一元一次方程(2) 2
3.4 实际问题与一元一次方程(2)(含答案)

3.4 实际问题与一元一次方程(2)◆课堂测控知识点电费水费问题1.为了加强公民的节水意识,合理利用水资源,•某市采用价格调控手段达到节水的目的,该市自来水收费价格见价目表.注:水费按月结算.若某户居民1月份用水8m3,则应收水费:2×6+4×(8-6)=20元.(1)若该户居民2月份用水12.5m3,则应收水费_______元;(2)若该户居民3,4月份共用水15m3(4月份用水量超过3月份),共交水费44元,•则该户居民3,4月份各用水多少立方米?2.芜湖供电公司分时电价执行时段分为平,谷两个时段,•平段为:8:00~22:00,14小时,谷段为22:00~次日8:00,10小时.•平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮0.25元,小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.73元.(1)问小明家该月支付的平段、谷段电价每千瓦时各为多少元?(2)如不使用分时电价结算,5月份小明家将多支出电费多少元?3.(经典题)小刚为书房买灯,现有两种灯可供选购,其中一种是9瓦(即0.009•千瓦)的节能灯,售价为49元/盏;另一种是40瓦(即0.04千瓦)的白炽灯,售价为18元/盏.假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,•已知小刚家所在地的电价是每千瓦时0.5元.(1)设照明时间是x小时,请用含x的代数式分别表示一盏节能灯的费用和用一盏白炽灯的费用(注:费用=灯的售价+电费);(2)小刚想在这两种灯中选购一盏:①当照明时间是多少时,使用两种灯的费用一样多?②试用特殊值推断:照明时间在什么范围内,选用白炽灯费用低?照明时间在什么范围内,选用节能灯费用低?(3)小刚想在这两种灯中选购两盏:假定照明时间是3000小时,•使用寿命都是2800小时,请你帮他设计费用最低的选灯方案,并说明理由.答案:课堂测控1.解:(1)48 (2)设三月份用水xm3,4月份用水为(15-x)m3,分类讨论:(i)x≤6时,15-x>9.①x≤6时,10≥15-x>9,2x+4(15-x-6)+2×6=44x=2.∴15-x=13(舍去)②x≤6,15-x>10.2x+12+16+8(15-x-10)=44∴x=4;15-x=11.(ii)6<x<7.5,7.5<15-x<9.故都在6~10m3之内,水费为15×4=60>44(不可能).∴三月份水用了4m3,4月份用水11m3.[解后反思]本题要对x分类讨论非常关键.课后测控2.解:(1)设原电价x元/千瓦·时,则得40(x+0.03)+60(x-0.25)=42.73解得x=0.5653元/千瓦.时.平段电价为0.5953元/千瓦.时;谷段电价为0.3153元/千瓦.时.(2)100×0.5653=56.53元,56.53-42.73=13.8(元),不使用分时电价小明家将多支出13.8元.[解题思路]运用平,谷两个电价分别求和法列方程.拓展测控3.(1)用一盏节能灯的费用是(49+0.0045x)元,用一盏白炽灯的费用是(18+•0.02x)元.(2)①由题意,得49+0.0045x=18+0.02x,解得x=2000.所以当照明时间是2000小时时,两种灯的费用一样多;②取特殊值x=1500小时,则用一盏节能灯的费用是49+0.0045×1500=55.75(元).用一盏白炽灯的费用是18+0.02×1500=48(元).所以当照明时间小于2000小时时,选用白炽灯费用低;取特殊值x=2500小时,•则用一盏节能灯的费用是49+0.0045×2500=60.25(元),用一盏白炽灯的费用是18+0.02×2500=68(元),所以当照明时间超过2000小时时,选用节能灯费用低.(3)分下列三种情况讨论:①如果选用两盏节能灯,则费用是98+0.0045×3000=111.5(元);②如果选用两盏白炽灯,则费用是36+0.02×3000=96(元);③如果选用一盏节能灯和一盏白炽灯,由(2)可知,当照明时间大于2000小时时,用节能灯比白炽灯费用低,所以节能灯用足2800小时,费用最低,费用是67+0.0045×2800+0.02×200=83.6(元).综上所述,应各选用一盏灯,且节能灯使用2800小时,•一盏白炽灯,•白炽灯使用200小时时,费用最低.[解题总结]计算上易出现错误,(3)问要分3种情况讨论.。
第13讲 实际问题与一元一次方程(2) (原卷版)

第13讲实际问题与一元一次方程〔2〕一、知识梳理工程问题:工作量=工效·工时工时工作量工效=工效工作量工时=. 【例1】某制造工厂方案假设干天完成一批玩具的订货任务,如果每天生产玩具20个,那么就比订货任务少生成100个;如果每天生产玩具23个,那么就可超过订货任务20个,求原方案几天完成任务?【变式训练1】.现有120台大小两种型号的挖掘机同时工作,大型挖掘机每小时可挖掘土方360立方米,小型挖掘机每小时可挖掘土方200立方米,20小时共挖掘土方704000立方米,求大小型号的挖掘机各多少台?【例2】.整理一批图书,由一个人做需要120h 完成,先方案由一局部人先做12h ,然后再增加5人与他们一起做8个小时,完成这项工作.假设这些人的工作效率相同,具体应该先安排多少人工作?【变式训练2】.一项工程,甲队单独施工需要15天完成,乙队单独施工需要9天完成.现在由甲队先工作3天,剩下的由甲、乙两队合作,还需要几天才能完成任务?【例3】.某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在18天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?【变式训练3】.新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品,某口罩厂有40名工人,每人每天可以生产1000个口罩面或1200根耳绳.一个口罩面需要配两根耳绳,为使每天生产的口罩面与耳绳刚好配套,应安排多少名工人生产口罩面?二、课堂训练1.某车间生产一种零件,该零件由甲乙两种配件组成,现有7名工人,每人每天可制作甲配件900个或者乙配件1200个.应怎样安排人力,才能使每天制作的甲乙配件的个数相等?2.一项工程,甲队单独完成需要40天,乙队单独完成需要50天,现甲队单独做4天后两队合作. 〔1〕求甲、乙两队合作多少天才能完成该工程.〔2〕在〔1〕的条件下,甲队每天的施工费为3000元,乙队每天的施工费为3500元,求完成此项工程需付给甲乙两队共多少元.3.“机器人〞的研发和运用,有效地节省了劳动力.某制造“机器人〞的车间有28名工人,每人每天可以生产“机器人〞的机壳500个或机脚800个.1个机壳需要配4个机脚,为使每天生产的机壳和机脚刚好配套.应安排生产机壳和机脚的工人各多少名?三、课后稳固1.中国宝武马鞍山钢铁集团第二炼铁厂接到一批原料加工任务425吨,现打算调用甲、乙两条生产线完成.甲生产线平均每天比乙生产线多加工5吨.假设甲生产线独立加工20天后,乙生产线参加,两条生产线又联合加工5天,刚好全部加工完毕.甲生产线加工一吨需用电40度,乙生产线加工一吨需用电25度.求完成这批加工任务需用电多少度?2.为打造运河风光带,现有一段河道治理任务由A、B两个工程队完成.A工程队单独治理该河道需16天完成,B 工程队单独治理该河道需24天完成,现在A工程队单独做6天后,B工程队参加合作完成剩下的工程,问B工程队工作了多少天?3.某车间有84名工人,每人每天可以生产16个大齿轮或10个小齿轮,1个大齿轮和2个小齿轮配成一套,为使每天生产的大齿轮和小齿轮刚好配套,应安排生产大齿轮和小齿轮的工人各多少名?一共可以配成多少套?。
一元一次方程的解法(2)

的数字小3,十位上的数字与个位上的数字 之和等于这个两位数的 1 ,请问这个两位数
是 36
4
大 家 一 起 来
1.当a=
3 时,关于x的方程
X+2 4
2X-a 6 =1的解是0.
2. 方程 4{3[2(x+1)-8]-20}-7=1的解是
20 X= 3
3.已知x=-2是方程
X-k + 3k+2 -x= X+k
9.”鸡兔同笼”问题
“今有鸡兔同笼,上有三十五头,下有九十四足, 问鸡兔各几何?”
鸡有23只,兔有12只.
谢谢
3.甲比乙大15岁,5年前甲的年龄是乙年龄的两
倍,则乙现在的年龄是( B )岁.
(A) 30 (B)20 (C)15 (D)10
(X+15)-5=2(X-5)
1.已知x=4是关于x的方程 x +m=mx-m的解, 2
则m= 1
2. 化简2(x-1)-3(2x-5)的结果是 -4X+13
3.张师傅计划用20小时生产一批零件,因每
(C) 由 -2(x-4)=-2变形为x-4=1
(D) 由 - x+1 2
=
1 2
变形为 -x+1=1
2.已知-x-6与
1 7
互为倒数,则x=
-13
3.把方程3- x+1
X-1 =
的分母化为整数
0.4 0.25
的结果为 3- 5X+5=4X-4 2
1.合并6x-8x+
1 3
x 的结果为
-
5 3
X
2.若三个连续偶数的和是24 ,则他们的积是 480
2024年人教版七年级数学上册《实际问题与一元一次方程(2)配套及调配问题》课堂重难点精练

2.在甲处劳动的有29人,在乙处劳动的有19人.现在从乙处调一部分人 到甲处去支援,使在甲处的人数为在乙处的人数的2倍,应从乙处调 多少人到甲处去? 解:设应调往甲处x人. 根据题意,得29+x=(19-x)×2. 解得x=3. 答:调3个人到甲处去.
3.某家具厂有60名工人,加工某种有一个桌面和四条桌腿的桌子,工 人每天每人可以加工3个桌面或6个桌腿.分配多少工人加工桌面,多少 工人加工桌腿,才能使每天生产的桌面和桌腿配套? 解:设分配x名工人加工桌面,则加工桌腿的工人有(60-x)名.根据 题意,得 4×3x=6×(60-x), 解得:x=20.60-20=40. 答:分配20名工人加工桌面,40名工人加工桌腿.
人教版初中七年级数学上册课堂重难点精练
实际问题与一元一次方程 (2)配套及调配问题
1.某车间有33名工人,每人每天可以生产1 200个螺钉或1 800个螺母, 1个螺钉配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生 产螺钉和螺母的工人各多少名?设有x名工人生产螺钉,则可列方程 为( A ) A.2×1 200x=1 800(33-x) B.1 200x=2×1 800(33-x) C.2×1 800x=1 200(33-x) D.1 800x=2×1 200(
七年级数学上册3.1一元一次方程及其解法(2)教案沪科版

3.1一元一次方程及其解法七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列四个图形中,通过旋转和平移能够全等图形的是()A.③和④B.②和③C.②和④D.①②④【答案】D【解析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案【详解】、②和④都可通过平移或旋转完全重合.故选D.【点睛】此题主要考查了全等图形,关键是掌握全等图形的概念.2.若点P(m,1-2m)的横坐标与纵坐标互为相反数,则点P一定在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】m+(1-2m)=0,解得m=1,所以点P的坐标为(1,-1).故选D.3.用加减法解方程组87208516x yx y+=-⎧⎨-=⎩①②解题步骤如下:(1)①﹣②,得12y=﹣36,y=﹣3;(2)①×5+②×7,得96x=12,x=18,下列说法正确的是()A.步骤(1),(2)都不对B.步骤(1),(2)都对C.此题不适宜用加减法D.加减法不能用两次【答案】B【解析】先观察方程组中两方程的特点,结合加减法可用排除法求出答案.【详解】解:因为在解方程组时并不限制加减消元法使用的次数,所以D显然错误;由于两方程中x的系数相等,故适合用加减法,故C错误;①﹣②,得12y=﹣36,y=﹣3,步骤(1)正确,故A错误;故选:B.【点睛】本题考查加减消元法解二元一次方程组,用加法消元的条件:未知数的绝对值相等,符号相反.用减法消元的条件:未知数的绝对值相等,符号相同.4.下列长度的木棒可以组成三角形的是()A.1,2,3 B.3,4,5 C.2,3,6 D.2,2,4【答案】B【解析】根据三角形任意两边的和大于第三边进行判断.+=,不能组成三角形,不符合题意;【详解】A、123+>,能构成三角形,符合题意;B、345+<,不能组成三角形,不符合题意;C、236+=,不能组成三角形,不符合题意;D、224故选B.【点睛】本题考查三角形的三边关系,一般用两条较短的线段相加,如果大于最长那条线段就能够组成三角形.5.某商品的进价是1000元,售价为1500元,为促销商店决定降价出售,在保证利润率不低于5%的前提下,商店最多可降( )A.400元B.450元C.550元D.600元【答案】B【解析】分析:根据题意列出不等式进行解答即可.详解:设商店最多可降价x元,根据题意可得:--≥⨯,x1500100010005%x≤,解得:450∴该商店最多降价450元.故选B.点睛:读懂题意,知道:“利润=售价-进价-降价的金额,利润=进价×利润率”是解答本题的关键.6.若m3,则估计m值的所在的范围是()A.1<m<2 B.2<m<3 C.3<m<4 D.4<m<5【答案】C【解析】根据被开方数越大算术平方根越大以及不等式的性质,可得答案.【详解】解:∵36<42<49∴67∴3<42﹣3<4即3<m <4故选:C .【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出6<42<7是解题关键. 7.据5月23日“人民日报”微信公众号文章介绍,中国兵器工业集团豫西集团中南钻石公司推出大颗粒“首饰用钻石”,打破了国外垄断,使我国在钻石饰品主流领域领跑全球,钻石、珠宝等宝石的质量单位是克拉(ct ),1克拉为100分,已知1克拉0.2=克,则“1分”用科学计数法表示正确的是( )A .20.210-⨯克B .2210-⨯克C .3210-⨯ 克D .4210-⨯克【答案】C 【解析】利用科学计数法即可解答.【详解】解:已知1克拉为100分,已知1克拉=0.2克,则一分=0.01克拉=0.002克= 2×10-3克, 故选C.【点睛】本题考查科学计数法,掌握计算方法是解题关键.8.下列说法正确的是( )A .等腰三角形的高、中线、角平分线互相重合B .等腰三角形的两个底角相等C .顶角相等的两个等腰三角形全等D .等腰三角形一边不可以是另一边的2倍【答案】B【解析】根据等腰三角形的性质和判定以及全等三角形的判定方法即可一一判断.【详解】解:A 、等腰三角形的底边上的高、底边上的中线、顶角的平分线互相重合;故本选项错误; B 、等腰三角形的两个底角相等,故本选项正确;C 、腰不一定相等,所以不一定是全等三角形,故本选项错误;D、腰可以是底的两倍,故本选项错误。
一元一次方程应用题练习(二)附答案

一元一次方程应用题共同点:1、方程只含有一个未知数;2、未知数的次数是1;3、等式两边都是整式.只含有一个未知数,未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程一、工程问题1某管道由甲乙两个工程队单独施工分别要30天,20天铺完。
1.如果两队从两端同时施工,需要多少天铺完?2.已知甲队单独施工每天200元,乙队单独施工每天280元,那么怎样施工才能满足少花钱多办事的目的。
2一个水池安有甲乙丙三个水管,甲单独开12h注满水池,乙单独开8h注满,丙单独开24h可排掉满池的水,如果三管同开,多少小时后刚好把水池注满水?3某工人若每小时生产38个零件,在规定时间内还有15个不能完成;若每小时生产42个,则可超额5个,问规定时间是多少?共生产多少个零件?4某工厂今年比去年增产60%,达到生产320万件产品的目标,那么该工厂去年的年产量是多少?5某工程,甲单独完成续20天,乙单独完成续12天甲乙合干6天后,再由乙继续完成,乙再做几天可以完成全部工程?二.路程问题6甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度是4米/秒,乙跑几圈后,甲可超过乙一圈?7小王在400米的环形跑道上跑了一圈,从起点出发,最初跑了45秒,后来加速0.5米/秒,再花了20秒跑到终点,问小王最初跑的速度是多少?8小张骑车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进,已知两人在上午8点同时出发,到上午10点两人还相距36千米,到中午12点两人又相距36千米,求A、B两地间的路程。
9甲乙两站相距300km,一列慢车从甲站开往乙站,每小时行40km,一列快车从乙站开往甲站,每小时行80km,已知慢车先行1.5h,快车再开出,问快车开出多少小时后与慢车相遇?10甲乙两人在400米环形跑道上练习长跑,两人速度分别是200米/分和160米/分.(1)若两人从同一地点同时反向跑,多少分钟后两人第3次相遇?(2)若两人从同一地点同时同向跑,多少分钟后两人第2次相遇?11小张开车去火车站,如果速度为30千米/时,则早15分钟到达,如果18千米/时,则迟到5分,现在打算提前5分钟到达,那么他开车的速度是多少?12A、B两地相距49千米,某人步行从A地出发,分三段以不同速度走完全程,共用10小时。
第3章一元一次方程练习题(二)_2
第3章列一元一次方程解应用题1、全班同学去划船,如果减少一条船,每条船正好坐9位同学;如果增加一条船,每条船上正好坐6位同学。
问这个班有多少位同学?2.某班在绿化校园的活动中共植树130棵,有5位学生每人种了2棵,其余学生每人种了3棵。
这个班共有多少学生?3.植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,两校各植树多少棵?4. 毕业在即,九年级某班为纪念师生情谊,班委决定花800元班会费买两种不同单价的留念册,分别给50位同学和10位任课老师每人一本留做纪念。
其中送给任课老师的留念册的单价比给同学的单价多8元。
请问这两种不同留念册的单价分别为多少元?5、在长为10m,宽为8m的长方形空地上,沿平行于矩形各边的方向分割出三个一样的小长方形花圃,其示意图如图所示.求其中一个小长方形花圃的长和宽.6. 学校组织各班开展“阳光体育”活动,某班体育委员第一次到时商店购买了5个毽子和8根跳绳,花费34元,第二次又去购买了3个毽子和4根跳绳,花费18元,求每个毽子和每个跳绳各多少元?7.某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.求甲、乙两个班组平均每天各掘进多少米?8. 李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?9.一个两位数,十位上的数字是个位上数字的2倍。
如果把这个数的两个数位上的数字交换位置,所得的两位数比原数小36。
求原来的两位数?10.在甲处劳动的有27人,在乙处劳动的有19人.现在另调20人去支援,使在甲处的人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?11.某车间每个工人能生产螺栓12个或螺母18个,每个螺栓要有两个螺母配套,现在有工人28人,怎样分配生产螺栓和螺母的工人数,才能使每天生产量刚好配套?12.某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?13.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一罐头盒,现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?14. 某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲.乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种各买多少件?15. 某小学在6月1日组织师生共110人到趵突泉公园游览.趵突泉公园规定:成人票价每位40元,学生票价每位20元.该校购票共花费2400元.在这次游览活动中,教师和学生各有多少人?16.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?17. 在海南东环高铁上运行的一列“和谐号”动车组有一等车厢和二等车厢共6节,一共设有座位496个.其中每节一等车厢设座位64个,每节二等车厢设座位92个.试求该列车一等车厢和二等车厢各有多少18. 古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A、B两工程队先后接力....完成.A工作队每天整治12米,B工程队每天整治8米,共用时20天.求A、B两工程队分别整治河道多少米.19.七年级学生外出春游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么可以空出一辆汽车,问共有多少辆车?共有多少学生?20.某中学组织七年级学生春游,如果租用45座的客车,则有15个人没有座位,如果租用同样数量的60座的客车,则除多出一辆外,其余恰好坐满。
人教版七年级上数学:3.3 解一元一次方程(二) ——去括号与去分母
锦囊妙计
航行或飞行问题的解题方法 (1)抓住水流速度(风速)、静水航行速度(无 风飞行速度)、顺水 航行速度(顺风飞行速度)、 逆水航行速度(逆风飞行速度)的关系, 确 定船航 行速度(飞机飞行速度), 即: 顺水(顺风)速度=静水(无风)速度+水流速 度(风速); 逆水(逆风)速度=静水(无风)速度-水流速 度(风速). (2)结合题意, 灵活应用路程、时间、速度 之间的关系, 建立方 程求解.
求a的值, 并正确地求 出方程的解.
分析 根据“由此求得的解为x=4”, 可知x=4 是方程2(2x-1)+1=5(x+a)的 解.
解 因为去分母时, 左边的1没有乘10, 所以小明去分母后的方程是2(2x-1)+1= 5(x+a). 把x=4代入, 可求得a=1. 所以原方程为 去分母, 得2(2x-1)+10=5(x-1). 去括号, 得4x-2+10=5x-5. 移项、合并同类项, 得-x=-13. 系数化为1, 得x=13.
例题2 解方程:
解 去分母, 得2(x-2)-(2x-3)=6+3(x-1). 去括号, 得2x-4-2x+3=6+3x-3. 移项, 得2x-3x-2x=6+4-3-3. 合并同类项, 得-3x=4. 系数化为1, 得x=
锦囊妙计
去分母解一元一次方程的方法 (1)在方程的两边都乘各分母的最小公倍数, 不要漏乘不 含分母的项; (2)若分子是多项式, 去分母后要把分子用括 号括起来.
锦囊妙计
行程问题中常用的相等关系 (1)相遇问题: 甲的行程+乙的行程=A, B两地间的路程.
(2)追及问题: 同地不同时出发, 前者行程=追及者的行 程; 同时不同地出发, 前者行程+初始相距的路 程=追及者的行程.
解一元一次方程(二)——去括号与去分母
解一元一次方程〔二〕——去括号与去分母 【课时安排】 2课时 【第一课时】
【教学目标】 1.知识目标:通过列一元一次方程解决实际问题,体验方程模型思想。 2.能力目标:探究并掌握用“去括号〞的方法解较为复杂的一元一次方程。 3.情感、态度与价值观目标:熟练运用“去括号〞的方法解较为复杂的一元一次方程。 【教学重难点】
教学重点:准确、熟练运用“去括号〞的方法解较为复杂的一元一次方程。 教学难点:一元一次方程解决实际问题,体验方程模型思想。 【教学过程】
一、导入新课。 〔一〕预习任务。 1.解含括号的一元一次方程:
〔1〕当方程中含有带括号的式子时,需要把括号去掉,方法与有理数运算中的去括号类似。 〔2〕去括号的法那么是:假设括号前是正因数时,去掉括号和括号前符号,括号内的每一项都不变号;假设括号前是负因数时,去掉括号和括号前符号,括号内的每一项都变号。 〔3〕一般步骤:①去括号②移项③合并同类项④化系数为1。 〔二〕预习自测。 〔1〕化简:[2(3)]aaa
知识点:去括号。 解题过程:解:原式=aaa32=aa=0。
思路点拨:当括号前是“〞号,去括号时,各项都要变号;当括号前是“+〞号,去括号时各项都不改变符号。 答案:0 〔2〕方程5)2()5(2xx去括号正确的选项是〔 〕
A.5252xx B.52102xx C.52102xx D.52102xx
知识点:去括号。
解题过程:解:去括号,得52522xx,整理得:52102xx。故答案选择C。 思路点拨:根据去括号法那么进行变形即可。 答案:C. 〔3〕方程)1(3)1(2xx的解是〔 〕
A.1x B.1x C.0x D.无解
知识点:解一元一次方程。 解题过程:解:去括号,得:3322xx;移项,得:2332xx;合并同类项,得:1x;系数化为1,得:1x。故答案选择B。
人教版七年级数学上册教案:第3章 一元一次方程 实际问题与一元一次方程(2课时)
3.4实际问题与一元一次方程第1课时实际问题与一元一次方程(1)一、基本目标【知识与技能】1.进一步熟悉一元一次方程的解法.2.会用一元一次方程解决配套问题和工程问题.【过程与方法】通过列方程解决实际问题,让学生逐步建立方程思想.【情感态度与价值观】让学生在活动中获得成功的体验,培养学生的探索精神,树立学好数学的信心.二、重难点目标【教学重点】将实际问题抽象为数学问题,列方程解应用题.【教学难点】配套问题和工程问题中的等量关系.环节1自学提纲,生成问题【5 min阅读】阅读教材P100~P101的内容,完成下面练习.【3 min反馈】1.配套问题:若m件A产品与n件B产品配套,其等量关系是“A产品的数量×n=B 产品的数量×m”.2.教材第100页“问题”:设应安排x名工人生产螺母,(22-x)名工人生产螺钉.根据螺母数量与螺钉数量的2倍,列出方程2000x=2×1200(22-x).去括号,得2000x=52 800-2400x.移项、合并同类项,得4400x=52 800.系数化为1,得x=12.则生产螺钉的人数为22-12=10.即应安排10名工人生产螺钉,12名工人生产螺母.3.工程问题:常用的数量关系是:工作总量=工作效率×工作时间,各部分的工作量总和等于1.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?【互动探索】(引发学生思考)可设生产圆形铁片的工人为x人,则生产长方形铁片的工人为(42-x)人,根据“两张圆形铁片与一张长方形铁片可配套成一个密封圆桶”可列出关于x 的方程,求解即可.【解答】设生产圆形铁片的工人为x人,则生产长方形铁片的工人为(42-x)人.根据题意,得120x=2×80(42-x).解得x=24则42-x=18.即生产圆形铁片的工人为24人,生产长方形铁片的工人为18人时,才能使生产的铁片恰好配套.【互动总结】(学生总结,老师点评)本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,难度一般.【例2】某地为了打造风光带,将一段长为360 m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24 m,乙工程队每天整治16 m.求甲、乙两个工程队分别整治了多长的河道.【互动探索】(引发学生思考)设甲队整治了x天,则乙队整治了(20-x)天.由两个工程队一共整治了360 m建立方程,求出其解即可.【解答】设甲工程队整治了x天,则乙工程队整治了(20-x)天.由题意,得24x+16(20-x)=360.解得x=5.则乙队整治了20-5=15(天).所以甲队整治的河道长为24×5=120(m);乙队整治的河道长为16×15=240(m).即甲、乙两个工程队分别整治了120 m,240 m.【互动总结】(学生总结,老师点评)本题是一道工程问题,考查了列一元一次方程解实际问题的运用.活动2巩固练习(学生独学)1.一项工程,甲单独做40天完成,乙单独做50天完成,甲先单独做4天,然后两人合做,x 天完成这项工程,则可列的方程是( D )A.x 40+x 40+50=1B.440+x 40×50=1C.440+x50=1 D.440+x 40+x50=1 2.服装厂要生产一批某种型号的学生服装,已知3 m 长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,仓库内存有这样的布料600 m,应分别用多少布料做上衣,多少布料做裤子才能恰好配套?解:设做上衣的布料用x m,则做裤子的布料用(600-x ) m .由题意知 x3×2=600-x 3×3. 解得x =360,600-x =240. 即用360 m 做上衣,240 m 做裤子.3.一本稿件,甲打字员单独打20小时可以完成,甲、乙两打字员合打,12小时可以完成,现在由两人合打7小时,余下部分由乙完成,还需多少小时?解:设还需x 小时,由题意,得 112×7+⎝⎛⎭⎫112-120x =1.解得x =12.5. 即还需12.5小时.活动3 拓展延伸(学生对学)【例3】整理一批图书,由1人做160小时完成,先由一些人做4小时,再增加5人做6小时,完成这项工作的34,则先安排了多少人做4小时?(假设这些人的工作效率都相同)【互动探索】首先设先安排了x 人整理图书,根据题意,得等量关系:先安排的人4小时的工作量+增加5人后6小时的工作量=34,根据等量关系列出方程,再解即可.【解答】设先安排x 人做4小时.根据题意,得 4x 160+6(x +5)160=34. 去分母、去括号,得 4x +6x +30=120.移项、合并同类项,得10x =90. 系数化为1,得x =9.即先安排了9人做4小时.【互动总结】(学生总结,老师点评)此题主要考查了一元一次方程的应用,关键是正确理解题意,表示出各部分的工作量,再根据“先做4小时完成的工作量+增加5人后6小时完成的工作量=工作总量×34”列出方程.环节3 课堂小结,当堂达标 (学生总结,老师点评)一元一次方程的应用⎩⎪⎨⎪⎧题型→配套问题→方法→相等关系题型→工程问题→方法请完成本课对应训练!第2课时 实际问题与一元一次方程(2)一、基本目标 【知识与技能】1.理解商品销售中所涉及的进价、原价、售价、利润、打折数、利润率这些基本量的关系.2.会解决球赛中的积分问题及电话计费问题.3.会根据实际问题中的数量关系列方程解决问题,掌握用方程解决一些生活中的实际问题的技巧.【过程与方法】通过列方程解决实际问题,让学生逐步建立方程思想. 【情感态度与价值观】让学生在问题情境中感受到数学与生活的密切联系,提高对数学的兴趣. 二、重难点目标 【教学重点】掌握用方程解决盈亏问题、比赛积分问题、电话计费问题. 【教学难点】根据问题背景,建立适当的数学模型.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P102~P105的内容,完成下面练习. 【3 min 反馈】 1.销售问题.(1)销售中盈亏问题中基本的量:①成本价:有时也称进价,是商家进货时的价格;②标价:商家在出售时,标注的价格;③售价:消费者购买时真正花的钱数;④商品利润=商品售价-商品成本价;⑤利润率:商品出售后利润与成本的比值.(2)销售问题中的几个等量关系:①售价=进价×(1+利润率);②利润与售价、进价的关系:利润=售价-进价;③利润率与利润、进价的关系:利润率=利润进价×100%=售价-进价进价×100%;④标价、实际售价与打折数的关系:实际售价=标价×打折数;⑤实际售价与进价、利润之间的关系:利润=实际售价-进价=标价×打折数-进价.2.比赛积分问题.比赛总场数=胜场总数+平场总数+负场总数;比赛总积分=胜场积分+平场积分+负场积分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人民路校区 中小学1对1课外辅导专家 南洋教育五环教学案 日期: 授课人: 学生: 课次:第 讲 今日格言:及时当勉励,岁月不待人。(晋 陶渊明)
标
题 一元一次方程(2)
知识点梳理
第5章 走进图形世界 单元测试(二) 一. 填空(每空2分,共40分). 1. 面与面相交得到 ,线与线相交得到 . 2. 将下面4个图用纸复制下来,然后沿所画线折一下,把折成的立体图形名称写在图的下边横线上:
3. 正方体或长方体是一个立体图形,它是由__ ___个面,______条棱,_____个顶点组成的. 4. 要把一个长方体的表面剪开展成平面图形,至少需要剪开________条棱. 5. 在同一平面内,用游戏棒(同样长)搭4个一样大小的等边三角形,至少要_____根,在空间搭四个一样大小的等边三角形,至少要________根. 6. 如图,截去正方体一角变成一个多面体,这个多面体有____个面,____条棱,_ __个顶点.
7. 若要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6, 则x=_ ___,y=______。 8. 四棱柱按如图粗线剪开一些棱,展成平面图形,请画出平面图来:
_______________________ 9. 薄薄的硬币在桌面上转动时,看上去像球,这说明了____ _____________.
10. 写出两个三视图形状都一样的几何体:_____________________。
(第6题) 1 2 3 x y (第7题) (第8题)
题目虽然简 单,也要 仔细呦! 人民路校区
中小学1对1课外辅导专家 二.选择题(每题4分,共24分). 11. 桌上摆满了朋友们送来的礼物,小狗贝贝好奇地想看个究竟.
P q m n ①小狗先是站在地面上看,②然后抬起了前腿看,③唉,还是站到凳子上看吧,④最后,它终于爬上了桌子……… 按小狗四次看礼物的顺序,四个画面的顺序为………………………………………………【 】 A.mnpq B. qnmp C. pqmn D. mnqp
12. 一个直立在水平面上的圆柱体的主视图、俯视图、左视图分别是 …………………【 】 A.长方形、圆、长方形 B.长方形、长方形、圆 C.圆、长方形、长方形 D.长方形、长主形、圆
13. 如图是正方体的表面展开图,折叠成正方体后,其中哪两个完全相同 ……………【 】 A. (1)(2) B. (2)(3) C.(3)(4) D.(2)(4)
14. 从多边形一条边上的一点(不是顶点)处出发,连接各个顶点得到2003个三角形,则这个多边形的边数为………………………………………………………………………………【 】 A. 2001 B. 2005 C. 2004 D. 2006 15. 明明用纸(如下图左)折成了一个正方体的盒子,里面装了一瓶墨水,混放在下面的盒子里,只凭观察,选出墨水在哪个盒子中. ………………………………………………………【 】
+ ※ ◇ ○ × □
□◇ ※ × + ○ □× + ○ ◇ ※ + ○ □※ ◇ ×
(1) (2) (3) (4)
A B C
D 人民路校区
中小学1对1课外辅导专家 16. 观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来 【 】.
三. 解答题(每题6分,共36分) 17. ⑴.下面这些基本图形和你很熟悉,试一试在括号里写出它们的名称.
( ) ( ) ( ) ( ) ( ) ⑵. 将这些几何体分类,并写出分类的理由.
18. 画出下列几何体的三种视图.
19. 如图是几个正方体所组成的几何体的俯视图,小正方形中的数字表示该位置小正方块的个数.请画出这个几何体的主视图和左视图.
20、用小立方块搭一几何体,使得它的主视图和俯视图如图所示,这样的几何体最少要多少个立方块,最多要多少个立方块。
1 2 3 1
A B C D 主视图 左视图 俯视图 主视图 左视图 人民路校区
中小学1对1课外辅导专家 21.已知下图为一几何体的三视图: (1)写出这个几何体的名称; (2)任意画出它的一种表面展开图; (3)若主视图的长为10cm,俯视图中三角形的边长为4cm,求这个几何体的侧面积。
22.三棱柱有______个面______个顶点______条棱,四棱柱有______个面_____个顶点____条棱,五棱柱有_____个面_____个顶点_____条棱,……,由此可以推测n棱柱有___________个面,____________个顶点,____________条棱。
认知障碍疏通
解方程 (1)1524213xx. (2)246231xxx. (3))1(21)1(7xx
(4)611333223xxx (5)1815612xx (6) xxx5.012.02.01.0
俯视图:等边三角形左视图:长方形主视图:长方形 人民路校区
中小学1对1课外辅导专家
(7) 43}23)]32(41[31{21xxxx ( (8) 2(x+2)=3(2x+1)
(9) 5x-3(2x+1)+7x=6x-4(5-3x) (10)2233555xxxx (11)5.15.05.07.02.03.0xx (12)4(x-2)-[5(1-2x)-4(5x-1)]=0 人民路校区
中小学1对1课外辅导专家 2、若y1 = 3x + 2,y2 = 4-x,(1)当x取何值时,y1 = y2?(2)当x取何值时,y1比 y2大4? 3.列方程求解: (1)当x取何值时,代数式3(2-x)和2(3 + x)的值相等? (2)当x取何值时,代数式3(2-x)和2(3 + x)的值互为相反数?
4.已知32x是方程mxxm523)43(3的解,求m的值.
知识点训练
(1)一个数的17与3的差等于最大的一位数,求这个数.设这个数为x,根据题意,列方程得 (2)第一块实验田的面积比第二块实验田的3倍还多100平方米,这两块实验田共2900平方米,第一块实验田是多少平方米?设第一块实验田的面积是x平方米,根据题意,列方程得
. (3)用一根长为10米的铁丝围成一个长方形,使得该长方形的长比宽多1.4米,长方形的长为多少米?设长方形的长为x米,根据题意,列方程得
. (4)儿子今年13岁,父亲今年40岁,几年前父亲的年龄是儿子的4倍?设x年前父亲的年龄是儿子的4 人民路校区
中小学1对1课外辅导专家 倍,根据题意,列方程得 .
(5)教室里的课桌每行8张就多3张,每行9张就差3张,教室里有几行课桌?设教室里有x张课桌,根据题意,列方程得 .
(6)香巴拉果汁店中的A种果汁比B种果汁贵1元,扎桑和同学要了3杯B种果汁、2杯A种果汁,一共花了16元.B种果汁的单价是多少元?设B种果汁的单价是x元,根据题意,列方程得 . (7)某文件需要打印,尼玛独立做需要6小时完成,米玛独立做需要8小时完成.如果他们俩共同做,需几小时完成?设需要x小时完成,根据题意,列方程得 . (8)冲吉到鞋店花了188元买了一双皮鞋,这双皮鞋是按标价打8折后售出的,这双鞋的标价是多少元?设这双鞋的标价是x元,根据题意,列方程得 . (9)平措存了一个一年期的储蓄,年利率为3%,(也就是一年增长3%)一年后能取5150元,他开始存了多少元?设他开始存入x元,根据题意,列方程得 . (10)一件商品按成本价提高20%后标价,又以9折销售,售价为270元,这种商品的成本价是多少元?设这种商品的成本价是x元,根据题意,列方程得 .
拓展迁移
1.有一列数,按一定规律排列成1,3,5,7,9,…,其中某三个相邻数的和是177,这三个各是多少? 2.探究题: 扎西的手机,每月按这样的标准交费:每月月租费30元,每分钟通话费0.3元;卓玛的手机,每月按这样的标准交费:没有月租费,每分钟通话费0.4元. (1)你认为扎西合算还是卓玛合算,说说你的理由. (2)在一个月内,扎西通话200分钟,这个月扎西需交话费 元,卓玛也通话200分钟,这个月卓玛需交话费 元,请你比较这个月谁的话费交得少. (3)在一个月内,扎西通话350分钟,这个月扎西需交话费 元,卓玛也通话350分钟,这个月卓玛需交话费 元,请你比较这个月谁的话费交得少. 人民路校区
中小学1对1课外辅导专家 学案审核: ___________ 课务认定:___________ 家长签字:
(4)在一个月内通话多少分钟,这个月扎西和卓玛需交的话费一样多?解:设在一个月内通话x分钟,根据这个月扎西和卓玛需交的话费一样多,列方程得 . 解方程得 . 答:在一个月内通话 分钟,这个月扎西和卓玛需交的话费一样多. (5)通过上面的讨论和探究,关于扎西合算还是卓玛合算,你得出了什么结论?与其他同学交流你的结论.
学生对于本次课的评价: ○ 特别满意 ○ 满意 ○ 一般 ○ 差 学生签字:
教师评定: 1、 学生上次作业评价: ○ 非常好 ○好 ○ 一般 ○ 需要优化 2、 学生本次上课情况评价:○非常 好 ○好 ○ 一般 ○ 需要优化 教师签字:
教师寄语: