在(1)中,若AC 恰好是O 的直径,设PC 交O 于点D ,过点D 作DE AC ⊥,垂足为E .若4OE =,求弦BC 的长.2、A 市出租车收费标准如下:(1)若甲、乙两地相距6千米,乘出租车从甲地到乙地需要付款多少元?(2)某人从火车站乘出租车到旅馆,下车时计费表显示19.6元,请你帮忙算一算从火车站到旅馆的距离有多远?(3)小明乘飞机来到A 市,小刚从旅馆乘出租车到机场去接小明,到达机场时计费表显示73元,接完小明,立即沿原路返回旅馆(接人时间忽略不计),请帮小刚算一下乘原车返回和换乘另外的出租车,哪种更便宜?3、解方程:(1)()214x x -=;(2)3123123x x -+-=. 4、如图,已知ABC ∆,30B ∠=︒,作图及步骤如下:(1)以点C 为圆心,CA 为半径画弧;(2)以点B 为圆心,BA 为半径画弧,两弧交于点D ;(3)连接AD ,交BC 延长线于点H .(4)过点C 作CM AB ⊥于点M ,CN BD ⊥于点N .请根据以下推理过程,填写依据:BA BD =,CA CD =∴点B 、点C 在AD 的垂直平分线上(________)∴直线BC 是AD 的垂直平分线(________) BA BD =,BH AD ⊥ ABC DBC ∴∠=∠(等腰三角形________、________、________相互重合) 又CM AB ⊥,CN BD ⊥ CM CN ∴=(________) 在Rt ΔBCM 中,30ABC ∠=︒ 12CM BC (________)5、已知过点()4,1B 的抛物线21522y x x c =-+与坐标轴交于点A ,C 如图所示,连结AC ,BC ,AB ,第一象限内有一动点M 在抛物线上运动,过点M 作AM MP ⊥交y 轴于点P ,当点P 在点A 上方,且AMP 与ABC 相似时,点M 的坐标为______.·线○封○密·○外-参考答案-一、单选题1、A【分析】只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断.【详解】解:A 、只含有一个未知数,未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题意;B 、未知数最高次数是3,不是关于x 的一元二次方程,不符合题意;C 、为分式方程,不符合题意;D 、含有两个未知数,不是一元二次方程,不符合题意故选:A .【点睛】本题考查了一元二次方程的定义,一元二次方程只含有一个未知数,未知数的最高次数是2,为整式方程;特别注意二次项系数不为0.2、B【分析】根据等式的性质逐项分析即可.【详解】A.由a b =,两边都加1,得到11a b +=+,正确;B.由ac bc =,当c ≠0时,两边除以c ,得到a b =,故不正确;C.由a b =,两边乘以c ,得到ac bc =,正确;D.由22a b =,两边乘以2,得到a b =,正确; 故选B . 【点睛】 本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式. 3、C 【分析】 由折叠可得∠DAE =∠FAE ,∠D =∠AFE =90°,EF =ED ,再根据切线长定理得到AG =AH ,∠GAF =∠HAF ,进而求出∠GAF =∠HAF =∠DAE =30°,据此对A 作出判断;接下来延长EF 与AB 交于点N ,得到EF 是⊙O 的切线,∆ANE 是等边三角形,证明四边形EFGH 是平行四边形,再结合HE =EF 可对B 作出判断;在Rt ∆EFC 中,∠C =90°,∠FEC =60°,则EF =2CE ,再结合AD对C 作出判断;由AG =AH ,∠GAF =∠HAF ,得出GH ⊥AO ,不难判断D . 【详解】 解:由折叠可得∠DAE =∠FAE ,∠D =∠AFE =90°,EF =ED . ∵AB 和AE 都是⊙O 的切线,点G 、H 分别是切点, ∴AG =AH ,∠GAF =∠HAF , ∴∠GAF =∠HAF =∠DAE =30°, ∴∠BAE =2∠DAE ,故A 正确,不符合题意; 延长EF 与AB 交于点N ,如图: ·线○封○密○外∵OF⊥EF,OF是⊙O的半径,∴EF是⊙O的切线,∴HE=EF,NF=NG,∴△ANE是等边三角形,∴FG//HE,FG=HE,∠AEF=60°,∴四边形EFGH是平行四边形,∠FEC=60°,又∵HE=EF,∴四边形EFGH是菱形,故B正确,不符合题意;∵AG=AH,∠GAF=∠HAF,∴GH⊥AO,故D正确,不符合题意;在Rt△EFC中,∠C=90°,∠FEC=60°,∴∠EFC=30°,∴EF=2CE,∴DE=2CE.∵在Rt△ADE中,∠AED=60°,∴AD,∴AD,故C 错误,符合题意.故选C .【点睛】本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30︒的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键. 4、D 【分析】 根据倒数的定义,即可求解. 【详解】 解:∵-6的倒数是-16. 故选:D . 【点睛】 本题主要考查了倒数,关键是掌握乘积是1的两数互为倒数. 5、C 【分析】根据单项式系数和次数的定义,多项式的定义,同类项的定义逐一判断即可.【详解】解:A 、单项式xy -的系数是-1,说法正确,不符合题意; B 、单项式222mn 的次数是3,说法正确,不符合题意; C 、多项式23xy x y +是三次二项式,说法错误,符合题意; ·线○封○密○外D、单项式32ab与ba是同类项,说法正确,不符合题意;故选C.【点睛】本题主要考查了单项式的次数、系数的定义,多项式的定义,同类项的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数;同类项的定义:如果两个单项式所含的字母相同,相同字母的指数也相同,那么这两个单项式就叫做同类项.6、D【分析】根据相似形的形状相同、大小不同的特点,再结合等腰梯形、矩形,直角三角形、等边三角形的性质与特点逐项排查即可.【详解】解:A、两个等腰梯形的形状不一定相同,则不一定相似,故本选项错误;B、两个矩形的形状不一定相同,则不一定相似,故本选项错误;C、两个直角三角形的形状不一定相同,则不一定相似,故本选项错误;D、两个等边三角形的大小不一定相同,但形状一定相同,则一定相似,故本选项正确.故选D.【点睛】本题主要考查了相似图形的定义,理解相似形的形状相同、大小不同的特点成为解答本题的关键.7、B【分析】根据方程的系数结合根的判别式,可得出Δ=20>0,进而可得出方程x2-2x-4=0有两个不相等的实数根.【详解】解:∵Δ=(-2)2-4×1×(-4)= 20>0,∴方程x2-2x-4=0有两个不相等的实数根.故选:B.【点睛】本题考查了根的判别式,牢记“当Δ>0时,方程有两个不相等的实数根”是解题的关键.8、A【分析】由128=1×128=2×64=4×32=8×16结合最佳分解的定义即可知F(128)=81 162=.【详解】解:∵128=1×128=2×64=4×32=8×16,∴F(128)=81 162=,故选:A.【点睛】本题主要考查有理数的混合运算.理解题意掌握最佳分解的定义是解题的关键.9、C【分析】计算每组小麦的发芽率,根据结果计算.【详解】解:∵96100%=96%100⨯,2877709581923100%96%100%96%100%96%100%96% 30080010002000⨯≈⨯≈⨯≈⨯≈,,,,·线○封○密○外∴300096%⨯=2880,故选:C .【点睛】此题考查了数据的频率估计概率,正确掌握频率公式计算频率是解题的关键.10、D【分析】先确定各项是否为同类项(所含字母相同,相同字母指数也相同的项),如为同类项根据合并同类项法则(只把系数相加减,字母和字母的指数不变)合并同类项即可.【详解】A. 4222a a a -=≠,故A 选项错误;B. 4,2a b ,不是同类项,不能合并,故错误;C. 24266a a a a +=≠,故C 选项错误;D. 422ab ba ab -+=-,故D 选项正确.故选:D .【点睛】本题考查合并同类项,合并同类项时先确定是否为同类项,如是同类项再根据字母和字母的指数不变,系数相加合并同类项.二、填空题1、3【分析】先将分式方程转化为整式方程,根据分式方程无解,可得3x =,进而求得k 的值.【详解】解:233x k x x =---, 2(3)x x k =-+, 26x x k =-+, 6x k =-, 方程无解,3x ∴=, 63k ∴-=, 3k ∴=, 故答案为:3. 【点睛】 本题考查了解分式方程,掌握分式方程的计算是解题的关键. 2、10 【分析】 将0y =代入解析式求x 的值即可. 【详解】解:∵0y = ∴212501233x x =-++ ()()2100x x +-=20100x x +=-=,·线○封○密○外解得:2x =-(舍去),10x =故答案为:10.【点睛】本题考查了二次函数的应用.解题的关键在于正确的解一元二次方程.所求值要满足实际. 3、12【分析】化简代数式,将代数式表示成含有241x x --的形式,代值求解即可.【详解】解:()()()2223x x y x y y --+-- ()222223x x y y =--+- 224129x x x =-+-23129x x =-+()234112x x =--+ 将2410x x --=代入得代数式的值为12故答案为:12.【点睛】本题考查了完全平方公式、平方差公式以及代数式求值.解题的关键在于正确的化简代数式. 4、0.09【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.094932用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为:0.09.【点睛】本题考查了近似数和有效数字,解题的关键是掌握近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法. 5、2 【分析】 解不等式组得到x 的范围,再根据绝对值的性质化简.【详解】解:()21211x x x -<⎧⎪⎨-<+⎪⎩①②, 解不等式①得:1x >,解不等式②得:3x <,∴不等式组的解集为:13x <<, ∴31x x -+- =()()31x x --+- =31x x -++- =2 故答案为:2. 【点睛】 本题考查了解不等式组,绝对值的性质,解题的关键是解不等式组得到x 的范围. ·线○封○密○外三、解答题1、(1)见解析(2)8【分析】(1)根据垂径定理,先作AB 的垂直平分线,交AB 于点M ,作射线PM 交AmB 于点C ,点C 即为所求;(2)过点O 作OF BC ⊥于点F ,过点D 作DE AC ⊥,则OFC ∠=90DEO ∠=︒,证明FCO ≌EOD △,可得4CF OE ==,进而可得BC 的长.(1)如图所示,点C 即为所求,(2)如图,过点O 作OF BC ⊥于点F ,过点D 作DE AC ⊥,则OFC ∠=90DEO ∠=︒AC 是直径, 90ABC ∴∠=︒ AB BC ∴⊥ OF AB ∴∥ 1CF CO BF AO∴== CF BF ∴=OD AB ⊥ ∴∥OD BCDOE FCO ∴∠=∠在FCO 和EOD △中OFC DEO DOE OCF CO DO ∠=∠⎧⎪∠=∠⎨⎪=⎩∴FCO ≌EOD △4CF OE ∴==28BC CF ∴==【点睛】·线○封○密○外本题考查了垂径定理,作垂直平分线,全等三角形的性质与判定,平行线分线段成比例,直径所对的圆周角是直角,掌握垂径定理是解题的关键.2、(1)17.2元(2)7千米(3)换乘另外出租车更便宜【分析】(1)根据图表和甲、乙两地相距6千米,列出算式,再进行计算即可;(2)根据(1)得出的费用,得出火车站到旅馆的距离超过3千米,但不超过8千米,再根据图表列出方程,求出x的值即可;(3)根据(1)得出的费用,得出出租车行驶的路程超过8千米,设出租车行驶的路程为x千米,根据图表中的数量,列出方程,求出x的值,从而得出乘原车返回需要的花费,再与换乘另一辆出租车需要的花费进行比较,即可得出答案.(1)10+2.4×(6-3)=17.2(元),答:乘出租车从甲地到乙地需要付款17.2元;(2)设火车站到旅馆的距离为x千米.10+2.4×5=22,∵10<19.6<22,∴3≤x≤8,10+2.4(x-3)=19.2,∴x=7,符合题意.答:从火车站到旅馆的距离有7千米;(3))设旅馆到机场的距离为x 千米,∵73>22,∴x >8.10+2.4(8-3)+3(x -8)=73,∴x =25.所以乘原车返回的费用为:10+2.4×(8-3)+3×(25×2-8)=148(元);换乘另外车辆的费用为:73×2=146(元)所以换乘另外出租车更便宜.【点睛】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解. 3、 (1)13x = (2)3x =【分析】(1)先去括号,再移项合并同类项,即可求解;(2)先去分母,再去括号,然后移项合并同类项,即可求解.(1)解:去括号得:224x x -=移项合并同类项得:62x -=- 解得:13x =; (2) 解:去分母得:()()3316223x x --=+·线○封○密○外去括号得:93646x x --=+ ,移项合并同类项得:515x =解得:3x =.【点睛】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤是解题的关键.4、到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一直线;顶角的平分线;底边上的高;底边上的中线;角平分线上的点到角的两边的距离相等;在直角三角形中,30所对的直角边等于斜边的一半【分析】据题中的几何语言画出对应的几何图形,然后利用线段的垂直平分线的性质、角平分线的性质和含30度的直角三角形三边的关系填写依据.【详解】解:如图,BA BD =,CA CD =∴点B 、点C 在AD 的垂直平分线上(到线段两端点的距离相等的点在这条线段的垂直平分线上), ∴直线BC 是AD 的垂直平分线(两点确定一直线),BA BD =,BH AD ⊥,ABC DBC ∴∠=∠(等腰三角形顶角的平分线、底边上的高、底边上的中线相互重合),又CM AB ⊥,CN BD ⊥CM CN ∴=(角平分线上的点到角的两边的距离相等), 在Rt ΔBCM 中,30ABC ∠=︒ 12CM BC (在直角三角形中,30所对的直角边等于斜边的一半).故答案为:到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一直线;顶角的平分线、底边上的高、底边上的中线;角平分线上的点到角的两边的距离相等;在直角三角形中,30所对的直角边等于斜边的一半. 【点睛】 本题考查了作图-基本作图:熟练掌握5种基本作图是解决此类问题的关键.也考查了角平分线的性质和线段的垂直平分线的性质.5、()11,36或1744,39⎛⎫ ⎪⎝⎭ 【分析】运用待定系数法求出函数关系式,求出点A ,C 的坐标,得出AC=BCAB=ABC 为直角三角形,且13BC AC =, 过点M 作MG ⊥y 轴于G ,则∠MGA =90°,设点M 的横坐标为x ,则MG =x ,求出含x 的代数式的点M 的坐标,再代入二次函数解析式即可. 【详解】 把点B (4,1)代入21522y x x c =-+,得: 21511=422c ⨯-⨯+ ∴3c = 抛物线的解析式为215322y x x =-+ 令x =0,得y =3, ·线○封○密○外∴A (0,3)令y =0,则2153=022x x -+ 解得,122,3x x ==∴C (3,0)∴AC =∵B (4,1)∴BC AB =∴222AC BC AB +=∴ABC 为直角三角形,且13BC AC =, 过点M 作MG ⊥y 轴于G ,则∠MGA =90°,设点M 的横坐标为x ,由M 在y 轴右侧可得x >0,则MG =x ,∵PM⊥MA,∠ACB=90°,∴∠AMP=∠ACB=90°,①如图,当∠MAP=∠CBA时,则△MAP∽△CBA,∴13 AM BC MP AC==同理可得,AGM AMP∆∆∴13 AG AM MG MP==∴AG=13MG=13x,则M(x,3+13x),把M(x,3+13x)代入y=12x2-52x+3,得1 2x2-52x+3=3+13x,解得,x1=0(舍去),x2=173,∴3+13x=3+179=449∴M(173,449);②如图,当∠MAP=∠CAB时,则△MAP∽△CAB,∴13 MP CB AM CA==同理可得,AG=3MG=3x,则P(x,3+3x),把P(x,3+3x)代入y=12x2-52x+3,得12x2-52x+3=3+3x,·线○封○密·○外解得,x1=0(舍去),x2=11,∴M(11,36),综上,点M的坐标为(11,36)或(173,449)【点睛】本题考查了待定系数法求解析式,相似三角形的判定与性质等等知识,解题关键是注意分类讨论思想在解题过程中的运用.。

2022年江门市重点中学中考数学最后一模试卷含解析

2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(共10小题,每小题3分,共30分)1.如图,在▱ABCD中,AB=1,AC=42,对角线AC与BD相交于点O,点E是BC的中点,连接AE交BD于点F.若AC⊥AB,则FD的长为()A.2 B.3 C.4 D.62.如图图形中是中心对称图形的是()A.B.C.D.3.某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是()班级平均数中位数众数方差八(1)班94 93 94 12八(2)班95 95.5 93 8.4A.八(2)班的总分高于八(1)班B.八(2)班的成绩比八(1)班稳定C.两个班的最高分在八(2)班D.八(2)班的成绩集中在中上游4.已知一组数据2、x、8、1、1、2的众数是2,那么这组数据的中位数是()A .3.1;B .4;C .2;D .6.1.5.如图,△ABC 中,AB >AC ,∠CAD 为△ABC 的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )A .∠DAE =∠B B .∠EAC =∠C C .AE ∥BCD .∠DAE =∠EAC6.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x ,则所列方程正确的为( ) A .1000(1+x )2=1000+440 B .1000(1+x )2=440 C .440(1+x )2=1000D .1000(1+2x )=1000+4407.下列计算结果正确的是( )A .329()a a -=B .236a a a ⋅=C .3332a a a +=D .0(cos 600.5)1︒-=8.如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2,设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是A .B .C .D .9.已知x 2-2x-3=0,则2x 2-4x 的值为( ) A .-6B .6C .-2或6D .-2或3010.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=cx(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<2二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,AB,AC分别为⊙O的内接正六边形,内接正方形的一边,BC是圆内接n边形的一边,则n等于_____.12.如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15,CD=9,EF=6,∠AFE=50°,则∠ADC 的度数为_____.13.若a m=2,a n=3,则a m + 2n =______.14.我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺)如果设水深为x尺,则芦苇长用含x的代数式可表示为尺,根据题意列方程为.15.已知一组数据x1,x2,x3,x4,x5的平均数是3,则另一组新数据x1+1,x2+2,x3+3,x4+4,x5+5的平均数是_____.16.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.三、解答题(共8题,共72分)17.(8分)已知:AB 为⊙O 上一点,如图,12AB =,43BC =,BH 与⊙O 相切于点B ,过点C 作BH 的平行线交AB 于点E.(1)求CE 的长;(2)延长CE 到F ,使2EF =,连结BF 并延长BF 交⊙O 于点G ,求BG 的长;(3)在(2)的条件下,连结GC 并延长GC 交BH 于点D ,求证:BD BG = 18.(8分)在△ABC 中,已知AB=AC ,∠BAC=90°,E 为边AC 上一点,连接BE . (1)如图1,若∠ABE=15°,O 为BE 中点,连接AO ,且AO=1,求BC 的长;(2)如图2,D 为AB 上一点,且满足AE=AD ,过点A 作AF ⊥BE 交BC 于点F ,过点F 作FG ⊥CD 交BE 的延长线于点G ,交AC 于点M ,求证:BG=AF+FG .19.(8分)如图,四边形ABCD 的顶点在⊙O 上,BD 是⊙O 的直径,延长CD 、BA 交于点E ,连接AC 、BD 交于点F ,作AH ⊥CE ,垂足为点H ,已知∠ADE =∠ACB . (1)求证:AH 是⊙O 的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若23DFFO,求证:CD=DH.20.(8分)为纪念红军长征胜利81周年,我市某中学团委拟组织学生开展唱红歌比赛活动,为此,该校随即抽取部分学生就“你是否喜欢红歌”进行问卷调查,并将调查结果统计后绘制成如下统计表和扇形统计图.态度非常喜欢喜欢一般不知道频数90 b 30 10频率 a 0.35 0.20请你根据统计图、表,提供的信息解答下列问题:(1)该校这次随即抽取了名学生参加问卷调查:(2)确定统计表中a、b的值:a= ,b= ;(3)该校共有2000名学生,估计全校态度为“非常喜欢”的学生人数.21.(8分)已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣x+b与抛物线的另一个交点为D.(1)若点D的横坐标为2,求抛物线的函数解析式;(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?22.(10分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:分别写出y A、y B与x之间的关系式;若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.23.(12分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示.(1)求线段AB的表达式,并写出自变量x的取值范围;(2)求乙的步行速度;(3)求乙比甲早几分钟到达终点?24.某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为_____件,图中d 值为_____.(2)求出乙车间在引入新设备后加工零件的数量y 与x 之间的函数关系式. (3)甲车间加工多长时间时,两车间加工零件总数为1000件?参考答案一、选择题(共10小题,每小题3分,共30分) 1、C 【解析】利用平行四边形的性质得出△ADF ∽△EBF ,得出BE AD =BFDF,再根据勾股定理求出BO 的长,进而得出答案. 【详解】解:∵在□ABCD 中,对角线AC 、BD 相交于O , ∴BO=DO,AO=OC,AD ∥BC , ∴△ADF ∽△EBF , ∴BE AD =BFDF, ∵2, ∴2, ∵AB=1,AC ⊥AB , ∴22AB AO +()22122+,∴BD=6,∵E是BC的中点,∴BEAD=BFDF=12,∴BF=2,FD=4.故选C.【点睛】本题考查了勾股定理与相似三角形的判定与性质,解题的关键是熟练的掌握勾股定理与相似三角形的判定与性质.2、B【解析】把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形. 【详解】解:根据中心对称图形的定义可知只有B选项是中心对称图形,故选择B.【点睛】本题考察了中心对称图形的含义.3、C【解析】直接利用表格中数据,结合方差的定义以及算术平均数、中位数、众数得出答案.【详解】A选项:八(2)班的平均分高于八(1)班且人数相同,所以八(2)班的总分高于八(1)班,正确;B选项:八(2)班的方差比八(1)班小,所以八(2)班的成绩比八(1)班稳定,正确;C选项:两个班的最高分无法判断出现在哪个班,错误;D选项:八(2)班的中位数高于八(1)班,所以八(2)班的成绩集中在中上游,正确;故选C.【点睛】考查了方差的定义以及算术平均数、中位数、众数,利用表格获取正确的信息是解题关键.4、A【解析】∵数据组2、x、8、1、1、2的众数是2,∴x=2,∴这组数据按从小到大排列为:2、2、2、1、1、8,∴这组数据的中位数是:(2+1)÷2=3.1.故选A.5、D【解析】解:根据图中尺规作图的痕迹,可得∠DAE=∠B ,故A 选项正确, ∴AE ∥BC ,故C 选项正确, ∴∠EAC=∠C ,故B 选项正确,∵AB >AC ,∴∠C >∠B ,∴∠CAE >∠DAE ,故D 选项错误, 故选D . 【点睛】本题考查作图—复杂作图;平行线的判定与性质;三角形的外角性质. 6、A 【解析】根据题意可以列出相应的一元二次方程,从而可以解答本题. 【详解】 解:由题意可得, 1000(1+x )2=1000+440, 故选:A . 【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程. 7、C 【解析】利用幂的乘方、同底数幂的乘法、合并同类项及零指数幂的定义分别计算后即可确定正确的选项. 【详解】A 、原式6a =,故错误;B 、原式5a =,故错误;C 、利用合并同类项的知识可知该选项正确;D 、cos600.5︒=,cos600.50︒-=,所以原式无意义,错误, 故选C . 【点睛】本题考查了幂的运算性质及特殊角的三角函数值的知识,解题的关键是能够利用有关法则进行正确的运算,难度不大. 8、A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年广东省中考数学一模试卷

一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选选项涂黑. 1.下面有理数中,最大的数是( ) A. B.0 C.﹣1 D.﹣3 2.光的速度约为300 000 000米/秒,用科学记数法表示为( ) A.3×106 B.3×107 C.3×108 D.3×109 3.计算(﹣3x)2的结果正确的是( ) A.﹣3x2 B.6x2 C.﹣9x2 D.9x2 4.下列图形中,不是中心对称图形的是( ) A.等边三角形 B.平行四边形 C.菱形 D.矩形 5.若∠α+∠θ=90°,∠β=∠θ,则∠α与∠β的关系是( ) A.∠α与∠β互余 B.∠α与∠β互补 C.∠α与∠β相等 D.∠α大于∠β 6.一个不透明的布袋里装有9个只有颜色不同球,其中4个红球,5个白球,从布袋中随机摸出1个球,摸出的球是红球的概率为( ) A. B. C. D. 7.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( ) A.5 B.6 C.12 D.16 8.方程x2﹣2x+3=0的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.有一个实数根 9.点A的坐标为(2,3),点B的坐标为(﹣2,3),则点A与点B( ) A.关于x轴对称 B.关于y轴对称 C.关于原点对称 D.不是对称点 10.如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动

的路程为x,△ABP的面积为y,如果y关于x的函数图象如图所示,则△ABC的面积是( ) A.10 B.16 C.18 D.20 二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上. 11.函数中自变量x的取值范围是 . 12.分解因式:ax2﹣6ax+9a= . 13.正八边形的一个外角等于 (度). 14.不等式组的解集是 . 15.如图,AB是⊙O的直径,弦CD∥AB,若∠ABD=60°,则∠ADC的度数是 . 16.如图,半圆的直径AB=10,P为AB上一点,点C,D为半圆上的三等分点,

则图中阴影部分的面积等于 .

三、解答题(一)(本大题3小题,每小题6分,共18分) 17.计算:﹣2sin45°﹣(1+)0+2﹣1.

18.先化简,再求值:( +)•(x2﹣1),其中x=. 19.如图,△ABC中,AB=AC. (1)以点B为顶点,作∠CBD=∠ABC(用尺规作图,保留作图痕迹,不要求写作法); (2)在(1)的条件下,证明:AC∥BD. 四、解答题(二)(本大题3小题,每小题7分,共21分) 20.新学期开学初,王刚同学对部分同学暑假在家做家务的时间进行了抽样调查(时间取整数小时),

所得数据统计如下表: 时间分组 0.5~20.5 20.5~40.5 40.5~60.5 60.5~80.5 80.5~100.5 频 数 20 25 30 15 10 (1)王刚同学抽取样本的容量是多少? (2)请你根据表中数据补全图中的频数分布直方图; (3)若该学校有学生1260人,那么大约有多少学生在暑假做家务的时间在40.5~100.5小时之间?

21.某公园的门票价格规定如下表: 购票人数 50人以下 51~100人 100人以上 票价 13元/人 11元/人 9元/人 某学校七年级1班和2班两个班共104人去游园,其中1班不足50人,2班超过50人. (1)若以班为单位分别购票,一共应付1240元,求两班各有多少人? (2)若两班联合购票可少付多少元? 22.如图,在平行四边形ABCD中,BD的垂直平分线EF与AD交于点E,与BC交于点F,与BD交于点O. (1)证明:OE=OF; (2)证明:四边形BEDF是菱形.

五、解答题(三)(本大题3小题,每小题9分,共27分) 23.如图,点A,B在反比例函数y=的图象上,点A的坐标为(,3),点C在x轴上,且使

△AOC是等边三角形,BC∥OA. (1)求反比例函数的解析式和OC的长; (2)求点B的坐标; (3)求直线BC的函数解析式. 24.如图,在正方形ABCD中,点E是AD上的点,点F是BC的延长线一点,CF=DE,连结BE和EF,EF与CD交于点G,且∠FBE=∠FEB. (1)过点F作FH⊥BE于点H,证明:△ABE∽△HFB; (2)证明:BE2=2AE•BF; (3)若DG=1,求AE值. 25.如图,在直角坐标系中,圆A与x轴交于点B、C,与y轴相切于点D,抛物线y=x+4经过B、C、D三点. (1)求圆心A的坐标; (2)证明:直线y=﹣与圆A相切于点B; (3)在x轴下方的抛物线上,是否存在一点F,使△CDF的面积最大,若存在,求出点F的坐标. 2016年中考数学一模试卷

参考答案与试题解析

一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选选项涂黑. 1.下面有理数中,最大的数是( ) A. B.0 C.﹣1 D.﹣3 【考点】有理数大小比较. 【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可. 【解答】解:根据有理数比较大小的方法,可得 ﹣3<﹣1<﹣<0, ∴各个有理数中,最大的数是0. 故选:B. 【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.

2.光的速度约为300 000 000米/秒,用科学记数法表示为( ) A.3×106 B.3×107 C.3×108 D.3×109 【考点】科学记数法—表示较大的数. 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:300 000 000=3×108, 故选:C. 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 3.计算(﹣3x)2的结果正确的是( ) A.﹣3x2 B.6x2 C.﹣9x2 D.9x2 【考点】幂的乘方与积的乘方. 【专题】计算题. 【分析】根据(ab)m=am•bm易得(﹣3x)2=9x2. 【解答】解:原式=9x2. 故选D. 【点评】本题考查了幂的乘方与积的乘方:(ab)m=am•bm(m为正整数).

4.下列图形中,不是中心对称图形的是( ) A.等边三角形 B.平行四边形 C.菱形 D.矩形 【考点】中心对称图形. 【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析. 【解答】解:A、等边三角形不是中心对称图形,故此选项正确; B、平行四边形是中心对称图形,故此选项错误; C、菱形是中心对称图形,故此选项错误; D、矩形是中心对称图形,故此选项错误; 故选:A. 【点评】此题主要考查了中心对称图形的定义,关键是掌握中心对称图形要寻找对称中心,旋转180度后两部分重合.

5.若∠α+∠θ=90°,∠β=∠θ,则∠α与∠β的关系是( ) A.∠α与∠β互余 B.∠α与∠β互补 C.∠α与∠β相等 D.∠α大于∠β 【考点】余角和补角. 【分析】根据余角的定义解答即可. 【解答】解:∵∠α+∠θ=90°,∠β=∠θ, ∴∠α+∠β=90°,

∴∠α与∠β互余,

故选A. 【点评】主要考查了余角和补角的概念以及运用.互为余角的两角的和为90°,互为补角的两角之和为180°.解此题的关键是能准确的从题意中找出这两个角之间的数量关系,从而判断出两角之间的关系.

6.一个不透明的布袋里装有9个只有颜色不同球,其中4个红球,5个白球,从布袋中随机摸出1个球,摸出的球是红球的概率为( ) A. B. C. D. 【考点】概率公式. 【分析】由一个不透明的布袋里装有9个只有颜色不同球,其中4个红球,5个白球,直接利用概率公式求解即可求得答案. 【解答】解:∵一个不透明的布袋里装有9个只有颜色不同球,其中4个红球,5个白球, ∴从布袋中随机摸出1个球,摸出的球是红球的概率为:. 故选B. 【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.

7.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( ) A.5 B.6 C.12 D.16 【考点】三角形三边关系. 【分析】设第三边的长为x,再由三角形的三边关系即可得出结论. 【解答】解:设第三边的长为x, ∵三角形两边的长分别是4和10, ∴10﹣4<x<10+4,即6<x<14. 故选C. 【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.

8.方程x2﹣2x+3=0的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.有一个实数根

相关文档
最新文档